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Modeling the dynamics of a vibrating string with a finite
distributed unilateral constraint: Application to the sitar

Chandrika P. Vyasarayani, Stephen Birkett, and John McPhee
Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

The free vibration response of an ideal string impacting a distributed parabolic obstacle located at
its boundary has been analyzed, the goal being to understand and simulate a sitar string. The portion
of the string in contact with the obstacle is governed by a different partial differential equation
(PDE) from the free portion represented by the classical string equation. These two PDEs and
corresponding boundary conditions, along with the transversality condition that governs the
dynamics of the moving boundary, are obtained using Hamilton’s principle. A Galerkin
approximation is used to convert them into a system of nonlinear ordinary differential equations,
with lower mode-shapes parametrized with respect to the location of the moving boundary as basis
functions. This system is solved numerically and the behavior of the string studied from simulations.
The advantages and disadvantages of the proposed method are discussed in comparison to the
penalty approach for simulating wrapping contacts. Simulations with bridge-string parameters
consistent with the configuration of a real sitar show that any degree of obstacle wrapping may
occur during normal playing. Finally, the model is used to investigate the mechanism behind the

generation of the buzzing tone in a sitar.

I. INTRODUCTION

The sitar (Fig. 1) is an Indian musical instrument' with
plucked strings that can interact with a shallow curved ledge
situated underneath the vibrating length of the string at one
of its boundaries. The bridge, which includes the ledge, as
well as grooves to constrain the strings in their correctly
spaced lateral positions for playing, is typically carved from
a piece of bone and rests on small wooden feet in contact
with the soundboard of the instrument (Fig. 2). The tone of
the sitar, and other instruments of Indian origin with a similar
bridge design, such as the veena and tambura,’ is markedly
different from that of Western plucked stringed instruments
such as a guitar. The interaction of the string with the ob-
stacle generates high frequency components and creates a
characteristic buzzing sound.

This mechanism is also not unknown in Western instru-
ments. The Medieval and Renaissance bray harp, for ex-
ample, has small bray-pins which provide a metal surface for
the vibrating string to impact close to one end, increasing the
upper partial content in the tone and providing a means for
the harp to be audible in larger spaces and in ensemble with
other instruments.” The arpichordium stop common on some
virginals (a plucked string keyboard instrument) imitates the
bray harp by soft metal (lead or brass) pins that can be bent
so as to lie close to the vibrating strings about 15 mm from
the termination point.3

The phenomenon common to all of these instruments is
caused by the presence of a physical obstacle which alters
the behavior of a vibrating string by interacting with it close

to one of the termination points. Raman’ gave a detailed
description of bridge geometry for the sitar, veena, and tam-
bura. He noted that even though a veena string may be
plucked at a node the corresponding vibration mode appears
in the response. Raman concluded that this phenomenon is a
consequence of the interaction of the string with the bridge.
Various approaches for modeling the interaction between a
vibrating string and an obstacle have been presented in the
literature. Amerio and Prouse,5 Schatzmam,6 Burridge et al.,7
and Cabannes” ' used the method of characteristics and en-
ergy conservation for simulating the impact between a string
and a rigid obstacle. Cabannes'” noted that modeling the case
of a string not initially at rest is an open problem. Ahn !
used a finite element approach and Newton’s kinetic coeffi-
cient of restitution to simulate the string and its impact with
the bridge. Han and Grosenbaugh12 and Taguti13 simulated
the impact using a penalty approach combined with finite
difference discretization for string motion, while Vyasarayani
et al."* used the penalty approach with a modal representa-
tion of string motion. A different direction was taken by
Krishnaswamy and Smith"” who considered the curved sitar-
bridge as a point obstacle and applied digital wave-guides
and finite difference methods to obtain the solution for a
rigid impact. Velette'© analyzed the tambura string interac-
tion with a distributed obstacle modeled as a unilateral point
constraint considering completely plastic impact.17

When the obstacle is located near the termination of the
vibrating continuum, it is possible to model the dynamics
using a moving boundary problem. Fung and Chen'® pro-
posed this method and studied perfect wrapping of a flexible
cantilever beam on a circular rigid foundation as a moving
boundary problem. The sitar-bridge-string problem is closely
related to this work, but differs from it in several respects: (i)



FIG. 1. Sitar, a stringed instrument of Indian origin.

the vibrating continuum is a string instead of a beam; (ii) the
string can have a non-point contact length at static equilib-
rium; (iii) the contacting boundary is of finite length, thus
limiting the maximum amount of wrapping around the ob-
stacle; and (iv) the obstacle geometry is closer to a parabola
than a circle.

