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Abstract

We study nonlinear systems of the form —A,u = v? + p, —Ayv = u? 4+ n and
Fyl—u] = v®* + p, Fi[-v] = ¢v*2 + 7 in a bounded domain Q or in RY where p and
n are nonnegative Radon measures, A, and Fj are respectively the p-Laplacian and
the k-Hessian operators and qi, g2, s1 and sz positive numbers. We give necessary and
sufficient conditions for existence expressed in terms of Riesz or Bessel capacities. 2010
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Let Q C RY be either a bounded domain or the whole RY, p > 1 and k € {1,2,...,N}. We
denote by

Apu = div (|VulP~2Vu)

the p-Laplace operator and by

Filu] = > Aji Az Aji

1<51 <ja<...<ju<N
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the k-Hessian operator where \q, ..., An are the eigenvalues of the Hessian matrix D?u. In
the work [23], Phuc and Verbitsky obtained necessary and sufficient conditions for existence
of nonnegative solutions to the following equations

—Apu=ul+p in Q,
u=0 on 092, (1.1)
and
u=20 on 0f). (12)

Their conditions involve the continuity of the measures with respect to Bessel or Riesz
capacities and Wolff potentials estimates. For example, if €2 is bounded and p has compact
support in 2, they proved that if it is equivalent to solve (1.1), or to have

w(E) <c1Capg. o (E) for all compact set £ C , (1.3)

Prg+1—p

for some constant ¢; > 0 where CapGP a is a Bessel capacity, or to have
qtl-p

/ (WE [uB](2))" do < cou(B)  for all ball B s.t. BN suppu # 0, (1.4)
B

for some constant ¢, > 0, where R = 2 diam(Q2) and W [up] denotes the R-truncated

Wolff potential of the measure g = x,p. Concerning the k-Hessian operator in a bounded
(k—1)-convex domain Q, they proved that if x4 has compact support, the problem (1.2) with
q > k admits a nonnegative solution if and only if

mw(E) < esCapg,,, o (E) for all compact set £ C €2, (1.5)

for some c3. In turn this condition is equivalent to

/ [WRA k+1[u5(x)]}q dx < cqpu(B) for all ball B s.t. BN suppu # 0. (1.6)
B

E+1°

for some ¢4 > 0. The results concerning the linear case p = 2 and k£ = 1, can be found in
[2, 3, 31].

The natural counterpart of equation (1.1) and (1.2) for systems:

—Apu =08 4+ p in Q
—App=u?+n in (1.7)
u=v=0 on 012,
and
Fyl[-ul =0 + in Q
Fy[-v]=u® 417 in Q (1.8)
u=v=20 on 09,

where q1,q2 > p — 1,581,582 > k and u,n are Radon measures. If = RY, we consider the
same equations, except that the boundary conditions are replaced by infgry © = infgy u =10
and our statements involve the Riesz potentials and their associated capacities Cap Tas Our
main results are the following.

Theorem A Let 1 <p < N, q1,q2 > 0 and qaq1 > (p — 1)2. Let u,n be nonnegative Radon
measures in RN . If the following system

—Apu=v" 4+ p in RN

—Apv =u? 47 in RN (1.9)



admits a nonnegative p-superharmonic solution (u,v) then there exists a positive constant
cs depending on N,p,q1,qs such that

n(E)+/ (W1 p[u](z)® dx < c5 Cabr, vy ara (E) for all Borel sets E. (1.10)
E

a1 “ara2—(p—1)2

Conversely, if u and n are bounded, there ezists cg > 0 depending on N,p,q1,q2 such that
fo<q1 < %:;) and (1.10) holds with cs replaced by cg, then (1.9) admits a nonnegative

p-superharmonic solution (u,v) satisfying
v < esWiplol, 0 < Wi (W)™ + er Wil (1.11)

in RN for some cr7,cs,co > 0 where dw = (W1 ,[u])® dx + dn .

We notice that the left-hand side in (1.10) is not symmetric in 7 and p and the capacity
in the right-hade side is not symmetric in ¢; and g3. Hence the following symmetrized
inequality holds

w(E) +/ (W1 ,[n](z)" dz < ¢ Cabr iy wa (E) for all Borel sets E. (1.12)
B

a2 Tq1a2—(p—1)2

It is known that
Capy, ,(K) =0 VK compact,

if af > N, the first part of above implies the following Liouville theorem, obtained by
another method in [9, Th 5.3-(i)]

Corollary B Assume that
p(qrgz + (p — 1) max{qgi, g2})

> N.
Qg2 — (p—1)?
Any nonnegative p-superharmonic solution (u,v) of inequalities
—Apu > v in RN
—Apv > u? in RN, (1.13)

is trivial, i.e. u=1v = 0.

When 2 is bounded domain, we have a similar result in which we denote by d the distance
function to the boundary = — d(z) = dist (x, 0Q).

Theorem C Let 1 < p < N, q1,q2 > 0 and qaq1 > (p — 1)2. Let Q C RY be a bounded
domain and @, n nonnegative Radon measures in . If the following problem

—Apu =v" 4§ in Q
—Apy=u? 417 in Q (1.14)
u=v=0 on 08,

admits a nonnegative renormalized solution (u,v), then then for any compact set K C Q,
there exists a positive constant c,, depending on N,p,q1,q2 and dist(K,00) such that

d(x) g2
n(E)+/ (Wl’fo [u](x)) dr <c,Capg 10w (E) for all Borel sets E C K.
E

q1 ’41QQ*(P*1)2
(1.15)
Conversely, if u and n are bounded and there exists c,, > 0 depending on N,p,q1,q2 and
R = 2diam () such that if 0 < q < Y=L and

n(K> * /K (W%Z[H’])qz dx S Ci1 CapGP(QH—p—l) a14q2 (K) (1'16>

a1 q1a2—(p—1)2




for all compact set K C Q, then (1.14) admits a nonnegative renormalized solution (u,v)
satisfying

v e, WE ] u <o, WL [(WH )] + e, WE 1] (1.17)
in Q, where dw = (W, [u])q2 dx + dn.
It is known that
Capg,, ,({zo}) >0

if and only if a8 > N. Thus, as an application in a partially subcritical case we have,

