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ABSTRACT
This paper introduces an extension of a general framework that allows the simulation of various mechanical models
(discrete or continuous ones, for different kinds of meshes, in any dimension). This framework relies on a topo-
logical model and a rule-based language, that performs sub-graph matching and, possibly, transformations. This
extension allows topological modifications such as tearing and fractures for all the implemented physical models.
A general process has been used to simulate fractures and tearing: the topological transformation is described us-
ing the provided rule-based language and its application is triggered when a selected criterion is verified. Several
criteria are proposed, that depend upon the strain or stress generated by a single or a set of interactions. This
method raises the question of the link between the location where a criterion is applied and the mesh elements
involved in a modification. This question has motivated us to design new criteria which are closely related to the
mesh modification. Using this method, a minimal number of mechanical data need to be updated after a transfor-
mation and any interaction relying on mesh features (vertex, edge, face, volume) that are suppressed or split can
be automatically ignored.
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1 INTRODUCTION
Due to their complexity, tearing and fracture are ones of
the most studied phenomena in computer graphics, es-
pecially in physically-based animation. They occur due
to the stress undergone by an object when it deforms.
Much work in the literature has studied these phenom-
ena using physical models, as they produce more real-
istic and accurate results. These physical models can
be discrete (e.g. mass/interaction) [NTB+91, HTK00,
SWB00], or based on continuous mechanics and solved
by a Finite Element Methods (FEM) [OBH02, OH99,
MMD+01, KLB14]... In this paper, we consider tear-
ing and fracture as similar phenomena, depending on
the rigidity of the material of the simulated object.

To initiate the tearing/fracture in an object, a criterion
is required. Several types of criteria have been defined
in the literature. These criteria can be based on strain or
deformation (for instance, when the length of a spring
goes beyond a threshold [NTB+91]). Or criteria can be
based on stress, that is forces applied by one or a set of
interaction (for instance the separation tensor defined
by [OH99]).

After selecting a criterion that initiates the tear-
ing/fracture and, more precisely, defines its location,
a topological transformation is applied. Many types

of topological transformations have also been pro-
posed in the literature. For example, splitting several
faces/edges surrounding a vertex [SWB00], removing
an element from the mesh [NTB+91], etc. These
mesh modifications have an effect both on mass
distribution and local interactions. Therefore, after
a transformation, mechanical information has to be
updated.
Previous work did not focus on the relation between
the location of a selected criterion and the location of
the topological modifications. However, it is seldom
the same location, and the link between these two lo-
cations is not necessarily immediate. For instance, in
[NTB+91], when a spring is too much stretched, the
support edge is not removed alone, but also volumes
around this edge.
In [BBAM17], a general mechanical framework using a
topological structure and based on rules of graph trans-
formation for physical simulation is defined. This pa-
per proposes an extension of this framework that al-
lows tearing/fracture while still preserving its generic-
ity. More precisely, this extensions:

• Offers many types of criteria (proposed in other ap-
proaches) to initiate topological modifications ap-
plied in 2D and 3D to different physical models and



different types of elements as well as many types of
topological modifications;

• Formalizes the link between the locations of a crite-
rion and a topological modification by using a graph
transformation-based approach. New criteria that
are more closely related to topological transforma-
tion are also proposed;

• Allows topological modifications with minimal up-
date of mechanical information.

The paper is organized as follows: in Section 2, some
previous work related to fracture and tearing is briefly
presented. Section 3 details the used topological
model, the modeling approach used by the framework
described in [BBAM17]. Section 4 discussed the usu-
ally used topological modifications and how they have
been hosted in our framework. Section 5 presents the
simulation of tearing/fraction using different criteria.
Finally, some results and a discussion are given in
Section 6.

2 PREVIOUS WORK
Topological modifications of physical models have
been widely studied. Many approaches have simulated
the cutting of deformable bodies, often for medical
applications [WWD15]. However, cutting is a user-
controlled phenomenon that does not require a criterion
to trigger it. In practice, only the contact between the
body to cut and an appropriate tool is sufficient to
initiate cutting.