The present paper describes a new modal formulation
for solving the string contact problem for a finitely termi-
nated parabolic obstacle, obtaining the equation of motion of
the string during wrapping motion from Hamilton’s prin-
ciple. The developed model is used to study the general be-
havior of the string motion. Advantages and disadvantages of
the proposed method for simulating wrapping contacts are
discussed in comparison to the penalty approach. The param-
eter space for which the simulation model approximates the
sitar-bridge-string interaction is analyzed and the mechanism
behind the generation of the buzzing tone in a sitar is inves-
tigated.

Il. MATHEMATICAL MODELING

A schematic representation of the bridge-string geom-
etry is shown in Fig. 3. The bridge is a finite obstacle defined
by a parabolic surface for X values between I'; and I',. The
string has fixed termination points on the X-axis at X=L, and
on the parabola at X=I";.

String motion can be divided into three distinct phases:
phase-I motion occurs when there is no contact with the ob-
stacle; partial wrapping on the obstacle is called phase-II
motion; a completely wrapped string is considered to be in
phase-III motion. In this section we assume, for simplicity
and without loss of generality, that I';=0 and I';=B. The
equation of motion governing the dynamics of the string dur-
ing each of the three phases is derived, as well as the corre-
sponding switching conditions as the string passes between
the phases. This approach is more general than that of Burr-
idge et al.” who only considered phase-II motion because the
parabola extends indefinitely below the string.

. ... Phase-I motion
String termination

Phase-II motion

\

Phase-I1I motion

l N
I 1

FIG. 3. (Color online) Bridge-string geometry and different phases of string
motion (exaggerated for clarity). The right string termination lies on the
X-axis; the left termination lies on the parabolic bridge surface as shown.

A. Phase-l motion

During phase-I motion the string is governed by the
classical string equation given as follows:

pA—5 —T—5 =0, (1)

with boundary conditions
Y,(0,0) =Y, (L,1) =0, (2)

where Y is the transverse displacement of the string, L is the
length of the string, 7 is the string tension, p is the density, A
is the cross-sectional area, X is the co-ordinate along the
length, and ¢ is the time. The shape of the obstacle is as-
sumed to be a parabola as in the work of Burridge et al.” and
the geometry can be analytically represented as

Yp(X) =ApX(B-X). (3)

We substitute the following non-dimensional parameters into
the equation of motion to facilitate analysis:

T S “
Y= ]’l’ x_L’ T= pALZ’

where h=ApB?/4 is the height of the obstacle. The equation
of motion after substituting the non-dimensional variables is
as follows:

Py _ Py _

2 ®)

with boundary conditions

FIG. 2. Sitar-bridge. The profile can be approximated by a parabolic curve. The base of the parabola defines the x-axis passing through the far string
termination point and parallel to the reference line shown, which runs along the neck of the instrument. See text for detailed dimensions.



y1(0,7) =y,(1,7)=0. (6)

A solution to Eq. (5) is assumed to be of the form
yi(x, 1) = 2 (%) (7). (7)
j=1

In Eq. (7), cf)j(x):\e"Z sin(jmx) are mass-normalized mode-
shapes of the string and 7;(7) are modal co-ordinates. Sub-
stituting Eq. (7) into Eq. (5), multiplying by ¢(x), integrat-
ing over the domain, and simplifying the resulting equation
by using orthogonality relations result in a set of uncoupled
ordinary differential equations of the following form:

(1) + wfnj(r) =0, (®)

where w;=jm are the natural frequencies of the string. The
modal initial conditions corresponding to physical initial
conditions of y,(x,0) and y,(x,0) are as follows:

1
77j(0)=f y1(x,0)¢;(x)dx and
0

1
7;(0) = J ¥1(x,0) ¢b;(x)dx. )
0

After specifying the system parameters and initial condi-
tions, the modal equations of motion given by Eq. (8) can be
numerically integrated using any standard numerical scheme.
When the string starts to contact the obstacle, the equation of
motion given by Eq. (8) is no longer valid. In Sec. II B we
derive the equation of motion during wrapping motion of the
string around the obstacle by using Hamilton’s principle with
a moving boundary.