Corollary D Let the assumptions on p, q1, q2, 2 and R of Theorem C be satisfied, xg € 2,
a >0 and p be a nonnegative Radon measures in Q. If the following problem

Ay =v" +p in Q
—Apv = u? + ady, in Q (1.18)
u=v=0 on 08,

admits a nonnegative renormalized solution (u,v), then there exist positive constants c,, =
Cis (N=p7 q1, 92, d(ﬂ?o)) andfor any compact subset K OfQ7 Cig = Cus <N7pa q1, 92, dist (K7 89));
such that

. pg2(qi +p—1)
Q N < @g2 — (p—1)%’
(i1) a<e, (1.19)
(i) [ (W3R o <,

Conversely, assuming that p is bounded, there exist positive constants c,, = ¢,,(N,p, q1, g2, d(x0)),
€ = (N, D, q1,q2) such that if 0 < g1 < %;}) and (1.19) holds with c,, and c,, replaced
respectively by c,. and c,, there exists a nonnegative renormalized solution (u,v) of (1.18)

satisfying
v< e, W], u < e, WL (W)™ ] + ¢, W1 (1] (1.20)

in Q, where

W Lol = W, [(WE )] + 07T (Je = 2ol = R SR

Concerning the k-Hessian operator we recall some notions introduced by Trudinger and
Wang [27, 28, 29], and we follow their notations. For k = 1,..., N and u € C%(Q) the
k-Hessian operator Fy, is defined by

Fi[u] = Sp(A(D?u)),

where A\(D?u) = A\ = (A1, A2, ..., \w) denotes the eigenvalues of the Hessian matrix of second
partial derivatives D2u and S, is the k-th elementary symmetric polynomial that is

Sp(\) = > Aiy oA -

1<i1 <. <ip <N
Since D?u is symmetric, it is clear that

Filu) = [D2u] ¥y



where we denote by [A]; the sum of the k-th principal minors of a matrix A = (a;;). In
order that there exists a smooth k-admissible function which vanishes on 92, the boundary
O must satisfy a uniformly (k-1)-convex condition, that is

Sk—1(k) > ¢o >0 on 99,

for some positive constant ¢g, where k = (k1, K2, ..., in—1) denote the principal curvatures
of Q with respect to its inner normal. We also denote by ®F(Q) the class of upper-
semicontinuous functions 2 — [ — 0o, 00) which are k-convex, or subharmonic in the Perron
sense (see Definition 5.1). In this paper we prove the following theorem (in which expression
E[q| is the largest integer less or equal to ¢)

Theorem E Let 2k < N, 51,82 > 0, s150 > k2. Let Q be a bounded uniformly (k-1)-convex
domain in RN with diameter R. Let pi = py+ f,n = m +g be a nonnegative Radon measures
where p1,m1 has compact support in Q and f,g € L'(Q) for some | > 2—1\12.—— for simplicity
I want to state the theorem u = v = 0 If then the following problem

Fy[—u] = v +p in Q
Fpl-v] =u® 41 in Q (1.21)
u=v=0 on 0f,

admits a nonnegative solutions (u,v), continuous near I, with —u and —v elements of
®F(Q), then for any compact set K C ), there exists a positive constant c,, depending on
N, k,s1,s2 and dist(K,00) such that there holds

E VEC1<7E B07el-
s189
s1 51527k2

d(x) 52
n(E) +/E (W 2k k+1[M]($)) dr < €3 CaPG 49

E+1°

(1.22)
Conversely,, if i and n are bounded, there exist a positive constant c,, depending on N, k, s1, 2
and diam (Q) such that, if k < s1 < NNfgk, and

s2
n(K) + /K (Wﬁykﬂ[u}) dz < ¢,, Capg,, . |,

k+1

e ) (1.23)
S1 ’51527162
for all Borel set K C Q, then (1.21) admits a nonnegative solution (u,v), continuous near

0Q, with —u, —v € ®*(Q) satisfying

R R R 1 R
v S czswﬂ k+1[w]’ U S czgwﬂ k_;,_l[(wﬂ k+1[w]) ] =+ 627W [M] (124)

k+10 k+10 P k%cl’k""l
in Q for some constants c¢; (j = 27,28,29) depending on N, k,s1,s2, and diam (2).
If Q is replaced by the whole space we prove,

Theorem F Let 2k < N, s1,59 > 0, 5150 > k2. Let w,n be a nonnegative Radon measures
in RN . If the following problem

Fyl-ul =v" + in RV

Fpl-v] =u® 419 in RV, (1.25)

admits a nonnegative solutions (u,v) with —u and —v belonging to ®F(RN), then there exists
a positive constant c,, depending on N, k,s1,sq such that there holds

(E) VE Borel.  (1.26)

k41 5182

's1sg—k

wE)+ [ (W ialil@)” dn < Covg

Conversely,, if i and n are bounded, there exists positive constant c,, depending on N, k,s1, 52
such that, if 0 < 51 < NNf’;k and (1.26) holds with c,, instead of c,, then (1.25) admits a

nonnegative solutions (u,v) with —u and —v in ®F(RYN) satisfying

s1
0 < ey Wk pqfwl, u < 634W%,k+1[(wﬁ k+1[w]) J+euWoae pn] (1.27)

E+1°



in RN, where the ¢; (j = 32,33,34) depend on N, k, s1, 2.
As in p-Laplace case, we have a Liouville property for Hessian systems.

Corollary G Assume that

2k(s2s1 + kmax{sy, s2})

> N. 1.28
5189 — k2 - ( )
Any nonnegative solution (u,v) of inequalities
Fy[—u] > v* in RN,
Fy[—v] > u® in RN, (1.29)
with —u and —v in ®F(RN) is trivial.
2 Estimates on potentials
Throughout this article c;, j=1,2,..., denote structural positive constants and c, is the

volume of the unit ball in RY. The following inequality will be used several times in the
sequel.

Lemma 2.1 Let k,v,0 € R, such that k,y > 0. Let h: (0,00) — (0,00) be nondecreasing.

Then,
R R Y 2R
/t"‘ </ h(r)r9dr> ﬂSc%/ o vRe(0,0],  (21)
0 ¢ r t 0 t

for some c,, > 0 depending on k, v, 6.