Although some approaches such as [LBC+14] have fo-
cused on tearing and/or fracture using meshless models,
most methods actually rely on meshed objects. Con-
trary to cutting, tearing and fracture require a criterion
to determine whether a crack should appear or not, the
location of this crack and its direction. Thus, many
types of criteria have been proposed in the literature.
These criteria can be based on local strain or stress in
an object, and can be subdivided into two categories,
namely Atomic criteria and Cumulative criteria.

Atomic criteria focus on a single interaction and
consider a force or a deformation threshold to trigger
a topological modification. For instance, Norton et
al. [NTB+91] use a mass/spring system (MSS) to
simulate deformation and check if the length of springs
exceeds a given value to decide where a fracture
should be applied. The same criterion has been used
by many following approaches: Hirota et al [HTK00]
to simulate fracture on the surface of drying clay,
Boux de Casson et al. [BL00] to simulate tearing of
biological tissues represented by triangular meshes in
2D and tetrahedral meshes in 3D. It is also been used
in [DKS+11] and [LBC+14].

Using cumulative criteria, a tearing/fracture is triggered
if the sum of internal forces applied on a vertex or an
element exceeds a threshold. Most methods that have
used this type of criteria are based on continuous me-
chanics. The pioneer approach has been proposed by
O’brien et al. for brittle materials [OH99] and ductile
ones [OBH02]. Their criterion is based on a separation
tensor computed for each vertex that triggers a fracture
when one of its eigenvalues exceeds a given thresh-
old. Recently, Koshier et al. [KLB14] used a similar
criterion, but a tensor is computed for each vertex as
the average of all stress tensors of its surrounding ele-
ments. Many other studies rely on a vertex tensor in 2D
or 3D [IO09, WRK+10, PNdJO14, PO09].

All above-mentioned approaches use various topolog-
ical transformations. Norton et al. [NTB+91] remove
one or more elements. Faces or volumes are split in
[SWB00] and [BL00], elements are cut and duplicated
in [MBF04]. In [OH99, OBH02, KLB14], for a ver-
tex to split, adjacent volumes are separated (by split-
ting a fan of faces) in 3D. In 2D, two faces must be
separated by splitting their common edge. To facilitate
this step, some studies use a predefined crack pattern
[IO09, MCK13, PO09]...

Note that the link between the criterion location and the
resulting topological transformation is not necessarily
immediate. For instance, in [DKS+11], when the length
of a spring exceeds a threshold, one of its two extremi-
ties is arbitrarily split. In [NTB+91], the same criterion
leads to an element removal, even if all the other springs
of the element do not exceed the deformation thresh-
old. Since no solution to directly deal with the support
edge of the spring has been proposed, some consecutive
methods have chosen not to rely on a mesh [LBC+14].
Any criterion that should result in a vertex split, often
requires to split a fan of faces in 3D and one or two
edges in 2D. Finally, no approach focuses on the re-
lation between the location of the fracture criterion and
the location of the consequent topological modification.

After any topological modification, some mechanical
properties (for instance, mass or stiffness) have to be
updated. Using FEM, only the mass of vertices have
to be updated, which can however be a tedious pro-
cess, depending upon the method used to take inertia
into account. Using MSS, this step can be considered
as costly [FZDJ14, MDS10], because springs split into
several elementary springs. To summarize, the applica-
tion of a topological modification can be divided into
three steps: first the choice of a criterion, second, a
topological modification to apply and, last, the update
of mechanical information.

Some general frameworks that allow objects simula-
tion using various physical models exist (Sofa is prob-
ably the most general one [Sof]). However, no gen-
eral frameworks that allow the tearing and/or fracture



with many types of criteria and topological modifica-
tions have been proposed. The approach proposed in
this paper relies on the general framework described in
[BBAM17] which is based on rules of graph transfor-
mations applied on a topological model. This frame-
work seems to be the most adapted to our needs due
to the fact that it is multi-element, multi-physics and
multi-dimension. Furthermore, all mechanical prop-
erties and forces are stored at convenient topological
places. To generate a modular system for tearing and
fracture, several types of criteria (including new ones)
and topological modifications have been integrated in
this framework.

3 MODELING AND SIMULATION
3.1 Topological Model
Much work have shown the benefits of using a topo-
logical model to simulate topological transformations
of an object [MDS10, FZDJ14]. The model used in
[BBAM17] is the generalized maps (G-maps) [DL14].
This topological model is based on the concept of dart,
that can be considered as the extremity of an edge of a
face of a volume.
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Figure 1: Decomposition of a 2D object and examples
of orbits: (a) Object 2D, (b) G-map (connected compo-
nent), (c) Vertex, (d) face and (e) half edge.