B. Phase-ll motion

The Hamiltonian with the distributed spatial constraint'®
can be written as follows:

nl rr L
H= 5j { (H+)x(X)G(X))dX+f HdX]dt:O,
f 0

l-‘+
(10)
where II is the Lagrangian density function defined as
1. aY,(X, t))
1=~ pAY,(X,1)* - T( , 11
2P 2(X.1) 2 X (11)

and G(X) is the gap function defined as G(X)=Y,(X,?)
—Yp(X) and T is the wrapped string length. Y, is the dis-
placement of the string during wrapping motion and A(X) is
the distributed constraint force. Substituting Eq. (11) into the
Hamiltonian [Eq. (10)] and simplifying

H= afz fr_ (;pAYZ(X,t)Z)dth
A

+6 f ’ J T (NX)G(X))dXdr
n Jo

ty L
+5f J (lpAYZ(X,t)Z)dth
n JIr, 2
- f f( (aYZ(Xt))>dth:o. (12)

After evaluating the variations in Eq. (12),

NN R 20.8)) PY(X,1) )
_J,l fo (T P - pA P +A(X)

ty I
><5Y2(X,t)dth+f J (NX)G(X))dXdt
0

f f ( aZYQ(x N azyz(x t))éyz(x o dxdr

2 gY,(T
+ f (TM 5Y2(F+,t)>dt
. )¢

2 9y, 1) )
- fr (TaX oY,(I'_,¢r) |dt

1

+ f ’ (T‘?YZ(O ") 8Y,(0, t))dt

2 gy, (L,1) ) ~
_f, (T L0 sy 0. Jar=0. (13)

1

It should be noted that the virtual variables 8Y,(I",) and &I'
are unspecified, but they are related due to the presence of
the geometrical constraint. After some tedious algebra, the
relation between the virtual variables can be shown to be

8Y(T',1) = 2A p(B - 2T) T (14)

The reader can find a more detailed derivation on relating the
virtual variables in the work of Fung and Chen,18 for a simi-
lar problem. Substituting Eq. (14) into Eq. (13), and utilizing
the fact that the virtual variables are arbitrary and must van-
ish at the boundaries results in the following equations of
motion that must be satisfied at all time:

PY(X,t aZY X,t
T 2(2 ) 2( ) +AX)=0, 0<X<T_,
oX
(15)
PY(X,1) PY(X,1)
T - pA =0 <X<L 16
X2 p. P s Vs > (16)
with the boundary conditions
Y,(0,0)=0, Y,I'_5)=A,l_(B-T.), (17)
YZ(Lv[) = Ov YZ(F+J) = APF+(B - F+) > (18)

since 8l'=6I"_=4I",. The transversality condition can be
written as



3Y,(I'(2),1)

= AB-20(0). (19)

The transversality condition is the necessary condition that
must be satisfied for the variations to vanish at the free
boundary 7. The physical implication of the transversality
condition is the enforcement of the string slope to be equal to
that of the slope of the parabola at the point of separation
(I'). We substitute the same non-dimensional parameters
given in Eq. (4) along with y=I'/L, b=B/L, and «
=4L%/B? into Egs. (15)-(19). It should be noted that the
solution of Eq. (15) is the geometry of the parabola, as the
string in the domain 0 <x<+y_ perfectly wraps around the
obstacle. So we have to solve for the motion of the string in
the domain y, <x<1; thus the equation of motion reduces
to the following moving boundary problem:

&ZyZ(x’ T) _ &2y2(-x’ T) _
x> o

0, v,=x=1, (20)

vo(1,7) =0. (21)

We need one further equation that should be solved for ob-
taining the separation point (moving boundary), which
comes from the tranversality condition

VoV, D) = ay (b —y,),

%Z’T) = alb-27). (22)

To transform the non-homogenous boundary conditions
given by Eq. (21) into homogenous boundary conditions, the
following transformation defining y; is substituted into Egs.
(20)-(22):

yZ(xs T):yS(-xs T)+S(.x, T)’ (23)
where
_ a7+(b - 7+)
S(X,T)—i(’y-'—_ D (x—=1). (24)

The transformed equations are shown below:

Pys(x, 1) Pys(x,7) _ Ps(x,7)
w9 9P

v.<x<l1, (25)

with boundary conditions
y3(1,7)=0. (26)