Proof. Case 1: v < 1. Since there holds

Zaa < Za}- Ya; >0
j=0 =0
we derive
R dr K 70 i+l J !
/ hry' = <ec , | Y n@ET i’
t r =0
Jo i
<e, Y (M(Q* )) (2%1)
=0
2R
d
<c ., h"(r)re"—r
o, ,

where ¢, = 2% max{1,2~ 4}and24t<R<
Fubini’s theorem

R R v
/ [ (/ h(r)redr> dt <c / / (r)r 6, dr dt
0 t r t rt
2R

dt
t'

= o0 if R = 00. By

tﬁ+0vh7




which is (2.1).
Case 2: v > 1 Since

( /jhmrecjf)”

we derive by Fubini’s theorem

R R v 2R
d dt dt
/ " (/ h(r)rer> —<ec h/ t" OB (1) —,
0 t ' t v 0 t

which completes the proof. O

IN
/N
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=
<
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2
ik
NG
N——
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o~
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=
G

We recall that if « > 0,1 < 8 < % and p € M+ (]RN), the set of positive Radon measures

in RY, the Wolff potential of 1 is defined by

1
< ((Br(x) \ 7T dr
_ ar 2.2
Wl = [ (M) T (22
and if R > 0, the R-truncated Wolff potential of u is
p R pu(By(x)\ 77 dr
Woslul(z) = T N-aB - (2.3)
0 r T

If u is a Radon measure on a Borel set G, it’s Wolff potential (or truncated Wolff
potential) is the potential of its extension by 0 in G¢. We start with the following composition
estimate on Wolff potentials.

Lemma 2.2 Let 1 < 3 < N/a. Then for any q > 0 and u € MT(RY) we have

Wasis—n -1y +1[M] < s Wa5 [(Wa,g[i)], (2.4)

a+(B-1)2 "’

in RN for some c,, > 0 depending on o, 3, N,q. Moreover, if 0 < q < A][\,([j;é) , there holds

Was [(Was))] (2) < ;W asgis 1) <571>2+1[/~LL (2.5)

a+(B—1)2
in RN, where ¢y, > 0 depends on o, B, N, q.

Proof. For any z € RY, using the fact that y € B;(x) = Bi(z) C Ba:(y), we have

W [(Wa sl (@) = [~ (tNlﬁ [ ( [ (45 - d)dy) . &
o /ooo <tN1“ﬁ /Btu) (IW> - dy) - %

q
[ ase-v u(Bi(x))\ B-02 dt
> 636/0 (t ! tN—ap n

= C36 W as(ats-1) (5—1)2“[#}(@’)-
g+(B-1)2 " 4

Y

where ¢,, = ¢, (0, 8, N, q) > 0, which proves (2.4).

In order to prove (2.4) we recall the following estimate on Wolff potentials [7]

_1
Waslwlll gy . < ca (WRM)FT  Vwe M (RY), (2.6)



where L'¥=47 " denotes the weak-L ¥=a7 space. In particular, since 0 < ¢ < Ajv(f ;é),
RN B—1
[ (Waslel)dy < e, (“35_ ﬂ)) Ve e RN Vrs0. (2)
Br(w) raTe
Applying this inequality to w = X p,, (z)# yields
B, 7T
/ (W2, ) dy < e, (“(Tjig))) Ve e RN Vr>0.  (28)
B, (x)

We claim that

1

[l (),

< ¢y Wases—n =02, [1](2).
DT G

Since B,.(y) C Bay(z) for any y € By(z),r > t, we have

1 q . q

(B y) ) T dr / /°° p(Bar () \ 7T dr

DY) ar < w(Bar(z)) dr

/Bt(a:) <~/t ( rN—af , dy < (o) ; N—aB , dy

1 q

N < (u(Bar(x))\ 7T dr
= </ ()T

q

[e.¢] o0 % B-1
re [T (/ (u(gw»)wr) &
0 ' rN-aB r t

Using Lemma 2.1, we infer

q
* as [ u(By(x))\ @02 dr
I'< 637/0 rA-1 <TNT_QB s = €3y Wapnis-1) (ﬁ—ql)2+1[#](z)7

a+(B-1)2 ’

Hence,

which completes the proof. O

The following is a version of Lemma 2.2 for truncated Wolff potentials,

Lemma 2.3 Let 1 < < N/a and ¢ > 0. If § € (0,1) there holds for any p € MT(RY)

8d

W s (@) < e Wit [(WP 1)) "] (@), (2.10)

(B-1)2
a+(B-12 7 4 +l

in Q. Moreover, if 0 < ¢ < %f;};, there holds for any p € IMMT(RY),

Wik [(Wial)"] (@) < o Willyeay e, [W1(2), (2.11)

a+(B-1)2 "’
in RN

Proof. For any = € ),

W [(WR10) ] @)

_/Ed(ac) 1 / /ad(y) 1(Br(y)) ﬁ%lﬂ qd B*lﬂ
= ; tN—ap Bu(x) 0 pN—apB r Y L



Since dd(y) > 7g‘sal(ac) for all y € B:(x),0 <t < dd(x),

_1 q 78 _1_ q
/ /‘”(y) (u(&(y))) T s / / S (u(Br(y») A IS
By (x) 0 riN=af r B By /g() 0 riN=ab r

_q_

a(N—aB) w(Ba:(y)) \ "
> ¢, (6d(z))” 7T / (fa dy
By/g(x) tN=ed

a(N—ap) (Bt _:(y)) 1
> ¢, (6d(z))” P / <_a
B,/s(x) tN b

q(N—«a Bi(x ﬁ
> ¢ (8d(a)) =N (W) |

Hence
. 7T
dd(x sd(. q —4N—ap) od@) (u(By(x))\ " dt
Wl [(WE010) ] @) > e G5 ([ (SEETE) S

which implies (2.10).
Because of (2.8), it is enough to show that there holds

1
R R = K F-T
- / / (u<Br<y>>)w dr dt _
— dy 7 S C aB(q+B—1 —1)2 [M](l‘>7
/o (tNaﬁ By() ( ¢ rN-of r ¢ T e (B 4

(2.12)

in order to prove (2.11). Since B,(y) C Ba,(x) for any y € B,(z), p > r, we have
1 q a1 q
/ /R (B, (y)\ 7 dr 4y < / /R p(Bay ()| 71 dr dy
Bi(z) \Jt ri=ab r ~ JBi@) \Jt ri=ab r

1 q
<o 4N /R p(Bar(2)) \ 7T dr
- N ' rN-ap r
Therefore

[ (oo (1 () )
o[ [ ([ ("))

We infer (2.12) by Lemma 2.1, which completes the proof. O

The next two propositions link Wolff potentials of a measure with Riesz capaciticies
(in the case of whole space) and truncated Wolff potentials with Bessel capaciticies (in the
bounded domain case). Their proof can be found in [23, 24] (and [8] with a different method).

