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Abstract

A new weighted exponential distribution is proposed using a logarithmic weight function. Mathe-
matical properties are studied, including moments, residual life function, order statistics and record
values. A parametric estimation is performed using the maximum likelihood method, the weighted
least-square method and the maximum product of spacing estimators method. Applications are pro-
vided using four real data sets. It is shown that our new distribution works better than a number of
classical and recent distributions.
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1. Introduction

The general weighted exponential family of distributions has a probability density function (pdf)
of the form:

f(x) = Cw(x)g(x),

where g(x) denotes a pdf of the exponential distribution with parameter λ > 0, w(x) ≥ 0 is a weight

function and C represents the normalization constant given by C−1 =
∫ +∞
−∞ w(x)g(x)dx. Recent

weighted exponential distributions with great ability in statistical applications include the exponen-
tiated exponential (EE) distribution introduced by [9], the weighted exponential (WE) distribution
introduced by [7], the Gamma exponentiated exponential (GEE) distribution introduced by [14],
the weighted generalized exponential (WGE) distribution introduced by [10] and the exponentiated
weighted exponential (EWE) distribution introduced by [13]. A brief review on weighted distribu-
tions (exponential or non-exponential) can be found in [15]. The statistical literature on proposing
new weighted exponential distributions is vast and growing fast.

In this paper, we introduce a new weighted exponential distribution characterized by the pdf:

f(x) =
λβ

(β + 1) log(β + 1)
log(β + eλx)e−λx, x, β, λ > 0. (1)

Thus the associated weight is w(x) = log(β + eλx) and C =
β

(β + 1) log(β + 1)
. To the best of

our knowledge, the consideration of this weight is new in the literature, opening the door of new
perspectives of applications. We shall refer to the distribution given by (1) as the logarithmic weighted
exponential (LWE). Also, note that w(x) is an increasing and concave up, hence one of the possible
shapes of the hazard rate function (hrf) of this distribution is increasing ([8]), as it shall be seen later.
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Moreover, some plots are given to show the graphical behavior of the pdf and hrf of the distribution,
illustrating its flexibility in data modeling. Other motivations to the LWE distribution are as follows.

• The pdf (1) can be written as a two-component mixture of two pdfs:

f(x) = pf1(x) + (1− p)f2(x), x > 0,

where p =
β

(β + 1) log(β + 1)
is the mixing proportion, f1(x) = λ2xe−λx is the pdf of the Gamma

distribution with parameters (2, λ), f2(x) =
λβ

(β + 1) log(β + 1)− β
log
(
β + 1− β(1− e−λx)

)
e−λx is

an extension of the pdf of gamma-G distribution introduced by [17]. To be more specific, it is
associated to a cumulative distribution function (cdf) of the form H(G(x)), belonging to the family
of composition of two cdfs: H(y) and G(x) (see [2]). Here G(x) depends only on λ; it is the cdf
associated to the exponential distribution of parameter λ and H(y) depends only on β:

H(y) = 1− 1

(β + 1) log(β + 1)− β
[(1 + β(1− y)) log (1 + β(1− y))− β(1− y)] , y ∈ [0, 1].

One can show that H(y) is a slowly decreasing according to β > 0 with H(y) ∼ 1 − (1 − y)2 when
β → 0 and H(y) ∼ y when β → +∞.

• Let X follow the LWE distribution and consider the transformation Y = β + eλX . Then
distribution of Y is characterized by the pdf given by

f(y) =
β

(β + 1) log(β + 1)

log(y)

(y − β)2
, y ≥ β + 1, β > 0,

which is a new extension of the Pareto distribution and may be called log-Pareto distribution.
The rest of the paper is organized as follows. Section 2 presents the cdf and hrf related to the

LWE distribution, with some plots. Section 3 is devoted to some of its statistical properties. Residual
life function is studied in Section 4. Order statistics and record values are investigated in Section 5.
Three different estimation procedures are presented in Section 6. Finally, four real data applications
are presented in Section 7 to show the performance of the distribution.

2. Functions related to the LWE distribution

2.1. Survival, cumulative density and hazard rate functions

Proposition 1. Let X be a random variable with pdf f(x) (1). The associated survival function (sf)
is given by :

S(x) = P (X > x) =
log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)
, x, β, λ > 0. (2)

Proof. Let us set c = λβ
(β+1) log(β+1) and remark that

f(x) = c log(β + eλx)e−λx = c log
(
eλx(1 + βe−λx)

)
e−λx = c

(
λxe−λx + log(1 + βe−λx)e−λx

)
.

Using definition of S(x), we find that

S(x) =

∫ +∞

x

f(t)dt = c

(∫ +∞

x

λte−λtdt+

∫ +∞

x

log(1 + βe−λt)e−λtdt

)
.

Using this decomposition, integration by parts, change of variables and after some algebra, we obtain

S(x) =
log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)
.