The transversality condition now becomes

)73(')/4.,7') = O’

=alb-2y,) - M. (27)

(7+_ 1)

Substituting a solution of the following form:

‘?yS('}@v T)
ox

N
y3(x,7) = E Yi(x,7) Bi(7) (28)
i=1

into Eq. (25), where #;(x, 7) are the mass-normalized mode-
shapes parametrized with respect to the moving boundary
v.(7). They are obtained by solving for the mode-shapes of
Eq. (25):

_ 2 .. (x_7+))
Pi(x,7) =/ (1= sm(J u(l ) (29)

The partial differential equation (25) after substituting the
solution (28) and using the orthogonality property of ; re-
duces to the following coupled ordinary differential equa-
tions with time dependent coefficients:

N 2
,éi(T)"‘ |:E 2Cij(‘}’+"5’+)]/§i(7')+ [( / >
j=1

(1 - 7+)
N

+ 2 Dij(7+v Vo 'Y+):|:8;(7') = _Eij(')’+’ Ve ¥s). (30
j=1

In the above equation, C;;, D

i and E;; are defined as follows:

ij

1
Cij(7+7 ¥.) =j i(x, T)l.pj()ﬁ T)dx=‘]1ij(7)j” (31)
Y+

1
Dij(7+’ Vi Vi) =f hilx, T)J’j(% T)dX=J1ij(‘}’)")"+J2z‘j(‘)’))"2,
Y+

(32)

1
Eij( Vis Vs Vi) = f §ix, T)lﬂj(x’ 7)dx = J3ij(7) 72 + J4ij(7) ¥,
Y+

(33)

where Jy;;, Jy» J3;, and Jy; are functions of y only. The
transversality condition [Eq. (27)], after substituting the so-
lution given by Eq. (28), becomes

N

> im2B(n)=(1- m”(a(b -2y,) -

i=1

(7+ -1)
(34)

Differentiating the above equation twice, we get

N
> im2B(7) = Hy(7,) %) + Hy(v,) 72, (35)
i=1

where H, and H, are functions of . Equations (30) and (35)
can be solved simultaneously for B;(7) and y(7) to predict
the motion of the string during the contact phase. The above
method of satisfying the second derivative of the displace-
ment constraint instead of displacement constraint directly,
thus converting the constraint equation into a differential
equation, is a very well known procedure in the field of
multibody dynamics.w

C. Switching conditions between phase-l and phase-Il
motions

Let 7,; be the time at which the string in phase-I comes
in contact with the obstacle. The string in phase-I motion
contacts the obstacle when the slope of the string at x=7,
=0 matches with the slope of the obstacle. At the event of
contact, we have



y](x’Tcl):yZ(x’Tcl)s (36)

which can be further written as follows:

$ . avy,(b-1y,)
2 (1) i(x) = 2 i, 7)) Bi(7) + Sn0” Y
=1 i=1 (=1

(x=1).
(37)
Since y,=0 at 7=7,; and ¢;(0)=4;(0, 7.;)=0, we have
7(7.1) = Bi(71). (38)

Since the velocity distributions in phase-I motion and
phase-II motion should also be equal at transferring time 7.,
we have

N N
E 7']1'(7-61)¢i(x) = 2 (l.pi(x’ Tcl)ﬁi(Tcl) + lﬂi(xa Tcl)
i=1 i=1

X (1)) = balx = 1)%,. (39)

Multiplying both sides of Eq. (39) with #;(x,7,,) and inte-
grating over the domain result in the following:

N~
77[(7-01)2 ¢i(x)l//j(x’ Tcl)dx
i=1 J0
Nl
=B(r.)2 | 7)) g(x, 7 )dx
i=1J0

N~
+ Bi(Tcl)z lzbi(x» Tcl)l//j(xv 7-cl)d-x

i=1J0
1

- bajqf (x = Dpi(x,7.1)dx. (40)
0

After some simplifications using orthogonality relations, the
above equation reduces to

N
N Te1) = Bi(Tcl) + [ﬁ(Tcl)E Jlij(o) + VE( b >:| Ve
j=1

o

T
(41)
The above set of N equations contain N+ 1 unknowns, so we
need one further equation to solve for y, which can be ob-

tained by differentiating the transversality condition given by
Eq. (34) with respect to time

N
> im0 = H ()9 (42)

i=1

at transferring time 7=7,;. The above equation becomes

N

1 -

= > im2B(1,). (43)
H(0):5 l

The above algebraic equations (41) and (43) can be solved to

obtain B/(7,;) and ¥,. The time of switching can be obtained
through the transversality condition as shown below:

N N
> im2n(7) = > im2B(7.,) = ab. (44)
i=1 i=1

Standard event detection algorithms can be used in the simu-
lation to detect the time at which Eq. (44) holds.