Proposition 2.4 Let 1 < 8 < N/a, ¢ > -1, v € MTRY). Then, the following
statements are equivalent:

(a) The inequality

v(K) < c,, Capy (K) (2.13)

q
B q=B+1



holds for any compact set K C RN for some c,, > 0.
(b) The inequality

/RN (Waslxa.0)711)" dy < c,yv(Bi(x)) (2.14)

holds for any ball B,(z) C RN, for some c,, > 0.
(¢) The inequality

Wa s [(WaslV])] < c.uWa V] < oo aein RY (2.15)

holds for some c,, > 0.

Proposition 2.5 Let 1 < 8 < N/a, ¢ > B—1, R > 0 and v € M} (Br(z0)) for some
xo € RY. Then, the following statements are equivalent:

(a) The inequality

V(K) < Csy Ca’pG

(K) (2.16)

holds for any compact set K C RN for some c,, = c.,(R) > 0.
(b) The inequality

q
aBrg—BF1

[ (WA ) d < v (Ba(o) (217)
holds for any ball Bi(z) C RN, for some c., = c,,(R) > 0.
(¢) The inequality
WiE [(wgﬁ M)Q} <, ;W] acin Bog(zo) (2.18)
holds for some c,, = c,,(R) > 0.

In the following statement we show how to give capacitary estimates on combination of
measures.

Proposition 2.6 Let n, i be in MM (RY). Assume that 0 < q < 1\]7\7(5;(13) and gs > (B —1)2.

(i) If there holds

W)+ [ (Wl de < Camyy,, (K) (2.19)

gs
Tgs—(B—1)2

for any compact set K C RN, then

W5 [(Wo‘ﬁ [(Waﬁ[w])q])s} <, Wy glw] < oo a.ein RV, (2.20)

where w = (Wq gu])” + 1.
(i) If there holds

s
qs—(B—1)

wE)+ [ (W) de < Cave ) (K) (2.21)

for any compact set K C RN, then

wa (w2 [(Wae)]) ] < e, Wil <oo acin Bawo),  (222)
2R y
where w = X, (WQ,B[ND T Xb ooy -

10



Proof. Statement (i): We assume that (2.19) holds. Put w = (Wq,g[u])” + 7 and apply
(2.19) to K = Bj,(x). Since by homogeneity

—_ N—M _
Cabryipyy 4 Bopl@))=p om0 Capy ppyy o, (B2(0))
q Tqs—(B—1)2 a Tqs—(B—1)2

we derive from (2.19)

N_oBlgt+B-1)s
w(Bp(x)) < Cs5P 4s=(B=1) v p> 07

which is equivalent to

B B (B—= 1)3 B
pﬁffl <W(a/3p(§-¢1—221)> < Gy <W Np(aﬁ))) vV p>0. (2.23)

pN q p
We apply Proposition 2.4 to v = w with (« (aqﬁ_?;ﬁl);), (8 ql) +1 s) (2.19) implies
/ (Waﬁ(q-%—ﬁ ISINCE 1>2+1[X3t(1 ]) dy < c,,w(Bi()). (2.24)
RN a+(B-1)2
By Lemma 2.2, (2.20) is equivalent to
Wa,s [(Wamwﬂ NCE 1)2+1[ ]) } < Waplw] <oo ae RY (2.25)
q+(B-1)2

Therefore, it is enough to show that (2.23) and (2.24) imply (2.25). In fact, since for ¢ > 0

/Bt(:zz) <Wo;ﬁ+(21;ﬂl);)’(ﬁ 1)2+1[ Ky)> dy:/Bt(z) (Wm,w 1)2+1[X52tu }(y)> dy,

we apply (2.24) and obtain

[ (Wi sz BI0) < (Bt
By(x) q+(B—1)2

So, it is enough to show that

_1_

S ~ wB) T\ \T
I:= s — | d 7 S Wa :
/o (tNaﬂ/Btm </ (N r) ) T S Wl

(2.26)

Since B,.(y) C Ba,(x) for any y € By(z),r > t, we have

1

I< “per [ [T _w(Bar(@) o dr\ T\ e
S Cy 0 ’ TN_ aﬁ(qtﬁq) 7 t
o [T ([T (Bl )\ e
=Cy 0 ; rN_ aﬁ(qﬁ;ﬁ—l) 7 t

It follows from Lemma 2.1 and (2.23) that
_as__ 1
*© ap [ w(Ba(x)) | B0 dt *® (w(Ba(x))\ P d
1< Css/(; 2 (W 7 C56Cso 0 tN—ap ?’

11
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which is (2.26).
Statement (ii): We assume that (2.21) holds. Put dw = x, (Wa.g[u])” + X7, then

_aB(g+B=1)s

w(By(z)) < cgop 1=-(F-D3 VO0<p<2R.