This ends the proof.
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The cumulative distribution function follows immediately:

F (x) = 1− S(x) = 1− log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)
, x, β, λ > 0. (3)

The hazard rate function is given by

h(x) =
f(x)

1− F (x)
=

λβ log(β + eλx)e−λx

log(1 + βe−λx) + βe−λx log(β + eλx)
, x, β, λ > 0. (4)

2.2. Behaviour of the functions

First of all, let us investigate some features of the functions inherent to the LWE distribution. For
the pdf (1), we have

f(x) ∼ λβ

β + 1
e−λx → λβ

β + 1
, x → 0, f(x) ∼ λ2β

(β + 1) log(β + 1)
xe−λx → 0, x → +∞.

For the sf (2), we have

S(x) ∼ 1− λ

log(β + 1)
x → 1, x → 0, S(x) ∼ β

(β + 1) log(β + 1)
(1 + λx)e−λx → 0, x → +∞.

And for the cdf (3), we have

F (x) ∼ λ

log(β + 1)
x → 0, x → 0, F (x) ∼ 1− β

(β + 1) log(β + 1)
(1 + λx)e−λx → 1, x → +∞.

For the hrf (4), we have

h(x) ∼ λβ

β + 1
e−λx → λβ

β + 1
, x → 0, h(x) ∼ λ2x

1 + λx
→ λ, x → +∞.

Let us now study the change points of h(x). By denoting y = log(β + eλx), we have

h′(x) =
βλ2e−λx

[
−λxeλx − (β + eλxy(−1− λx+ (1 + 2βeλx)y))

]
(β + eλx)(xλ− (1 + βeλx)y)2

.

The change points of the hrf function are given by b∗ by solving the two following equations:
b∗λ− (1 + βeλb

∗
)y1 = 0 and −λb∗eλb

∗ − (β + eλb
∗
y1(−1− λb∗ + (1 + 2βeλb

∗
)y1)) = 0.

Figures 1 and 2 show the graphical features of the pdf and hrf of the LWE distribution for several
choices of parameters (λ, β). In particular, we see that the pdf is very flexible and highly right skewed.
Interesting comportment of the hrf, with possible change-point(s), can be observed.

3. Statistical properties

This section is devoted to some statistical properties of the LWE distribution.

3.1. Expansion of the pdf

Proposition 2. Let f(x) be (1). Then we have the following expansion:

f(x) =
λ2β

(β + 1) log(β + 1)
xe−λx +

∞∑
k=0

k∑
ℓ=0

Ak,ℓe
−λ(ℓ+1)x, (5)

with

A0,0 =
λβ

(β + 1) log(β + 1)
log(β + 1), Ak,ℓ =

λβ

(β + 1) log(β + 1)

(
k

ℓ

)
1

k

(
β

β + 1

)k

(−1)ℓ+1,

for k > 0 or ℓ > 0.
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Figure 1: Plots of the LWE pdf.

Figure 2: Plots of the LWE hrf.

Proof. Let us set c = λβ
(β+1) log(β+1) and remark that

f(x) = c log(β + eλx)e−λx = c log

(
(β + 1)eλx

(
1− β

β + 1
(1− e−λx)

))
e−λx

= c

(
log(β + 1) + λx+ log

(
1− β

β + 1
(1− e−λx)

))
e−λx.

Using the expansion: log(1 − y) = −
∞∑
k=1

yk

k
, y ∈ [−1, 1), noticing that 0 ≤ β

β+1 (1 − e−λx) < 1, and

the binomial series expansion, we have

log

(
1− β

β + 1
(1− e−λx)

)
= −

∞∑
k=1

1

k

(
β

β + 1

)k

(1− e−λx)k

=
∞∑
k=1

k∑
ℓ=0

(
k

ℓ

)
1

k

(
β

β + 1

)k

(−1)ℓ+1e−λℓx.

We end the proof by putting these equalities together.

3.2. Quantile function

We can obtain the quantile function using the cdf (3); it is the function Q(x) satisfying the
nonlinear equation:

F (Q(x)) = x ⇔ log(1 + βe−λQ(x)) + βe−λQ(x) log(β + eλQ(x)) = (1− x)(β + 1) log(β + 1). (6)

Variates of the LWE distribution can be simulated by using X = Q(U) where U is a random variable
following the uniform distribution on [0, 1].
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3.3. Moments

Proposition 3. Let X be a random variable with pdf f(x) given by (1). Consider the Gamma

function: Γ(ν) =
∫ +∞
0

xν−1e−xdx and the coefficient Ak,ℓ of expansion (5). Then the r-th moment of
X is given by

E(Xr) =
βΓ(r + 2)

(β + 1) log(β + 1)λr
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
Γ(r + 1)

λr+1(ℓ+ 1)r+1
. (7)

Proof. Let us set c = λβ
(β+1) log(β+1) and consider the expansion (5). Hence

E(Xr) =

∫ +∞

−∞
xrf(x)dx =

∫ +∞

0

xr

(
cλxe−λx +

∞∑
k=0

k∑
ℓ=0

Ak,ℓe
−λ(ℓ+1)x

)
dx

= cλ

∫ +∞

0

xr+1e−λxdx+
∞∑
k=0

k∑
ℓ=0

Ak,ℓ

∫ +∞

0

xre−λ(ℓ+1)xdx

= c
Γ(r + 2)

λr+1
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
Γ(r + 1)

λr+1(ℓ+ 1)r+1
.