D. Phase-lll motion

The phase-III motion is the same as phase-I motion ex-
cept that the string is completely wrapped around the ob-
stacle and vibrates between x=7,=>b and x=1. The dimen-
sionless equation of motion of the string during phase-III can
be written as

&2y4(-xv T) _ a2y4(-x9 T) _ 0
x> o7

bsx<1, (45)

Y4(b, T) =O’

substituting a solution of the following form:

y4(1,7) =0, (46)

yalx,7) = E (Pj(x)”j(T) (47)
j=1

into Eq. (45) and performing standard modal analysis, we get
the following uncoupled ordinary differential equations:

P{7) + wijrj(r) =0, (48)

where ¢;(x)=12/(1-b)sin(jm(x~b)/(1-b)) are the mass-
normalized mode-shapes of the string, r;,(7) are the general-
ized coordinates, and wy;=j7/(1-b) are the natural frequen-
cies of the string.

E. Switching conditions between phase-ll and phase-
Il motions

Once the slope of the string at x=y=>»b matches with the
slope of the obstacle the string enters into phase-III motion.
Let 7,, be the instant of switching. The displacement and
velocity distributions of the string during the last instant of
phase-II will be transferred to the phase-IIl. This can be
mathematically represented as

ﬁi(TCZ) = ri(TCZ) (49)
and
Bi(1.2) = F(7,). (50)

The transfer time 7., between phase-II and phase-III can be
again obtained from the transversality condition as shown
below:

N
. 5 ay,(b-v,)
> im2B(n) = (1- 7+)3/2<a(b -2v%)- H)
i=1 (yv,=1)
(51

Substituting 7=7,, and y,=b, we get

N

> im\2B.(1.,) = — ab(1 - b)*2. (52)

i=1



F. Switching conditions between phase-Illl and phase-
Il motions

The switching conditions between phase-III and phase-1I
are similar to that of phase-I and phase-Il. Let 7,; be the
transfer time, once the phase-III motion is initiated after time
T, the string vibrates downwards between the boundaries b
and 1. Once the string starts to move upwards the slope of
the string x=y=> matches with the slope of the obstacle and
the string enters in to phase-II motion, and then it tries to
unwrap itself thus again performing a phase-II motion. Now
we try to relate the initial conditions between phase-III and
phase-II motions. Following similar procedure as in Sec.
I C, we get the following relations:

ri(Tc3) = Bi(chi)’ (53)
ol ~( ba
Fi(7e3) = Bi(T.1) + |::8(Tcl)2 Jyi(b) + \"2<.)] Vs
= i
(54)
- .
Vo= Hl(b)z im2p(75). (55)

Equation (55) can be substituted into Eq. (54) to eliminate 7y,

and that can be solved for ,Bj(t). Once ,B’j(t) are known they
can be re-substituted into Eq. (55) to get y,. The transferring
time 7=7,3 can again obtained from the transversality condi-
tion as shown below:

N
> im2B(7.5) = — ab(1 - b)*2. (56)

i=1

Equations (53)—(55) relate the initial conditions between
phase-III and phase-II.

G. Switching conditions between phase-ll and phase-I
motions

The switching conditions between phase-II and phase-I
are similar to that of phase-II and phase-IIl. Let 7.4 be the
switching time between phase-II and phase-I motions. When
the string completely unwraps from the obstacle during
phase-II motion the slope of the string at x=7y=0 matches
with the slope of the obstacle and again phase-I motion gets
initiated. Following similar procedure as in Sec. Il E, we get
the following relations:

Bi(7ea) = 7(7.4), (57)

Bi(7.4) = 1{(7,4). (58)

The transfer time 7.4 between phase-II and phase-III can be
again obtained from the transversality condition as shown
below:

N
> im\28(7.,) = ab. (59)
i=1

H. Summary of formulation

Now we have the equations governing the dynamics of
the string during the three phases of motion given by Eqgs.
(8), (30), and (48). The switching conditions between phase-I
and phase-II are given by Egs. (38) and (43). The event of
switching can be obtained from Eq. (44). The switching con-
ditions between phase-II and phase-III motions are given by
Egs. (49) and (50). The event of switching can be obtained
from Eq. (52). During upward motion of the string, the
switching conditions between phase-III and phase-II and the
event of switching can be obtained from equations (53)—(56).
Finally, the switching condition between phase-II and
phase-I and the event of switching are given by Eqgs.
(57)—(59). In Sec. III, we discuss the results obtained by
numerical simulations of the formulated equations.

lll. RESULTS AND DISCUSSION

In this section, we discuss the behavior of the string
motion from simulations. For computational simplicity, we
consider only a single mode representation of the string. It
will be evident shortly that even a one mode approximation
of the moving boundary formulation can capture the physics
of the problem. This approximation requires the string to be
plucked at the center of its unwrapped length.

A. General behavior of string motion

As we have introduced dimensionless quantities in the
equation of motion, the natural frequencies of the completely
unwrapped string are integer multiples of 7. For a simulation
we need two dimensionless quantities: the relationship be-
tween the bridge and string given by b=B/L, and the modal
amplitude of the initial string configuration given by 3;(0).
The contact length y=1—+/(1-) for the string at static equi-
librium on the parabolic obstacle can be obtained from the
transversality condition [Eq. (34)] by setting $,(0)=0; the
string shape at static equilibrium, a straight line from the
contact point to right termination, is given by Egs. (23) and
(24) with y;=0.

Transitions between phases are controlled by two fac-
tors: (i) the location of the bridge terminations, as deter-
mined by y; and vy,; and (ii) the pluck amplitude, as given by
the initial condition 8,(0). The value of y, constrains the left
boundary of the vibrating string and shortens the effective
speaking length at the phase-I transition, and 7y, constrains
the potential extent of the string wrapping before it enters
into phase-III motion. For each defined pair of bridge termi-
nations, limiting values of the initial condition such that the
string only vibrates in phase-II motion can be obtained from
the transversality condition [Eq. (34)]:

1- 3/2 o b—
(\gjj(a(b—zm— M) < £:0)
(1- ’)’1)”( ay (b - 71))
< \«‘Eﬂ' alb-2y,) - (y,—1) (60)

The significance of these inequalities for sitar-bridge design
will be demonstrated subsequently. A parabolic bridge that
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FIG. 4. (Color online) Variation of initial condition with initial contact
length.

extends to the x-axis on both sides, as used in the derivation
of equations of motion and switching conditions in Sec. II,
corresponds to ;=0 and y,=b, in which case the inequali-
ties constraining the string to phase-II motion simplify to

—4(1-b)32/\2mb < B,(0) < 1/\2b. The bridge configura-
tion in Ref. 7 corresponds to y;=0 and y, — .

Figure 4 shows the variation of initial condition 3;(0)
against initial contact length y(0) for a string in phase-II
configuration with »=0.05, the same as considered by Burr-
idge et al.” The corresponding midpoint deflection y,(0.5,0)
is also shown. Interestingly the initial conditions seem to
vary almost linearly with contact length. For this bridge con-
figuration, the phase transitions occur when ¥(0) is 0 or 0.05,
giving B3,(0) values of 18.0 and —16.7, and corresponding
midpoint deflections of 25.5 and —24.1; these demand very
large amplitude initial conditions if the string is to vibrate in
phase-I or phase-IIl motion. Increasing y; will constrain the
¥(0) value on the left for the phase-I transition; decreasing
v, will constrain the ¥(0) value on the right giving the phase-
IIT transition. In this way bridge termination can be used to
control the string amplitude required for the phase transi-
tions.

Now we study the free vibrations of the string about the
equilibrium state. The equations of motions were solved nu-
merically using MATLAB with ode 23s solver. The in-built
event detection algorithm in MATLAB was used for detecting
events for switching between the three phases of motion. An
absolute and relative tolerance of 10~ was used in the nu-
merical simulations. Figure 5 shows the variation of modal
coordinate B,(r) with time for four different initial condi-
tions. The corresponding phase space plots are given in Fig.
6. The first initial condition is B3;(0)=24> 1/N2mb and thus
the string starts its motion in phase-I; the string eventually
vibrates in all the three phases of motion, but the asymmetry
seen in the phase plot should be noted. All the other 1n1t1a1
conditions shown satisfy the inequalities —4(1-5)*?/ \2mb
<pB0)<1/ \2mb and the initial string condition is in
phase-II; in this case, the string remains only in phase-II
motion; however, this cannot be concluded in general due to
asymmetry. Figure 5 shows that the string starting in phase-I
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FIG. 5. (Color online) Variation of modal amplitude B; with time for four
different initial conditions. Bridge terminations given by ;=0 and y,=b
=0.05.