The representation of an object using a G-map is de-
fined from its successive subdivisions into topological
cells (volumes, faces, edges...). For example, the 2D
object presented in Fig.1a can be decomposed into 2-
dimensional cells (faces) connected by 2-links (blue
double arcs). The faces are also split into 1-dimensional
cells (edges) connected by 1-links (red arcs). In the
same way, edges are decomposed into 0-dimensional
cells (darts) connected by 0-links (black arcs). As rep-
resented in Fig. 1b, a G-map can be defined as a graph
where nodes are darts and arcs labeled in 0, ..,n are the
adjacency relationships between topological cells (ver-
tice, edge, face...).

These cells are defined by sub-graphs called orbits.
Fig. 1 presents some examples of orbits corresponding
to cells. Thus the sub-graph reachable from the dart e
using 1- and 2-links in Fig. 1c represents the vertex B
of Fig. 1a. It is noted 〈1,2〉(e). Similarly, the edge BC
is the orbit 〈0,2〉(e), and the face ABC is represented
by the orbit 〈0,1〉(e) (Fig. 1d). There exists also orbits

which are not cells, for example the half-edge in Fig. 1e,
or the connected component (Fig. 1b).

Depending on the targeted application, to model an ob-
ject , much information (geometrical, mechanical, col-
orimetric...) must be added to the topological structure.
These data are carried by all the darts and are called em-
beddings. Note that every embedding has its own data
type and is attached to a particular orbit. For example in
Fig. 1b, all the darts of the same vertex (A, B, C and D
of Fig. 1a) are supplied with the same position informa-
tion. Similarly, all darts of every face orbits 〈0,1〉 share
the same color information (blue or yellow). Evenly,
information can be associated to any type of orbits such
as corner of face 〈1〉.
In this paper, an approach based on rules of graph trans-
formation is used. These rules are created using a tool
called Jerboa [BALB14], freely available at [Jer]. A
rule in Jerboa is composed of two members and has the
following form L→ R. The left member L contains the
matched pattern that has to be recognized in the struc-
ture. The right member R corresponds to topological
and/or embeddings modifications of this matched pat-
tern. In fact, the application of a rule on a graph G con-
sists in searching the sub-graph presented in the left part
and replace it by the sub-graph presented in the right
member of the rule. If the structure does not contain
a matched pattern, the application of the corresponding
rule fails.
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Figure 2: Examples of matched pattern

A matched pattern can be represented explicitly. In this
case, all nodes have to be labeled by the dart orbit (〈〉).
An example of a rectangular face with all its darts is
represented on Fig. 2a. A matched pattern can be also
represented implicitly using darts labeled by orbits. For
instance a face 〈0,1〉 is represented in Fig. 2b. This pat-
tern can match not only rectangular faces but all pos-
sible types of faces (rectangular, triangular,...). Some
examples of rules are presented in section 4.

3.2 Modeling
The framework described in [BBAM17] has been used.
It is multi-dimensional (2D,3D), multi-element (allow-
ing triangular, rectangular, hexahedral, etc. elements)
and multi-physics (mass/spring, mass/tensor, finite ele-
ment models). It represents objects by a 2D/3D mesh
and stores as specific embeddings any mechanical data
and forces needed to simulate them. Actually, it is
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Table 1: Modeling of interactions

based on G-maps and rules of graph transformation pre-
sented in previous section. In this approach, the mass
is distributed between particles that are placed on each
vertex of the mesh. To compute forces applied by in-
teractions, the same method is defined for all mechan-
ical models and for all types of meshes. First, ev-
ery data characterizing the interaction (stiffness, damp-
ing,...) is carried by an orbit. This orbit is related to
the source/origin of the interaction and is represented
by a green frame in Table 1 and more specifically in

the third column. From this orbit, a matched pattern is
defined. This sub-graph represents the left member of
the rules used to compute forces. It allows the deter-
mination of the vertices involved in the forces compu-
tation (that contribute to the calculation and/or undergo
forces). Finally, these forces are stored in sub-orbits of
each involved vertex’ orbit. They are represented in a
red frame in Table 1 and explained in the last column.