The proof is completed.

3.4. Moment generating function

Proposition 4. Let X be a random variable with pdf f(x) given by (1). Consider the coefficient Ak,ℓ

of expansion (5). Then the moment generating function of X is given by

M(t) =
λ2β

(β + 1) log(β + 1)(λ− t)
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
1

λ(ℓ+ 1)− t
, t < λ.

Proof. Let us set c = λβ
(β+1) log(β+1) and consider the expansion (5). Hence, for t < λ,

M(t) = E(etX) =

∫ +∞

−∞
etxf(x)dx =

∫ +∞

0

etx

(
cλxe−λx +

∞∑
k=0

k∑
ℓ=0

Ak,ℓe
−λ(ℓ+1)x

)
dx

= cλ

∫ +∞

0

e−(λ−t)xdx+
∞∑
k=0

k∑
ℓ=0

Ak,ℓ

∫ +∞

0

e−(λ(ℓ+1)−t)xdx

= c
λ

λ− t
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
1

λ(ℓ+ 1)− t
.

This ends the proof.

3.5. Conditional moments and mean deviations

Proposition 5. Let X be a random variable with pdf f(x) given by (1). Consider the lower incomplete

Gamma function Γ(t, ν) =
∫ t

0
xν−1e−xdx and the coefficient Ak,ℓ of expansion (5). Then we have

∫ t

0

xrf(x)dx =
βΓ(λt, r + 2)

(β + 1) log(β + 1)λr
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
Γ(λ(ℓ+ 1)t, r + 1)

λr+1(ℓ+ 1)r+1
, t > 0. (8)
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Proof. Let us set c = λβ
(β+1) log(β+1) and consider the expansion (5). Therefore

∫ t

0

xrf(x)dx =

∫ t

0

xr

(
cλxe−λx +

∞∑
k=0

k∑
ℓ=0

Ak,ℓe
−λ(ℓ+1)x

)
dx

= cλ

∫ t

0

xr+1e−λxdx+
∞∑
k=0

k∑
ℓ=0

Ak,ℓ

∫ t

0

xre−λ(ℓ+1)xdx

= c
Γ(λt, r + 2)

λr+1
+

∞∑
k=0

k∑
ℓ=0

Ak,ℓ
Γ(λ(ℓ+ 1)t, r + 1)

λr+1(ℓ+ 1)r+1
.

The proof is completed.

The r-th conditional moments of the LWE distribution is given by

E(Xr | X > t) =
1

1− F (t)

∫ +∞

t

xrf(x)dx =
1

1− F (t)

(
E(Xr)−

∫ t

0

xrf(x)dx

)
.

The r-th reversed moments of the LWE distribution is given by

E(Xr | X ≤ t) =
1

F (t)

∫ t

0

xrf(x)dx.

Both moments can be expressed using (8). The mean deviations of X about the mean µ = E(X) can
be expressed as δ = 2µF (µ) − 2

∫ µ

0
xf(x)dx and the mean deviations of X about the median M has

the form η = µ− 2
∫M

0
xf(x)dx.

4. Residuals life function

Let X be a random variable having the pdf f(x) given by (1). The residual life is described by the
conditional random variable R(t) = X − t | X > t, t ≥ 0. It naturally appears in life length studies
(see [6] and [12]). Using the sf S(x) (2), the sf of the residual lifetime R(t) is given by

SR(t)
(x) =

S(x+ t)

S(t)
=

log(1 + βe−λ(x+t)) + βe−λ(x+t) log(β + eλ(x+t))

log(1 + βe−λt) + βe−λt log(β + eλt)
, x > 0.

The associated cdf is given by

FR(t)
(x) =

log
(

1+βe−λt

1+βe−λ(x+t)

)
+ βe−λt

(
log(β + eλt)− e−λx log(β + eλ(x+t))

)
log(1 + βe−λt) + βe−λt log(β + eλt)

, x > 0.

Then, the corresponding pdf is given by

fR(t)
(x) =

λβ log(β + eλ(x+t))e−λ(x+t)

log(1 + βe−λt) + βe−λt log(β + eλt)
, x > 0.

The associated hrf is given by

hR(t)
(x) =

λβ log(β + eλ(x+t))e−λ(x+t)

log(1 + βe−λ(x+t)) + βe−λ(x+t) log(β + eλ(x+t))
, x > 0.