As in the proof of statement (i), the above inequality is equivalent to

pﬂL—Bl (w(Bp(x))> o <cg <UJ(BP(I))) o~ V0<p<2R. (2.27)
p

N_oBlg+B8-1) N—ap
q P

Applying Proposition 2.5 with v = w and («, 8,¢q) = (aﬁé?;fl_)%), (6_(11)2 +1, 8),

S
/RN (Wilg(wﬁ—é) ([3—1)2+1[X5t(z)w]) dy < cguw(Bi(x)). (2.28)
at(B-D7 ' 4

By Lemma 2.3, (2.22) is equivalent to
wa [(W‘ff;(gﬁ)l) (BUQH[W}) } < oy Walhw] a.e in Br(xo). (2.29)
q+(B-1)2 ' a

Therefore, it is enough to show that (2.27) and (2.28) imply (2.29). In fact, since

/ (Wtaﬂ(q+ﬂ1) (ﬂ1)2+1[w}(y)) dy:/ <W€1ﬁ(q+ﬂl) (B—1)2 _H[Xth(z)w](y)) dy

By (z) a+(B-1)2 " q B:(x) q+(B—1)2 7 q
for all 0 < t < 4R thus applying (2.28), we obtain
/ (Wtaﬁ(qw—l) (ﬁ—1>2+1[W](y)> dy < ¢g,w(Bat(x)).
By () a+(B-1% 7 4

So, it is enough to show that for any = € Br(xg)

1

4R 4R —4 s B-1
! W(B(y) \F T dr dt ,
II::/ 7/ / (al — | d — S s W plwl(z).
0 (tNaﬁ Bu() ( . TNi B(qtﬂ ) r t 6 .ﬂ[ ]( )

(2.30)
Since B, (y) C Ba,(x) for any y € By(z),r > t, we have
e [ ([ (e Y )
0 : rn . T t
Combining this with Lemma 2.1 and (2.27) yields
IT < ¢ WO w](2).
Therefore, (2.29) follows since W 0F[w] < ¢, Wi [w] in Br(xo). O

Proposition 2.7 Let n, i be in MM (RY). Assume that 0 < q < 1\1[\,(?;/13) and qs > (B —1)2.

Let (U, vy) be nonnegative measurable funtions in RN such that for all m >0

Wnir < CWogloly Tl v < CWagluly +1] aein R

12



for some ¢* > 0 and (ug,v9) = 0. Then, there exists a constant M* > 0 depending only on
N,a, B,q,s,c* such that if dw = (W glu])® dz + dn satisfies

wK)<M Caplaﬁ(atﬂfl)’qs_(‘f_lp (2.31)
for any compact set K C RN, then
Um < CG9WO¢,B[WL Um < c70Wa7ﬂ[(Wa7ﬂ[w])q] + Csswaﬁ[u] V. m=>0 (2'32>
for some constants ¢y, Cyy, C., depending only on N, «, 5,q,s and c*.
Proof. By Proposition 2.6, (2.31) implies
Was [(Was [(Wasl))'] < e, ME-TW, glw] <00 aein RY. (2.33)
We set
ool
Ceg = C 27T,
Coo = C Qe T(ef 27 + l)fl7
Cry = C'2F-1T 166597,

and choose M* > 0 such that

_1 C
*QB-1 9s—1 EE M o — 69
C (C ) C B
We claim that
U < Ceswaﬁ[w}? U < 070Wa7ﬁ[(wa,ﬁ[w])q] + Ceswayﬁ[ﬂ] V. om >0. (2'34)

Clearly, by definition of ¢, ¢4, €.y, We have (2.34) for m = 0,1. Next we assume that (2.34)
holds for all m <[ for some [ € N* , then

ur1 < W glvf + p

<25y Wag[(Wa slw)) ] + ¢ 277 W s[p]
= €1y W 5[(Wa s [w])!] + ¢ W s 11]

and
051 S W gl(er Wen s (W )] + e We s 1])° + 1)
< Wa ple], 2 1( as[(Waglw))])” +¢,2°7 (Was[u])® + 1]
< 27 (5,257 Wo 5[(Wa s[(Wa slw]) )]
+er2mT (e, 25*1 + 1) FTW, 5 [(Wa s [i])® + 7]
< c*2F T (c 25~ 1) Te, M- 1)3W Blw ]Jrc*Qﬁ%l(cgsT*l +1)ﬁ%1Wawﬁ[w]
= P Waslo] + 5 Wo plu]
= oo Wa,g[w].
Thus, (2.34) is true for m =+ 1. Hence, (2.34) is true for all [ > 0. O

The next result is an adaptation of Proposition 2.7 to truncated Wolff potentials.

13



Proposition 2.8 Let n,u be in M (Br(wo)). Assume that 0 < q < N(B U and ¢s >
(B—1)2. Let (tm,vm) be nonnegative measurable funtions in RN such that for allm >0

U1 < C*Wg,B[XBR(mO)U’I(’ITL +ul, v < c*Wf)ﬁ[XBR(mo)ufn + 1) a.e. in Bp(xo)

S
and (ug,vp) = 0. If we set dw = (WiRﬂ[u]) dx + dn, there exists a constant M, > 0
depending only on N,a, 3,q,s, R and ¢, such that if

w(K) < M, Capg (2.35)

gs
aB(g+B-1) s s (g-1)2
q

for any compact set K C RN, then
q
vn € WL, < e, WRI(WHEL) £, W] VE>0  (230)

in Br(zg) for some constants c,,,c.4,c,, depending only on N,«, ,q,s, R and c,.

Proof. The proof is similar to the one of Proposition 2.7 and we omit the details. O

Proposition 2.9 Let 1 < 3 < N/a and q,s > 0 such that gs > (3 — 1)2.
(i) Assume that n and p belong to M} (RY) and (u,v) are nonnegative measurable functions

satisfying

(2.37)

Wavﬁ[vq] + Wa”g[u] < Crs Uy
Wa,ﬁ[us] + Wa,ﬁ[n] <c,v a.e. in RN,

for some c,, > 0. Then there exists a constant c,, > 0 depending only on N,a, 3,q,s and
such that

C75

n(K) + /K (W slul(2))" d < ¢, Capy (K), (2.38)

gs
aBle+8-1) 1 5T (502
q

for any compact set K C RV
ii) Assume that n and p belong to M () and (u,v) are nonnegative functions satisfying
n M b

WO ] + W ] < (2.39)
Wol ] + Wikl < coo ae. in Q |

for some c,. > 0. Then for any Q' CC Q, there exists a constant c., > 0 depending only on
n,a, B,4q,8,c,, and dist(Q,00Q) such that

wE) + [ (WD) do < e, Cang (K). (240

aBlats=1) Py
for any compact set K C §)'.
Proof. (i): Set w = u® + 7, then

w>u' > (Wag[v)® > ey (Was [(Wa,plw])’])"

By (2.4) in Lemma 2.2, we get

S
W 2 Gy (Waﬁ(q+ﬂ n (B 1>2+1[ ])

a+(B-1)2 ’

14



which implies

/N (Waﬂ<q+ﬁl) (61)2+1[X3t(m)w]> dy < e w(Bi(x)) Yz eRY, V>0
R q

a+(B-1)2 "’

Applying Proposition 2.4 to u = w with (a, 8,q) = (aﬂ(g;fl_);), (ﬁ_ql)z +1, s), we get (2.38).