The first lines of Table 1 presents MSS with the three
types of springs defined by Provot [Pro95] (stretching,
shear and the linear bending). Angular springs are also
defined to control the angle between two adjacent faces
[GHDS03]. In 3D, shear springs are also modeled. The
last line in Table 1 presents how the FEM based on co-
rotational [MG04] is modeled. Note that for continu-
ous models, it is compulsory to tag a dart as the first
dart to define the order of vertices and respect this or-
der while exploiting the element stiffness matrix and its
stress tensor.

3.3 Simulation
The simulation loop used in [BBAM17] to simulate ob-
jects is the same for all physical models. (see Fig. 3).
The loops begins by computing the forces applied to
each particle. This is done in three steps. First, by
walking through the structure, any orbit that embeds
properties of an interaction is found. Second, if this in-
teraction’s matched pattern is recognized, the involved
vertices are identified. Third, the interaction rule is ap-
plied that is, the interaction is calculated and the ob-
tained forces are embedded in the planned orbits. After
this process, the algorithm computes the acceleration
depending on Newton’s second law. For this purpose, it
walks through the structure and, for every vertex, col-
lect forces stored in its sub-orbits(〈2〉,〈1〉,〈0〉,〈1,2〉...).
After that, it computes new velocities and positions of
particles. Finally, it walks through the structure, eval-
uates the chosen criterion, and when the condition is
satisfied, applies the corresponding topological modifi-
cation.

Compute forces

 Compute accelerations

Compute new velocities 
      and positions

 Evaluate criteria

 Apply topological 
 modifications

 Update vertex mass
 embedding

YesNo

Figure 3: Fracture plan.

A special attention must be paid to the storage of par-
ticles’ mass. In practice, the mass of a particle comes
from faces/volumes surrounding the corresponding ver-
tex. Therefore, an embedding called “corner mass” is
stored in the orbit corner of face (2D) or volume(3D)



(〈1〉 or 〈1,2〉), to memorize the contribution of each
face/volume surrounding a vertex. Moreover, to allow
a fast computation of a particle behavior, its total mass
must be known and is also stored in a dedicated embed-
ding, in its corresponding vertex orbit. It is called “ver-
tex mass” and defined as the sum of all masses stored
in all its corner sub-orbits. In case of topological modi-
fication, this last embedding must be updated.

4 TOPOLOGICAL MODIFICATIONS
FOR TEARING/FRACTURE

Topological modifications such as tearing/fracture can
be simulated very easily using G-maps. More com-
plex modifications can thereafter be built using a com-
position of separations of adjacent elements. For in-
stance, it is possible to isolate an element and to remove
it [MDS10]. It is also possible to separate several faces
or volumes, to make a vertex split. In this section, we
first focus on separation of elements, since it is a fun-
damental modification, before describing modifications
based on composition of transformations.

4.1 Separation of Adjacent Elements
In 2D, two adjacent faces can be separated by splitting
their common edge, more precisely by removing the 2-
links that bind them as shown in Fig. 4. In a similar
way, two adjacent volumes can be separated by split-
ting their common face, that is, removing the 3-links
that bind them, as shown in Fig. 5. These link re-
movals are elementary transformations in G-maps, that
automatically deals with vertex splits [MDS10]. Note
that, in 2D, removing 2-links should cancel the corre-
sponding bending interactions (linear or angular). Us-
ing the rule-based approach, any suppression of topo-
logical links can automatically make any interaction be
ignored, if the support orbit of the interaction embed-
ding includes these links. Indeed, since the associated
pattern no longer matches the local, unlinked, structure,
the rule can not be applied anymore. The rule just has
to reset all the corresponding forces.
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Figure 4: Edge split to separate two adjacent faces.

Shear springs are stored in orbits 〈0,1〉 or 〈1〉, and they
are not influenced by the removing of 2 and 3-links.
Neither do stretch springs stored in orbits 〈0〉. Con-
cerning continuous mechanics, in 2D, no embedding
are supported by orbits with 2-links. In 3D, orbits of
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Figure 5: Face split to separate two adjacent volumes.

embeddings do not include any 3-links. Finally, no em-
bedding needs to be changed. Only vertex mass embed-
ding of split vertices must be updated.
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Figure 6: Impact of tearing/fracture on mass embedding
and angular springs.