The mean residual life is defined as

K(t) = E(R(t)) = E(X − t | X > t) =
1

S(t)

∫ +∞

t

xf(x)dx− t =
1

S(t)

(
E(X)−

∫ t

0

xf(x)dx

)
− t,
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where f(x) is given by (1), S(t) is given by (2), E(X) is given by (7) with r = 1 and
∫ t

0
xf(x)dx is

given by (8) with r = 1.
On the other hand, the variance residual life is given by

V (t) = V ar(R(t)) = V ar(X − t | X > t) =
2

S(t)

∫ +∞

t

xS(x)dx− 2tK(t)− [K(t)]2

=
1

S(t)

(
E(X2)−

∫ t

0

x2f(x)dx

)
− t2 − 2tK(t)− [K(t)]2,

where E(X2) is given by (7) with r = 2 and
∫ t

0
x2f(x)dx is given by (8) with r = 2.

The reverse residual life is described by the conditional random variable R(t) = t − X | X ≤ t,

t ≥ 0. Using the cdf (3), the sf of the reversed residual lifetime R(t) is given by

SR(t)
(x) =

F (t− x)

F (t)
=

(β + 1) log(β + 1)− log(1 + βe−λ(t−x)) + βe−λ(t−x) log(β + eλ(t−x))

(β + 1) log(β + 1)− log(1 + βe−λt) + βe−λt log(β + eλt)
, 0 < x ≤ t.

The associated cdf is given by

FR(t)
(x) =

log(1 + βe−λ(t−x)) + βe−λ(t−x) log(β + eλ(t−x))− log(1 + βe−λt) + βe−λt log(β + eλt)

(β + 1) log(β + 1)− log(1 + βe−λt) + βe−λt log(β + eλt)
, x > 0.

Therefore, the corresponding pdf is given by

fR(t)
(x) =

λβ log(β + eλ(t−x))e−λ(t−x)

(β + 1) log(β + 1)− log(1 + βe−λt) + βe−λt log(β + eλt)
, x > 0.

The associated hrf is given by

hR(t)
(x) =

λβ log(β + eλ(t−x))e−λ(t−x)

(β + 1) log(β + 1)− log(1 + βe−λ(t−x)) + βe−λ(t−x) log(β + eλ(t−x))
, x > 0.

The mean reversed residual life is defined as

L(t) = E(R(t)) = E(t−X | X ≤ t) = t− 1

F (t)

∫ t

0

xf(x)dx,

where f(x) is given by (1), F (t) is given by (3) and
∫ t

0
xf(x)dx is given by (8) with r = 1.

The variance reversed residual life is given by

W (t) = V ar(R(t)) = V ar(t−X | X ≤ t) = 2tL(t)− [L(t)]2 − 2

F (t)

∫ t

0

xF (x)dx

= 2tL(t)− [L(t)]2 − t2 +
1

F (t)

∫ t

0

x2f(x)dx,

where
∫ t

0
x2f(x)dx is given by (8) with r = 2.

5. Order statistics and record values

Order statistics naturally appear in many areas of statistics, as reliability and quality control
testing. Let X1, X2, . . . , Xn be n i.i.d. random variables having the pdf (1). Let us consider its order
statistics is X1:n, X2:n, . . . , Xn:n. Using the expressions of f(x) given by (1) and F (x) (3), the pdf of
the i-th order statistic Xi:n is given by

fi:n(x) =
n!

(i− 1)! (n− i)!
[F (x)]i−1[1− F (x)]n−if(x)

=
n!

(i− 1)! (n− i)!

[
1− log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

]i−1

×
[
log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

]n−i
λβ

(β + 1) log(β + 1)
log(β + eλx)e−λx, x > 0.
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In particular, let us mention that the pdf of X1:n = inf(X1, . . . , Xn) is given by

f1:n(x) = n[1− F (x)]n−1f(x)

=
λβ

(β + 1) log(β + 1)
n

[
log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

]n−1

log(β + eλx)e−λx

and the pdf of Xn:n = sup(X1, . . . , Xn) is given by

fn:n(x) = n[F (x)]n−1f(x)

=
λβ

(β + 1) log(β + 1)
n

[
1− log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

]n−1

log(β + eλx)e−λx.

The cdf of the i-th order statistic Xi:n is given by

Fi:n(x) =
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i

k

)
(−1)

k

i+ k
[F (x)]

i+k

=
n!

(i− 1)! (n− i)!

n−i∑
k=0

(
n− i

k

)
(−1)

k

i+ k

[
1− log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

]i+k

, x > 0.

For i < j, the joint pdf of (Xi:n, Xj:n) is given by

f(i:n,j:n)(xi, xj) =
n!

(i− 1)! (n− j)! (j − i− 1)
[F (xi)]

i−1[F (xj)− F (xi)]
j−i−1[1− F (xj)]

n−jf(xi)f(xj)

=
n!