(ii) We define w as above and we have
s 5d g1\ ® 5d 5d(.) 7\° .
w>u® > (Wols[v?]) > e, (Wa”@ {(Waﬁ [w]) D a.e. in €,

which leads to

S

Sd .

W2 Css | Wasges-y MHM a.e. in &,
a+(B-1)2 7 4

by inequality (2.10) in Lemma 2.3. Let M, denote the centered Hardy-Littlewood maximal
function which is defined for any f € L} (RY, dw) by

loc

1
M, f(z) = i‘;](@))w(Bt(x))/Bt(x)ﬂdw-

Let K C Q be compact. Set rx = dist(K,00) and Qg = {z € Q: d(z, K) < rx/2}. Then,
for any Borel set £ C K,

a+(B-1)2 " a

S
sq S d(x) sq
084/9(M“’XE)(L€71)2 < V & stgs—1) WH[W]) dxé/Q(MwXE)(ﬂ”)z dw.

Since M, is a bounded linear map on LP(RY dw) for any p > 1 and

° Sd(x) ooz
_sa 3d(z) 2 w(Bi(z) NE)  w(B(x) (-17 dt
(Moxp) =07 (Wiﬁ(ﬁﬂl) (ﬁql)2+1[w]> Z/0 ( w(B(x)) tN_aB(qHﬂfl) t

a+(B-1)2 "’ q

we derive .
W) wel | de < cu(B)
aBlatB=1) (B=12 WE TS Cwl(l),
Q a+(B-D? ' q
where wg = x,w. Note that if x € Q and d(z) < rk/8, then Bi(z) C Q\Qx for all

t € (0, Méz)); indeed, for all y € B,(z)

1

thus

d(y, K) > d(K,00) — d(y,0Q) > %K > %,«K,

which implies y ¢ Q. We deduce that

%d(zﬂﬂ) 1%’[‘[(

oBg+B—1) M+1[WE](I) 2 W(Xﬂ(q+ﬂ—1) M_,’_l[wE](x) Vo € Qv
a+(B—DZ 7 a a+(B-D2 7«
and s
i6TK _ c
W o (s 1[wE](a:) =0 Vx € Q°.
at(B-DZ @ T
Hence we obtain
S
TorK
W e s wE] ] dr < cw(E) VE C K, E Borel. (2.41)
RN ara-DZ Tl

Applying Proposition 2.5 with = x,., w we get (2.40), which completes the proof.
-

d

65,{;)
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3 Quasilinear Dirichlet problems

Let Q be a bounded domain in RY. If 1 € M, (2), we denote by pt and p~ respectively its
positive and negative parts in the Jordan decomposition. We denote by 9y (£2) the space of
measures in ) which are absolutely continuous with respect to the cﬁp—capacity defined on
a compact set K C Q by

cﬁp(K) = inf{/Q IVolPde : ¢ > X, 9 € C’E’O(Q)}

We also denote 9;(€2) the space of measures in ) with support on a set of zero cﬁp—
capacity. Classically, any u € () can be written in a unique way under the form
W= po + s where pg € Mo(2) NIM(2) and ps € Ms() NM(Q). It is well known that
any pp € Mo(Q) N M, (Q) can be written under the form py = f — div g where f € L*(Q)
and g € L (Q,RYN).

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If u is a measurable function
defined in €2, finite a.e. and such that Ty(u) € Wl{)f(ﬂ) for any k£ > 0, there exists a
measurable function v : @ — RY such that VT (u) = X{juj<iy ¥ @€ in Q and for all k > 0.
We define the gradient a.e. Vu of u by v = Vu. We recall the definition of a renormalized
solution given in [12].

Definition 3.1 Let pu = pg+ ps € Mp(Q). A measurable function u defined in Q and finite
a.e. is called a renormalized solution of

—Apu=p in Q

u=20 on 09, (3.1)
if Te(u) € WoP(Q) for any k > 0, |Vul[P~! € L™(Q) for any 0 < r < =, and u has the
property that for any k > 0 there exist )\ﬁ and A\ belonging to fm; N Mo (L), respectively
concentrated on the sets u = k and u = —k, with the property that ,u; = pk, o = A in
the narrow topology of measures and such that

/ |Vul" % Vu.Veds :/ wdjp +/ pd\f — / wd\,,
{lul<k} {lul<k} Q Q
for every o € WP (Q) N L®(Q).
Remark 3.2 We recall that if u is a renormalized solution to problem (3.1), then (llj‘izll”)r €

LY() for all r > 1. Furthermore, u > 0 a.e. in 0 if u € M ().
The following general stability result has been proved in [12, Th 4.1].

Theorem 3.3 Let u = po + puf — pg, with po = F —divg € Mo(Q) and u, p; belonging
to MF(Q). Let pin, = F,, — div gn 4 pn — 1 with F, € L), gn € (LX ()N and pn, 1
belonging to M} (). Assume that {F,} converges to F weakly in L'(Q), {gn} converges to
g strongly in (L ()N and (div g,) is bounded in 9My(Q); assume also that {p,} converges
to ut and {n,} to ug in the narrow topology. If {u,} is a sequence of renormalized solutions
of (3.1) with data u,, then, up to a subsequence, it converges a.e. in Q to a renormalized
solution u of problem (8.1). Furthermore, Ty(uyn) converges to Ty(u) in Wy P (Q) for any
k> 0.

We also recall the following estimate [23, Th 2.1].