For instance, in Fig. 6, if adjacent faces are separated,
2-links are broken and the common edge is split. As a
result, bending springs (angular or linear one) embed-
ded in sub-orbits 〈2〉 or 〈0,2〉 of the split edge are ig-
nored after the separation. More precisely, while iden-
tifying the sub-graph corresponding to the force com-
putation, the pattern does not match, so forces can not
be computed. This example also explains that the ac-
cumulation embedding vertex mass stored in vertices
(orbits 〈1,2,3〉) has to be updated as it relies on 2-links
that have been suppressed. In fact, as shown in Fig. 6,
the vertex mass is the contribution of two corner masses
provided by the two adjacent faces (mvertex = m1+m2).
After the edge split, this vertex splits and each new ver-
tex gets a new vertex mass value, (computed, here, us-
ing a single corner mass).

Rules for Separation of Elements

To split a face between two volumes, the rule presented
in Fig. 7 has been created. In the left member of this
rule, two faces are bound with 3-links. These faces are
represented by their orbits 〈0,1〉. In the right member,
the 3-links are broken to split the two faces. However
this rule only copes with topology and does not handle
embeddings (they are handled in a dedicated rule).

Another rule is presented in Fig. 8. It has been cre-
ated to separate two adjancent faces by splitting an
edge. In this rule, the pattern presented in the upper
part of the figure matches explicitly the 2-links between
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Figure 7: Rule to separate two adjacent volumes.

two adjacent faces. The lower part of the figure de-
scribes the topological modification which is the sup-
pression of 2-links between faces. As linear bending
springs are stored in orbits 〈2〉 and angular ones in or-
bits 〈0,2〉, they are removed when the 2-links are bro-
ken. This single rule updates simultaneously the em-
bedding mass vertex, the topological modification and
resets the forces applied by the bending springs. When
a vertex splits, the other embeddings (position, velocity,
etc.) are automatically duplicated so the new particle is
taken into account in the forthcoming steps of the sim-
ulation.
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4.2 Mesh Element Removal
To suppress an element (a volume in 3D and a face in
2D), the same process described in [MDS10] is used.
This process consists first in the isolation of the ele-
ment: in 2D, all its edges are 2-unlinked, in 3D, all its
faces are 3-unlinked. This separation can be done using
the rules described in Section 4.1. The second step con-
sists in deleting the isolated element (using a rule with
an empty right member).

4.3 Vertex Split
As proposed in [OH99], to split a vertex, a fan of faces
surrounding this vertex can be split. In 2D, only two
edges have to be split. A tearing/fracture plane must
be computed based on the selected criterion. Then, the
sign of all elements surrounding a vertex is determined
by replacing the coordinates of the center of each ele-
ment in the plane equation. The sign is stored in the or-
bit of every element as an embedding. All edges/faces
placed between two elements with different signs have

to be split using rules described in Section 4.1. This
topological modification can be applied for any interac-
tion model (MSS, FEM).

4.4 Edge Removal
If a criterion relies on an edge, it can require that this
edge disappears. However, removing an edge from
a mesh is a tricky topological modification. Indeed,
this removal can lead to a type change of surround-
ing elements. For instance, the contraction of an edge
in a rectangle mesh can induce a transformation of
elements into triangles. Therefore, as a solution, it
is better to use more general transformations involv-
ing the concerned edge that also control adjacent ele-
ments. For example, one or more elements adjacent
to this edge can be deleted, as proposed by Norton et
al. [NTB+91]. This modification is based on element
removal described above (see Section 4.2). Vertex split
can also be used [DKS+11]. Finally, whatever the cho-
sen transformation, this last influences not only the used
criterion’s cell but also many adjacent mesh elements.

5 SIMULATION OF TEAR-
ING/FRACTURE

Tearing or fracture occurs when a given criterion is
met. Different criteria exist and have been added to
the framework. These criteria act as classical precon-
ditions used by Jerboa that trigger topological modifi-
cations (see Section 4) when they are satisfied. As ex-
plained in Section 2, criteria can be divided into two
categories: atomic and cumulative ones. Concerning
cumulative criteria, additional rules must be created to
compute the sum of needed stresses/forces.