(i− 1)! (n− j)! (j − i− 1)

[
1− log(1 + βe−λxi) + βe−λxi log(β + eλxi)

(β + 1) log(β + 1)

]i−1

×

 log
(

1+βe−λxi

1+βe−λxj

)
+ β(e−λxi log(β + eλxi)− e−λxj log(β + eλxj ))

(β + 1) log(β + 1)

j−i−1

×
[
log(1 + βe−λxj ) + βe−λxj log(β + eλxj )

(β + 1) log(β + 1)

]n−j (
λβ

(β + 1) log(β + 1)

)2

× log(β + eλxi) log(β + eλxj )e−λ(xi+xj).

As order statistics, record values arise in many situations in applied statistics. Theoretical and prac-
tical aspects of record values can be found in [1] and [3]. Let X1, X2, . . . , be a sequence of i.i.d.
random variables having the pdf (1). We define a sequence of record times U(n) as follows: U(1) = 1,
U(n) = min{j; j > U(n − 1), Xj > XU(n−1)} for n ≥ 2. We define the i-th upper record value by
Ri = XU(i), with R1 = X1. Using the pdf f(x) (1) and the cdf F (x) (3), the pdf of Ri is given by

fRi(x) =
[− log(1− F (x))]i−1

(i− 1)!
f(x)

=
1

(i− 1)!

[
− log

(
log(1 + βe−λx) + βe−λx log(β + eλx)

(β + 1) log(β + 1)

)]i−1

× λβ

(β + 1) log(β + 1)
log(β + eλx)e−λx, x > 0.

Using pdf (1) and the hrf (4), the joint pdf of (R1, . . . , Rn) is given by

f(R1,...,Rn)(x1, . . . , xn) = f(xn)
n−1∏
k=1

h(xk) =
λβ

(β + 1) log(β + 1)
log(β + eλxn)e−λxn

×
n−1∏
k=1

λβ log(β + eλxk)e−λxk

log(1 + βe−λxk) + βe−λxk log(β + eλxk)
,
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for 0 < x1 < . . . < xn.
For i < j, the joint pdf of (Ri, Rj) is given by

f(Ri,Rj)(xi, xj) =
[− log(1− F (xi))]

i−1

(i− 1)!

[
log
(

1−F (xi)
1−F (xj)

)]j−i−1

(j − i− 1)!
h(xi)f(xj)

=
1

(i− 1)!

[
− log

(
log(1 + βe−λxi) + βe−λxi log(β + eλxi)

(β + 1) log(β + 1)

)]i−1

× 1

(j − i− 1)!

[
log

(
log(1 + βe−λxi) + βe−λxi log(β + eλxi)

log(1 + βe−λxj ) + βe−λxj log(β + eλxj )

)]j−i−1

× λβ log(β + eλxi)e−λxi

log(1 + βe−λxi) + βe−λxi log(β + eλxi)
× λβ

(β + 1) log(β + 1)
log(β + eλxj )e−λxj ,

for 0 < xi < xj .

6. Estimation procedures

This section is devoted to three estimation procedures for the LWE model parameters: the maxi-
mum likelihood estimation, weighted least square estimation and maximum product of spacings.

6.1. Maximum likelihood estimators

Let X1, X2, . . . , Xn be a random sample from the LWE distribution with parameter vector Θ =
(β, λ) and x1, x2, . . . , xn are the corresponding observed values. By considering f(x) (1), the likelihood
function is given by

L(Θ) =

n∏
i=1

f(xi) =
λnβn

(β + 1)n(log(β + 1))n

[
n∏

i=1

log(β + eλxi)

][
n∏

i=1

e−λxi

]
.

The log-likelihood function can be expressed as

ℓ(Θ) = n log(λ) + n log(β)− n log(β + 1)− n log(log(β + 1)) +
n∑

i=1

log(log(β + eλxi))− λ
n∑

i=1

xi.

The nonlinear log-likelihood equations given by ∂ℓ(Θ)
∂Θ = 0 are listed below

∂ℓ(Θ)

∂β
=

n

β
− n

β + 1
− n

(β + 1) log(β + 1)
+

n∑
i=1

1

(β + eλxi) log(β + eλxi)
= 0

and

∂ℓ(Θ)

∂λ
=

n

λ
+

n∑
i=1

λeλxi

(β + eλxi) log(β + eλxi)
−

n∑
i=1

xi = 0.

Solving the equations above simultaneously, we obtain the maximum likelihood estimators (MLEs)
of the model parameters. Some numerical iterative methods may be used to estimate the model
parameters and the global maxima of the log-likelihood can be justified by considering different starting
values for the parameters. To show the likelihood equations have a unique solution in the parameters,
we plot the profile log-likelihood function of the model parameters in Figure 3, for one of the data
sets (D1) used in the application section.

Using the asymptotic distribution of the MLEs, the information matrix is used to establish the
confidence intervals for the model parameters. The elements of the 2× 2 observed information matrix
J(Θ) = Jrs(Θ) for r, s ∈ {β, λ} can be obtained from the authors upon request.