has a higher oscillation frequency than that starting in phase-
I, since some motion in phase-III with the highest frequency
occurs during a cycle. The frequency of oscillation for all
cases that remain in phase-II motion is essentially the same,
possibly due to the near linear relationship of $8,(0) and ¥(0),
as shown in Fig. 4. The period of oscillation with no obstacle
is 2, and it can be seen that this is increased due to the
presence of the bridge.

In order to understand how the natural frequency of the
system changes while it wraps around the obstacle, an in-
stantaneous natural frequency can be defined by taking a
square root of the coefficient of B;(7) in Eq. (30) and by
dropping rate dependent terms. Figure 7 shows the variation
of instantaneous natural frequency for the same four initial
conditions. It is clear that the natural frequencies are time
dependent.

To validate our results with the moving boundary formu-
lation, we compared them to those obtained by the penalty
approach14 and found good agreement when 100 modes were
retained in the penalty method. Moreover, the moving
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FIG. 6. (Color online) Phase space for B, and ,31 for four different initial
conditions. Bridge terminations given by ;=0 and y,=b=0.05.
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FIG. 7. (Color online) Variation of instantaneous natural frequency with
time.

boundary formulation simulated the string motion 50 times
faster than the penalty approach. During phase-III the slope
of the string at y=>b is discontinuous, except at the beginning
and end configuration. This non-smooth behavior in the
string shape at y=b is exactly captured by the formulation
and its discontinuous slope is shown in Fig. 8. This particular
non-smooth behavior in string slope cannot be captured if the
impact is modeled using a penalty applroach,14 for which
method the obstacle is assumed as a linear continuum of
distributed springs. Usually a series solution in terms of nor-
mal modes of the classical string is sought and it is well
known that the series solution converges very slowly in the
presence of non-smooth displacements and is prone to Gibbs
phenomena.zo Capturing such discontinuities in derivatives
of the spatial displacement exactly is still a challenging prob-
lem with a sparse modeling literature. "%

In order to investigate the frequency components present
in the string shape during phase-II motion, the shape of the
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FIG. 8. (Color online) Slope of the string during phase-II and III motions.
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FIG. 9. (Color online) Waterfall plot showing the variation of string shape
frequency components with time for motion in phase-1I only.

string during its entire motion (obtained by solving the mov-
ing boundary problem) is projected on the normal modes of
the classical string. Mathematically,

N
y(x,1) = 2 a;()sin(jmx) (61)
j=1

represents the shape of the string including both the wrapped
and unwrapped portions. The series in Eq. (61) can also be
interpreted as the series solution of the penalty approach, for
which'* the a(t) are obtained by solving the differential

equations
(1) + wia(r) =Vfla.ay, ... j=1,2,...,N,

(62)

,aN),

with penalty parameter W and penetration function
flay,a,,...,ay). The moving boundary approach of the
present paper is the limiting case of the penalty method for
W — o0 and penetration function tending to zero correspond-
ing to a rigid obstacle. Both the methods should give identi-
cal results in the limiting case.

Figure 9 is a waterfall plot obtained from Eq. (61) show-
ing the variation of normalized participation factors a(t)
with time for the initial condition 3,(0)=1.8 with string mo-
tion constrained to phase-II only. The presence of a particular
a;(7) in the waterfall plot means that the corresponding
modal oscillator in Eq. (62) must participate in the response
if the problem is solved using a penalty approach, and auto-
matically its frequency component will be present in the time
response. Figure 9 clearly shows the participation of higher
modes during phase-II motion. Considerably more terms in
the series [Eq. (61)] are needed around 7=0.5 and 7=1.5
when the shape of the string demands higher mode partici-
pation. It can be seen that Eq. (30) is highly coupled and
during phase-II motion the modes can exchange energy. As
time progresses higher modes will start participating and
eventually lead to multiple distributed impacts between the
bridge and the string, which will violate the perfect wrapping
assumption required in the moving boundary method. The



authors believe that these multiple impacts are responsible
for the distinct tone of the sitar. Future work will address this
by developing a detailed simulation model that can handle
spatial string motions with multiple impacts and friction.”