5.1 Atomic Critera
Atomic criteria only relate to a single interaction. Cri-
teria are based on strain or stress considerations. Note
that stress-based criteria are particularly well adapted
to our models, since, as described in section 3.2, all
forces applied by all types of interactions are stored
in sub-orbits of vertex orbits. Concerning linear (resp.
angular) springs, strain or stress criteria are equiva-
lent [BL00], that is, a length (resp. angle) or a force
(resp. torque) threshold can be checked. If the chosen
threshold is exceeded, the process consists in removing
the spring. To remove a spring, the required topological
transformation depends on its type. Stretch springs are
placed on edges. As discussed in Section 4.4, volumes
can be removed, as proposed in [NTB+91, HTK00,
BL00]. If the same criterion is checked on a shear
spring, the support element (volume in 3D or face in
2D) should be suppressed. If a bending (linear or an-
gular) springs verifies the tearing/fracture criterion, the
two concerned faces must be separated, as described in



Section 4.1. In a similar way, if continuous mechan-
ics is used, eigenvalues of the stain or stress tensor of
each element can be computed and, if a threshold is ex-
ceeded, the concerned element is suppressed.

However, to avoid the design of specific rules for all
kinds of interaction, it is possible to use a more gen-
eral approach, that can be applied both in 2D and 3D.
Indeed, a criterion can be defined by checking if a
force, whatever its origin, exerted on a vertex, exceeds a
threshold. By considering a fracture plane perpendicu-
lar to this force, a vertex split transformation can be ap-
plied (Section 4.3). Note that, due to the action/reaction
principle, the two extremities of a spring or a set of in-
volved vertices for other interaction types are likely to
be concerned by a threshold exceeding. In this case, it
is possible to apply a vertex split on all the concerned
vertices (to simulate multiple cracks) or on a single (ar-
bitrarily chosen) vertex [DKS+11].

5.2 Cumulative Criteria
Cumulative criteria first compute the sum of all
forces/stresses applied on every vertex. Using con-
tinuous mechanics, this method corresponds to the
O’Brien et al.’s approach [OH99]. However, the
simplified approach proposed in [KLB14] is used in
our framework. The stress tensor (expressed here as
a 6-vector in 3D) of each element i is computed as
explained in [MDM+02]:

σi = (C∗Bi)u (1)

With C the stress-strain matrix, Bi is the strain-
displacement matrix (for more detail the reader must
refer to [MDM+02]) and u is the displacement vector.
A vertex tensor is computed by averaging the stress
tensor of surrounding elements i:

σvertex = ∑miσi/∑mi (2)

With mi the mass of the element i and σi, the 3×3 stress
tensor of this element. The eigenvalues of the vertex
tensor are computed. If one of these values exceeds a
threshold, the corresponding eigenvector is computed.
Finally, the fracture plane is defined as perpendicular to
this eigenvector. A vertex split is applied as described
in Section 4.3. A similar approach can be used in 2D.

A more general cumulative criterion can be proposed,
whatever the used deformation laws. Using a walk
through all the forces stored in every vertex orbit (see
Table 1), the sum of internal forces can be computed
for each vertex. When the magnitude of such a force
exceeds a threshold, a vertex split is triggered using a
fracture plane perpendicular to this force. Note that this
kind of criterion can only work in particular cases, for
instance when internal forces must compensate a high
external stress, or when a sudden deformation appears
locally in the mesh (after the motion of one or more ver-
tices). On the contrary, at rest, the internal forces can

be null and no tearing/fracture appears, even if atomic
interactions produce high magnitude forces.

5.3 Criteria dedicated To Mesh Elements
Separation

As stated in [MDS10], separation of elements is the
fundamental topological modification that is required
to represent tearing or fractures, since it is the core on
which the other transformations are based. However
these transformations are not enough local and involve
multiple elements not directly concerned by the used
criterion. Separations of elements are surely desirable,
but, unfortunately, no above-mentioned criterion results
in a single application of such elementary modifica-
tions. In a similar way as Smith et al.[SWB00] who
proposed a constraint-based criterion to split a face be-
tween two volumes, force-based solutions are investi-
gated to trigger element separation. On other words,
we want to find criteria that are applied on a cell and
that trigger a modification on this same cell.