Proposition 3.4 Let Q be a bounded domain of R™. Then there exists a constant C' > 0,
depending on p and N such that if u € EIR;(Q) and u is a nonnegative renormalized solution
of problem (3.1) with data p, there holds

d(x,09)
1 3

1p
086 ’

](2) < u(@) < e Wi Pl(z)  ae in Q. (3.2)
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Proof of Theorem C. The condition is necessary. Assume that (1.14) admits a nonnega-
tive renormalized solutions (u,v). By Proposition 3.4 there holds

d(z,00)

u(x) = Cs7VV1,p3 [,U<h + M](‘T)a

d(z,0Q)

v(r) > e, Wy 5 [u® + pf(z) a.e. in Q.

Hence, we infer (1.15) from Proposition 2.9-(ii).

Sufficient conditions. Let {(tm,vm)}men be a sequence of nonnegative renormalized solu-
tions of the following problems for m € N,

_Apum+1 = Ufrzrlb +:u’ in Q?
—ApUmy1 = Ul + 7 in Q, (3.3)
Umt1 = Umg1 =0 on 01,

with initial condition (ug,vg) = 0. The sequences {u,,} and {v,,} can be constructed in
such a way that they are nondecreasing (see e.g. [24]). By Proposition 3.4 we have

Umt1 < ngwﬁp[vgﬁ + pj(x)

U1 < CBGWfp[u% +n)(x) a.e. in Q,

where R = 2diam (2). Thus, by Proposition 2.8 there exists a constant M, > 0 depending
only on N, p,q1,q2, R such that if

w(K) < M, Capg (K) (3.4)

pr(g1+p—1) 7q1q2,1(qp2,1)
q1
for any compact set K C RN with dw = (Wfp [u])q2 dx + dn then

U < c73W§p[w], Uy < 074W§p[(Wﬁp[w])Q1} + 072W§p[u] vV k>0 (3.5)
in Q and
W] e L=(Q), WIEI(WE )"+ WE [u] € L9 (Q). (3.6)

This implies that {um}, {vm}men are well defined and nondecreasing. Thus {(tm,vm)}
converges a.e in ) to some functions (u,v) which satisfies (1.17) in Q. Furthermore, we
deduce from (3.6) and the monotone convergence theorem that ud — u?, 02 — u% in
LY(Q). Finally, by Theorem 3.3 we infer that u is a renormalized solution of (1.14). O

4 p-superharmonic functions and quasilinear equations
in RY
We recall some definitions and properties of p-superharmonic functions.

Definition 4.1 A function u is said to be p-harmonic in RY ifu € VVllo’f(RN) and —Apu =

0 in D' (RN); it is always C*. A function u is called a p-supersolution in RN ifu € I/Vli’f(RN)
and —Apu > 0 in D'(RV).

Definition 4.2 A lower semicontinuous (l.s.c) function u : RN — (—o00,00] is called p-

super-harmonic if u is not identically infinite and if, for all open D CC RN and allv € C(D),
p-harmonic in D, v < u on dD implies v < u in D.

17



Let u be a p-superharmonic in RY. It is well known that u A k := min{u, k} € Wl’p(RN)

loc
is a p-supersolution for all £ > 0 and u < oo a.e in RY, thus, u has a gradient (see the

previous section). We also have [Vu[P~! € L} (RY), (I‘uvlillp),. € L, (RY) and u € L{ (RVN)

for 1 <g< Ff5andr>1,1<s< %:p}) (see [16, Theorem 7.46]). Thus for any

0 < ¢ € CL(Q), by the dominated convergence theorem,

(—Apu, p) = / |Vu|P~2Vu.Vpds = klim IV (uAk)P2V(uAk).Ve > 0.
RN -

[ee) RN
Hence, by the Riesz Representation Theorem, there is a nonnegative Radon measure de-

noted by plu], called Riesz measure, such that —A,u = pfu] in D'(RY).

The following weak convergence result for Riesz measures proved in [30] will be used to
obtain the existence of p-superharmonic solutions to quasilinear equations.

Proposition 4.3 Suppose that {u,} is a sequence of nonnegative p-superharmonic func-
tions in RN that converges a.e to a p-superharmonic function w. Then the sequence of
measures {ulu,]} converges to plu] in the weak sense of measures.

The proof of the next result can be found in in [23]

Proposition 4.4 Let p be a measure in M (RY). Suppose that W1 ,[u] < oo a.e. Then
there exists a monnegative p-superharmonic function u in RN such that —A,u = p in
D'(RY), infgn u = 0 and

LW (r) < u(a) < e Wiy lul(), (41)

for almost all = in RN, where the constant c is the one of Proposition 3.4. Furthermore
any p-superharmonic function u in RY | such that infgy u = 0 satisfies (4.1) with p = —Apu.

Proof of Theorem A. The condition is necessary. Assume that (1.14) admits a nonnega-
tive p-superharmonic functions (u,v). By Proposition 4.4 there holds

u(x) > CS7W1,p[vq1 + M}(Z‘L
v(z) > ¢y, Wi p[u®? + n](x) for almost all x € Q.
Hence, we derive (1.10) from Proposition 2.9-(i).

The condition is sufficient. Let {(um, Um) }men be a sequence of nonnegative p-superharmonic
solutions of the following problems for m € N,

—Aptms1 = vl + 1 in RV
—ApUmt1 =uL + 1 in RY (4.2)

infpy U1 = infpy v =0,

with (ug,v9) = 0. As in the proof of Theorem C we can assume that {u,,} and {v,,} are
nondecreasing. By Proposition 4.4 we have

um+1 S ngwl,p[v% + M’](m)
Umt1 < G Wipluls +1)(z) V 2 €Q

Thus, by Proposition 2.7 there exists a constant ¢ > 0 depending only on N, p, ¢, g2 such
that if

w(K) < M* Capy (K) (4.3)

a1a2
e1#p=1) 21 g5 —(p—1)
a
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for any compact set K C RY with dw = (W1 ,[u])? dz + dn then
Um < ngwlyp[“}}v Um < CmWLP[(WLP[W])qI} + CGsWLP[N] V k>0 (4'4)
in © and

Wl’p [w] € L

loc

(RN)a Wl’p[(wl,p[w])ql} + Wi, € L,

loc

(RM). (4.5)

This implies that {u,, }, {vm } are well defined and nondecreasing. Thus {(t,, v;,)} converges
a.e in R to some functions (u,v) which satisfies (1.17) in RY. Furthermore, we infer from