B. Simulation approximating the configuration of a
sitar

An initial string deflection of 24 times the height of the
bridge is required for phase-I string motion with the bridge-
string configuration used in the above simulations, which is
the same as that of Burridge et al.” This scenario is clearly
impractical for a real sitar, if only because the resulting large
amplitude string vibrations would have to pass through the
back of the instrument. In reality, the geometry of a sitar-
bridge, as shown in Fig. 2, is quite different in several re-
spects: (i) the bridge is terminated on the left at its apex, with
downbearing from string back length keeping it fixed there;
(ii) the bridge is terminated on the right at a level consider-
ably higher than that of the far string termination; and (iii)
the slope of the bridge is very shallow, so the bridge surface
remains very close to the string.

Measurements obtained from the sitar shown in Fig. 1
give the following dimensions: B=300 mm, I';=150 mm,
I',=173 mm, and L=1060 mm (effective speaking length is
910 mm). We choose the straight neck of the instrument to
define the horizontal direction. The x-axis for simulations
(Fig. 3) is parallel to this and passes through the far string
termination which is 14 mm above the neck reference line.
The apex of the bridge at 27 mm above the neck reference
line gives h=13 mm. Figures 2 and 3 show how the simula-
tion configuration relates to the real sitar-bridge.

The tops of the frets at 11 mm above the neck reference
line constrain the maximum vertical displacement of the
string if it is to avoid hitting them. The normal plucking
point is about 200 mm from the bridge apex, giving a pluck-
ing ratio or about 2:9. A typical pluck moves the string about
15 mm horizontally and 2—3 mm vertically.

This sitar string-bridge configuration is approximated
for simulations using the following non-dimensional param-
eters: L=1, b=0.283, v;=b/2=0.142, and y,=0.163. The
initial condition for a one mode solution requires a mid-
string plucking point for which the B,(0) value of 0.25 is
used. This corresponds to a string raised slightly above the
horizontal between the bridge termination and the pluck
point, a state that is easily achieved in normal playing.24
Substituting the non-dimensional parameters in Eq. (60)
gives phase transitions for B, values of 0.209 (phase-I to
phase-1I) and —0.172 (phase-II to phase-III), corresponding
to midpoint defections of 0.890 and 0.329, respectively. It
can be seen that string motion in all three phases can easily
be achieved for the configuration of a real sitar in normal
playing, as a result of the geometry of the bridge and its
terminations. The results of simulations with the above con-
ditions, shown in the phase plot of Fig. 10 should be con-
trasted with those shown in Fig. 6.
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FIG. 10. (Color online) Phase space for 8, and B3, with two initial condi-
tions and simulation parameters approximating those for a sitar: 5=0.283,
and bridge terminations y;=0.142, ,=0.163. Also shown are results for
extra wide 30 mm bridge surface with y,=0.170.

IV. CONCLUSIONS

A mathematical model of the string wrapping against
obstacle at its boundary has been formulated using a moving
boundary approach. The formulation includes the distributed
behaviour of a rigid bridge obstacle which may be termi-
nated at arbitrary locations on either side. Equations of mo-
tion have been provided for the three phases of motion cor-
responding to the string completely (phase-III), partially
(phase-II), or not at all (phase-I) wrapped on the bridge. It is
shown that a single mode moving boundary approach can
reveal much of the underlying physics, including capturing
the non-smooth string shape during phase-II motion. As
many as 60 natural frequency components of the string are
present in the wrapped string, in particular, during phase-II
motion. Thus the model captures the characteristic buzzing
behavior of the sitar tone. In the simulations given the string
motion has been reasonably well represented using only a
single mode, requiring solution of only a single ordinary dif-
ferential equation (ODE) in phase-I and phase-III, or two
coupled ODEs in phase-II. This suggests the applicability of
the method to physics-based sound synthesis algorithms. The
following conclusions can be drawn on phase-II motion:

¢ The modal amplitude B,(7) decreases as the contact length
v¥(7) increases.

e The frequency of oscillation of the string initially in
phase-I is higher than that initially in phase-II.

* The frequency of oscillation in phase-II remains constant
irrespective of initial amplitude given by modal amplitude
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