In 2D, faces are separated by splitting an edge, so this
edge should support the fracture criterion. More pre-
cisely, the forces applied to the edge AB by all inter-
actions supported by the adjacent faces are compared
to check if they tend to make the edge split. First of
all, the direction n along which the forces are compared
(see Fig. 10) is computed as:

n = AB× (n1 +n2) (3)

Let f(i)A and f(i)B the forces applied by each adjacent faces
i on vertices A and B. These forces just require to walk
through the orbits of A and B restricted to each face (or-
bit 〈1〉 in 2D, orbit 〈1,2〉 in 3D) and collect all calcu-
lated forces stored in sub-orbits. Let fi = f(i)A + f(i)B , the
forces applied on the edge. A possible criterion com-
pares the effect of these forces by computing:

|(f1− f2) ·n| (4)

If the magnitude of this force is beyond a threshold,
and if each force tends to contract the elements, then
the common edge can split. This occurs when forces
f1 and f2 are along opposite directions, and at least one
of them has a high magnitude. This criterion is called
“atomic edge criterion”.

Let fA and fB the overall forces (coming from any ele-
ment) applied on these vertices. Another criterion con-
sists in computing the magnitude of the overall forces
applied on the edge, projected on n, and comparing it
to a given threshold:

|(fA + fB) ·n| (5)

This kind of criteria is called “global edge criterion”
and can also be extended as a face criterion in 3D. In
this case, the normal of the face to split n is used to
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Figure 9: Examples of tearing a 2D object with different criteria.
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Figure 10: Computing internal forces of an edge.

project the different faces and compute their contribu-
tion to the face split. As above, only forces stored in
the volume orbits are first collected, projected on n and
are compared to check if the common face splits. The
overall forces applied to the face vertices can also be
used to provide another criterion.

6 RESULTS AND DISCUSSION
We have implemented the criteria and topological mod-
ifications cited in the previous sections using the rule-
based language. Thus, Fig. 9 presents the same object, a
cloth modeled as a 2D triangular mesh, simulated with
different types of criteria. Its two upper extremities are
always fixed. In Fig. 9a, this cloth is modeled with
co-rotational FEM and is torn by vertex split when the
force applied by at least one of its adjacent face is be-
yond a threshold (atomic criterion). Fig. 9b presents the
same cloth modeled as MSS, but when the force gen-
erated by a spring exceeds a threshold, its extremities
split. Then, Fig. 9c presents this same system where a
vertex splits wherever the sum of applied forces exceeds
a threshold. In Fig. 9d, the same model is used, and an
edge of the mesh can split where the global edge crite-
rion is verified. Finally, Fig. 9e still presents the same
MSS with edge splits where the atomic edge criterion
is satisfied. As can be seen, different fracture criteria
produce completely different results, where tearing is
concentrated on the constraint areas or is disseminated
in the overall body.

Similar simulations can be applied on rectangular or
mixed meshes using the same criteria and topologi-
cal modifications. An example of such a rectangular
mesh is presented in Fig. 11. Fig. 12 presents some
other results of fractures in 3D using mass/spring sys-
tem and different criteria. An example of tearing of a

Figure 11: Edge split with criterion based on the differ-
ence between forces applied on an edge.

liver (consisting of 597 elements) simulated using the
co-rotational method is presented in Fig. 13.

The performance of our model is not the main concern
of this paper. Indeed, Jerboa is a tool dedicated to pro-
totyping and not interactive simulation, even if it allows
the simulation of topological transformations on com-
plex meshes. As a consequence, some of the discussed
models have been ported to C++ to measure their ef-
ficiency. This specific implementation strictly respects
all the principles described in this paper. In particu-
lar, when an interaction embedding is found, the cor-
responding graph is used to find how the interaction is
computed and where forces apply. We chose to focus
on a 2D cloth model consisting of 10× 10 rectangular
patches that can be further triangulated to produce a lo-
cal triangular mesh. An example of simulation using
this optimized implementation is presented in Fig. 14.