9



Figure 3: The profile of log-likelihood function for (λ, β).

6.2. Weighted least-square estimators

Let x1, x2, . . . , xn be an ordered sample of the random sample of size n from the LWE distribution.
Let F (x) be the cdf (3). Then the weighted least square estimators (WLSE) can be obtained by
minimizing

S(Θ) =
n∑

i=1

wi {F (xi)− E(F (Xi:n))}2

=
n∑

i=1

wi

{
1− log(1 + βe−λxi) + βe−λxi log(β + eλxi)

(β + 1) log(β + 1)
− i

n+ 1

}2

,

with respect to the unknown parameters of the LWE distribution, where

wi =
1

V ar(F (Xi:n))
=

(n+ 1)2(n+ 2)

i(n− i+ 1)
.

The associated nonlinear equations ∂S(Θ)
∂Θ = 0 are given by

∂S(Θ)

∂β
= 2

n∑
i=1

wi

{
1− log(1 + βe−λxi) + βe−λxi log(β + eλxi)

(β + 1) log(β + 1)
− i

n+ 1

}
η1(xi,Θ) = 0

and

∂S(Θ)

∂λ
= 2

n∑
i=1

wi

{
1− log(1 + βe−λxi) + βe−λxi log(β + eλxi)

(β + 1) log(β + 1)
− i

n+ 1

}
η2(xi,Θ) = 0,

where

η1(xi,Θ) = − 1

(β + 1)2(log(β + 1))2

(
log(β + 1) + β log(β + 1)− β log(β + eλxi)

+ log(β + 1) log(β + eλxi)− eλxi(1 + log(β + 1)) log(1 + βe−λxi)
)
e−λxi (9)

and

η2(xi,Θ) =
β

(β + 1) log(β + 1)
xe−λxi log(β + eλxi). (10)

Solving this system of nonlinear equations simultaneously will yield the WLSE’s of the distribution
parameters.
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6.3. Maximum product of spacings estimators

The maximum product of spacings (MPS) method is a powerful alternative to MLE for the esti-
mation of the unknown parameters of continuous univariate distributions. Let x1, x2, . . . , xn be an
ordered sample of the random sample of size n from the LWE distribution. Let F (x) be the cdf (3)
and Di (Θ) = F (xi) − F (xi−1) for i = 1, 2, . . . , n + 1, be the uniform spacings of a random sample
from the LWE distribution, where F (x0) = 0 and F (xn+1) = 1. The maximum product spacings

estimators Θ̂MPS are obtained by maximizing the geometric mean of the spacings given by

G (Θ) =

[
n+1∏
i=1

Di (Θ)

] 1
n+1

,

with respect toΘ. It is equivalent to maximize the logarithm of the geometric mean of sample spacings
given by

ℓ (Θ) = log (G (Θ)) =
1

n+ 1

n+1∑
i=1

log (Di (Θ)) .

Using η1(xi,Θ) (9) and η2(xi,Θ) (10), the estimates Θ̂MPS can be obtained by solving the non-
linear equations

∂ℓ(Θ)

∂β
=

1

n+ 1

n+1∑
i=1

1

Di(Θ)
[η1(xi,Θ)− η1(xi−1,Θ)] = 0

and

∂ℓ(Θ)

∂λ
=

1

n+ 1

n+1∑
i=1

1

Di(Θ)
[η2(xi,Θ)− η2(xi−1,Θ)] = 0.

7. Applications to real data

In this section, the potentiality of the LWE distribution is highlighted. We show that our distribu-
tion has a better fit than the compared distributions under all estimation procedures: MLE, WLSE
and MPSE, for four real data sets.

We fit the two-parameter gamma (gamma), exponential logarithmic (EL) [16], exponentiated ex-
ponential (EE) [9], weighted exponential (WE) [7] and LWE distributions to four real data sets. The
pdf of these models are as follows.

• The pdf of the gamma distribution is given by

f(x) =
xk−1 e−

x
θ

θk Γ(k)
, x, k, θ > 0 .

• The pdf of the exponential logarithmic distribution is given by

f(x) = − β (1− p) e−βx

log(p) (1− (1− p) e−βx)
, x, β > 0, p ∈ (0, 1) .

• The pdf of the exponentiated exponential distribution is given by

f(x) = αλ e−λx
(
1− e−λx

)α−1
, x, α, λ > 0 .