Some simulation times are summarized in Table 2 for
different type of meshes, using Runge-Kutta 4 inte-
gration to allow a more stable simulation. No paral-
lelization method has been used. Note that, thanks to
the ruled-based approach, the implementation allows
the simulation of heterogeneous meshes, with a little
computation over-cost (below 1%) compared to meshes
consisting exclusively of quads or triangles. Simula-
tion have been measured on a 2.7GHz Intel I7 system
(3740QM Processor). All simulation times are actu-
ally compatible with real time. Simulating with quads
is faster because this model is subdivided in less faces.
The mixed mesh triangulates half the quads of the initial
mesh. It appears as a real compromise between quad
and triangle meshes. The global edge criterion is faster
than the atomic one, because this last requires to store
atomic forces in the model instead of only accumulat-
ing them in each vertex, which can be a costly process.



(a) Atomic force crite-
rion and vertex split

(b) Sum of forces crite-
rion and vertex split

(c) Atomic forces criterion and
volume suppression

(d) Atomic force criterion of
shear springs and edge sup-
pression by removing volumes

(e) Atomic force crite-
rion applied on a face
and face split

Figure 12: Examples of fracture of a 3D object with different criteria.

Figure 13: Elementary forces and vertex split (FEM).

Figure 14: A cloth simulated in real-time (mass = 100g,
stretching stiffness = 60 N/m, shear stiffness = 43 N/m,
bending stiffness = 10 N/m, damping = 0.1, fracture
threshold = 0.5 N), using a global edge criterion.

Basic step Global edge Atomic edge
criterion criterion

Quads 0.37 0.41 0.55
Triangles 0.78 0.95 1.3
Mix 0.61 0.72 0.97

Table 2: Simulation times (in ms) for a cloth depending
upon the type of mesh. Basic step shows the simulation
times without any tearing detection.

However, this criterion triggers tearing only on points
of very high stress (constrained particles in the exam-
ple), which can be a desired behavior.

7 CONCLUSION/PROSPECTS
This paper proposes an extension of the framework pre-
sented in [BBAM17] which relied on rules of graph
transformations and a topological model to simulate
various deformable bodies in 2D and 3D. This exten-
sion provides this framework with topological transfor-
mations such as tearing and fractures. The proposed
approach is modular, since the user can select a crite-
rion (or more) and a suitable mesh modification. This
makes it an interesting tool to control tearing in an an-
imation/simulation system. Many known types of cri-
teria are implemented, some of them are specific to a
given mechanical model and others are completely gen-
eral. To produce mesh modifications when a criterion
is met, several types of topological transformations are
proposed. However, some of these modifications (ver-
tex split, edge removal) tend to involve a lot of adja-

cent elements and are surely not enough local, so often
require to use a high resolution mesh or subdivide the
elements locally. To circumvent this problem, we pro-
pose to use more closely-related criteria and topological
modifications, that is, criteria and topological modifi-
cations based on the same topological cell (face in 3D,
edge in 2D). The mechanical information of the model
is stored in an atomic way, therefore no update of in-
teraction properties such as spring stiffness is needed
after a topological change. The same way, any interac-
tion that depends on the modified cells is automatically
ignored thereafter. Only mass of particles must be up-
dated, but this process consists in gathering elementary
masses stored in the associated vertex’ orbit. Simula-
tions based on different scenarios show the effective-
ness of our approach.

We have investigated its efficiency through a C++ im-
plementation of some 2D models. The measured simu-
lation times allow interactive and real-time simulations.
However, it is possible to get even better simulation
times by combining some interactions that appear as re-
dundant: For instance, all stretch springs corresponding
to the same edge can be cumulated in a single spring
(that is, stiffness and damping values are added) and
resulting forces computed once instead of being com-
puted for each atomic spring. In 2D, only two springs
are to be cumulated, but in 3D, more atomic springs
are generally involved. Other redundancies exist, in
particular in 3D (shear springs of 3-linked faces, lin-
ear provot springs placed between the same vertices,
etc.). However, this approach implies that some cumu-
lated interaction properties should be updated after any
topological change, and that some atomic forces will
no longer be available to contribute to a tearing/fracture
criterion. In future work, we want to include these op-
timization solutions to our framework, whenever the
selected criterion allows it, and enhance it with other
complex types of topological transformations, for in-
stance subdivisions of elements or local remeshing .
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