• The pdf of the weighted exponential distribution is given by

f(x) =
(α+ 1)λ e−λx

(
1− e−αλx

)
α

, x, α, λ > 0 .
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Table 1: Descriptive statistics of the data sets

D1
n Mean Median SD Skewness Kurtosis M1 M2
10 100.1 71.6 90.5638 0.943922 2.86235 70.4 47.8

D2
20 8.42945 8.662 5.32206 0.176969 2.43092 4.2029 3.663

D3
53 80.883 76 52.2441 0.494003 2.51167 43.2915 41.1

D4
76 1.95924 1.73615 1.57398 1.97956 8.16079 1.07026 0.7202

SD = Standard Deviation , M1 = Mean deviation about the mean,
M2 = Mean deviation about the median

Table 2: Some moments of the LWE

D1 D2
Mean Median SD M1 M2 Mean Median SD M1 M2
99.9137 74.4296 91.026 69.3594 66.3962 9.13596 7.51929 7.02205 5.38507 5.22879

D3 D4
Mean Median SD M1 M2 Mean Median SD M1 M2
84.2705 69.9799 62.7895 48.1234 46.7521 1.89683 0.593826 1.35356 1.03643 1.00689

We check the adequacy of the fitted models via the statistics of Anderson-Darling and the Cramér-
von Mises. They allow to determine how closely a specific distribution fits the associated empirical
distribution for a given data set. The smaller statistics give the better fit.
The description of the considered real data sets is as follows.

Time to failure in hours for non-repairable Item data Set (D1). The first data set we
consider represents the time to failure in hours for non-repairable items. The data set consists of 10
sample points and is reported at [11, Page 279].

Failure times data Set (D2). The second data set we consider represents the failure times of
20 components. The data set can be found in [11, Page 154].

Total monthly rainfall data Set (D3). The third data set is obtained from the department
of water resources and power agency manager of water resources of the State of Sao Paulo. The data
represents total monthly rainfall during April at Sao Carlos from 1960 to 2014. The data set can be
found at [4].

Fatigue fracture data Set (D4). The fourth data represents the life of fatigue fracture of
Kevlar 373/epoxy subjected to constant pressure at 90% stress level until all had failed. For previous
studies with the data see [5].

Table 1 provides descriptive statistics of the data sets. From this table, it can be seen that all the
used data sets are right skewed. Some moments of the LWE distribution are given in Table 2. We
computed the results using the definitions, where the parameters of the LWE are replaced by MLEs
for D1 and WLSEs for the other three data sets respectively from Tables 3-6. From Tables 1 and 2,
it can be noted that the considered moments of the LWE distribution are approximately close to the
sample moments for all the four data sets.

Tables 3-6 list the parameter estimates for the three estimation procedures discussed in Section
6, for the four data sets with goodness-of-fit statistics. From these tables, it can be noted that LWE
distribution is a powerful competitor to all the compared distributions. It provides a rather flexible
mechanism for fitting a wide spectrum of positive real data sets with shape property of being right
skewed. It is also observed that for small sample size MLE performs better than the WLSE and MPSE
but for larger sample size WLSE performs better than MLE and MPSE.

The conclusions drawn above are confirmed by Figure 4; it can be seen that the estimated LWE
density superimposed on the histogram of the data sets based on MLEs for D1 and WLSEs for D2-D4
provides a good fit to these data.
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Table 3: Comparison of fit of LWE using different methods of estimation for Time to Failure in Hours for Nonrepairable
Item data

MLEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.139028 87.881928 0.144832 0.016461
EL(p, β) 0.999999 0.009990 0.146562 0.017179
WE(λ, α) 0.010233 39.953472 0.149407 0.017899
EE(λ, α) 0.010826 1.136636 0.143582 0.016449
LWE(λ, β) 0.015096 1.451571 0.128042 0.014967

WLSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 0.796078 147.040746 0.187528 0.021962
EL(p, β) 0.346263 0.006459 0.176709 0.020845
WE(λ, α) 0.009125 1549.999999 0.129782 0.0148178
EE(λ, α) 0.007323 0.789169 0.187466 0.021972
LWE(λ, β) 0.010721 7.699068 0.134756 0.015240

MPSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 0.788220 146.918918 0.189559 0.022436
EL(p, β) 0.353425 0.006614 0.172185 0.020647
WE(λ, α) 0.008841 499.999279 0.146562 0.017179
EE(λ, α) 0.007347 0.781233 0.189547 0.022428
LWE(λ, β) 0.010536 7.490030 0.143201 0.016290

Table 4: Comparison of fit of LWE using different methods of estimation for failure times of 20 components data

MLEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.276065 6.605812 0.964807 0.173748
EL(p, β) 0.999999 0.118626 1.20985 0.240738
WE(λ, α) 0.237238 0.000210 1.06544 0.116016
EE(λ, α) 0.134624 1.235388 0.997362 0.182967
LWE(λ, β) 0.211521 0.411468 0.707688 0.126298

WLSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.872033 4.914790 0.925161 0.076585
EL(p, β) 0.999999 0.104051 0.948973 0.161832
WE(λ, α) 0.217647 0.000038 1.002540 0.074213
EE(λ, α) 0.158061 1.918960 0.963278 0.081900
LWE(λ, β) 0.202654 0.238868 0.605758 0.076161

MPSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 0.994138 8.962964 1.06508 0.200422
EL(p, β) 0.999999 0.112255 1.057910 0.198708
WE(λ, α) 0.228869 0.000494 1.004650 0.092105
EE(λ, α) 0.109947 0.968710 1.096200 0.207921
LWE(λ, β) 0.195684 0.587401 0.662525 0.111726
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Table 5: Comparison of fit of LWE using different methods of estimation for Rainfall data

MLEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.539744 52.530164 0.877195 0.130219
EL(p, β) 0.999999 0.012363 2.36462 0.425471
WE(λ, α) 0.024726 0.000042 0.820019 0.092466
EE(λ, α) 0.015789 1.514078 0.973941 0.147181
LWE(λ, β) 0.023096 0.213791 0.596077 0.090642

WLSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.823373 46.318640 0.665771 0.060652
EL(p, β) 0.999999 0.011138 1.83096 0.2781
WE(λ, α) 0.023778 0.000020 0.758456 0.064999
EE(λ, α) 0.017183 1.901809 0.727332 0.067376
LWE(λ, β) 0.022642 0.137041 0.483161 0.053447

MPSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.379133 59.777856 1.00204 0.149678
EL(p, β) 0.999999 0.012082 2.19852 0.382795
WE(λ, α) 0.024345 0.000001 0.777771 0.0783983
EE(λ, α) 0.014531 1.353717 1.10728 0.168091
LWE(λ, β) 0.022328 0.277365 0.5744 0.080558

Table 6: Comparison of fit of LWE using different methods of estimation for fatigue data

MLEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.641076 1.193875 0.680647 0.113341
EL(p, β) 0.999999 0.510401 3.01876 0.574565
WE(λ, α) 0.711243 1.541313 0.580135 0.0836306
EE(λ, α) 0.702793 1.709493 0.677809 0.113052
LWE(λ, β) 0.970107 0.150408 0.59646 0.100525

WLSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 2.003304 0.944853 0.583048 0.063036
EL(p, β) 0.999999 0.456246 2.60599 0.456466
WE(λ, α) 0.847727 0.613244 0.557909 0.067250
EE(λ, α) 0.815028 2.150388 0.569838 0.062684
LWE(λ, β) 1.046110 0.021336 0.542988 0.066131

MPSEs

Distributions Estimates A∗ W ∗

Gamma(k, θ) 1.476364 1.358301 0.906648 0.160206
EL(p, β) 0.999998 0.496530 2.83668 0.527345
WE(λ, α) 0.650868 2.265658 0.659052 0.101915
EE(λ, α) 0.635134 1.658918 0.844588 0.15135
LWE(λ, β) 0.930942 0.217076 0.727137 0.1306
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Figure 4: The fitted LWE pdfs superimposed on the histogram of data.

References

[1] Ahsanullah, M. (1995): Record Statistics. Nova Science Publishers, Commack, New Jersey.

[2] AL-Hussaini E. K. (2012): Composition of cumulative distribution functions. J. Statist. Th.
Appl., 11, 323-336.

[3] Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998): Records. Wiley, New York.

[4] Bakouch, H., Dey, S., Ramos, P. L. and Louzada, F. (2017): Binomial-exponential 2 distribution:
Different estimation methods with weather applications, TEMA (to appear).

[5] Barlow, R. E., Toland, R. H. and Freeman, T. (1984): A Bayesian analysis of stress rupture
life of Kevlar 49/epoxy spherical pressure vessels, In: Proceedings. conference on applications of
statistics, Marcel Dekker, New York

[6] Bryson, C. and Siddiqui, M. M. (1969): Some criteria for aging. Journal of the American Statis-
tical Association, 64, 1472-1483.

[7] Gupta, R. D. and Kundu, D. (2009): A new class of weighted exponential distribution. Statistics,
43, 621-634.

[8] Jain, K., Singh, H. and Bagai, I. (1989): Relations for reliability measures of weighted distribu-
tions. Communications in Statistics-Theory and Methods, 18, 4393-4412.

[9] Gupta, R. D. and Kundu, D. (2001): Exponentiated Exponential Family; An Alternative to
Gamma and Weibull. Biometrical Journal, 33, 1, 117-130.

[10] Mahdavi, A. (2015): TwoWeighted Distributions Generated by Exponential Distribution. Journal
of Mathematical Extension, 9, 1-12.

15



[11] Murthy, D. N. P., Xie, M. and Jiang, R. (2003): Weibull models. John Wiley & Sons, Inc.

[12] Muth, E. J. (1977): Reliability models with positive memory derived from the mean residual life
function, in Theory and Applications of Reliability, (C. P. Tsokos and I. N. Shimi eds.), Academic
Press, 401-434.

[13] Oguntunde, P. E. (2015): On the Exponentiated Weighted Exponential Distribution and Its Basic
Statistical Properties. Applied Science Reports, 10, 160-167.
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