(3.6) and the monotone convergence theorem that u? — u®,v%2 — u% in L} (RY). By

Proposition 4.3 we derive that (u,v) are nonnegative p-superharmonic solutions of (1.9).
O

5 Hessian equations

In this section  C RY is either a bounded domain with a C? boundary or the whole RV,
For k=1,...,N and u € C%(f2) the k-hessian operator F}, is defined by

Fy.[u] = Sp(A(D?w)),

where A\(D?u) = A = (A1, A2, ..., \w) denotes the eigenvalues of the Hessian matrix of second
partial derivative D?u and Sy, is the k-th elementary symmetric polynomial that is

Sp(\) = > Aiy i -

1<i1<...<ip <N

We can see that
Fk[u] = [DQU]k,

where for a matrix A = (a;;), [A]x denotes the sum of the k-th principal minors. We assume
that 9 is uniformly (k-1)-convex, that is
Sk—1(k) > ¢ >0 on 99,

for some positive constant ¢g, where k = (k1, K2, ..., in—1) denote the principal curvatures
of ) with respect to its inner normal.

Definition 5.1 An upper-semicontinuous function u : Q — [—00,00) is k-convex (k-subharmonic)
if, for every open set Q' C 0 cQand for every function v € C*(Q') N C(Y) satisfying
Frv] <0 in Q, the following implication is true

u<vond) = u<wv in Q.

We denote by ®*(Q2) the class of all k-subharmonic functions in Q which are not identically
equal to —oo.

The following weak convergence result for k-Hessian operators proved in [28] is fundamental
in our study.

Proposition 5.2 Let Q be either a bounded uniformly (k-1)-conver in RN or the whole RY .
For each u € ®%(Q), there exists a nonnegative Radon measure py[u] in 2 such that

1 pglu] = Filu] for u € C%(Q).
2 If {un} is a sequence of k-convex functions which converges a.e to u, then pglu,] — prlu)
in the weak sense of measures.
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As in the case of quasilinear equations with measure data, precise estimates of solutions
of k-Hessian equations with measures data are expressed in terms of Wolff potentials. The
next results are proved in [28, 20, 23].

Theorem 5.3 Let Q@ C RN be a bounded C?, uniformly (k-1)-convex domain. Let u be a
nonnegative Radon measure in ) which can be decomposed under the form

I’L:/’Ll+f7

where 1 is a measure with compact support in Q and f € LY(Q) for some q > 2—1\2 ifk < %,

orp=1ifk> % Then there exists a nonnegative function u in 0 such that —u € ®*(Q),
continuous near 02 and u is a solution of the problem

Fyl—u]l=p in €,
u=~0 on 09).

Furthermore, any nonnegative function u such that —u € ®*(Q) which is continuous near
00 and is a solution of above equation, satisfies

1 d(z,09) )
8 2diam Q
Cas kal’kJrl[:u] < ’U,(JC) < CSSW%JC_‘_l[M](I)’ (51)

where cg, s a positive constant independent of x,u and .

Theorem 5.4 Let u be a measure in M (RY) and 2k < N. Suppose that W%7k+1[u] < 00

a.e. Then there exists u, —u € ®*(RY) such that infgy u = 0 and Fy[-u] = p in RY
and

1
W (@) @) < W 1) (5.2
for all x in RN. Furthermore, if u is a nonnegative function such that infgy u = 0 and
—u € ®F(RN), then (5.2) holds with u = Fj[—u].

Proof of Theorem E. The condition is necessary. Assume that (1.21) admits a nonnegative
solution (u,v), continuous near 9, such that —u, —v € ®*(Q) and u®2,v** € L}(Q). Then
by Theorem 5.3 we have

- 1 Wd(z.sam s
u(w) = W E L )
1 d(z,00)

v(z) > —W 5% [u® +n)(z) for almost all = € Q.
Css Sl

Using the part 2 of Proposition 2.9, we conclude that (1.22) holds.

The condition is sufficient. We define a sequence of nonnegative functions w,, v,,, con-
tinuous near 9 and such that —u,,, —v,, € ®*(Q2), by the following iterative scheme for
m > 0,

Fyl—tums1] =03t +p in Q,
Fipl—vmi1] = us2 +1n in (5.3)
Umt1 = U1 =0 on Of).

Clearly, we can assume that {u,,} is nondecreasing as in [24]. By Theorem 5.3 we have

Um 41 S cggwl}—ﬁ,k-ﬁ-l[U% + :u’]a 5 4

VUma1 < cs W, kH[ufg + p) in Q (5:4)
EF1°

where R = 2 diam (Q).

Then, by Proposition 2.8, there exists a constant M, > 0 depending only on N,p,q1,q2, R

such that if

w(K) < M, Capg (K)

2k(s1+k) s182

s1 Psysg—k2
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s2
for any compact set K C RN with dw = (WRZ;,C k+1u]) dx + dn then
PESRL

s1
R R R R
U S e W ol < e Wi (W ]) e W] Y om0
in 2 for some positive constants c,,, ¢,, and c,, depending only on N, k, s1, s2, R. Note that
we can write

oit 4= (4 X003t ) + (1=, )05t + 1)
and
Uy +n = (771 +x95UfJf) + ((1 = Xay, )Un +9),

where Q5 = {x € Q : d(2,0Q) > ¢} and § > 0 is small enough and since u,, is continuous
near 052, then v} + p, ui2 + 1 satisfy the assumptions of the data in Theorem 5.3. Therefore
the sequence {u,,} is well defined and nondecreasing. Thus, {u,,} converges a.e in ) to some
function u which satisfies (1.24) in Q. Furthermore, by the monotone convergence theorem
there holds v3! — v,us2 — w in L'(Q). Finally, by Proposition 5.2, we infer that (1.21)
admits a nonnegative solutions w,v, continuous near 9f), with —u,—v € @k(Q) satisfying
(1.24). O

Proof of Theorem F. The condition is necessary. Assume that (1.21) admits nonnegative
solution (u,v), such that —u, —v € ®*(RY) and u*2,v** € L} (RY). Then by Theorem 5.3
we have

LW o o+ (@)

W 2k
688 1
1
C—szkl’kﬂ[us"‘ +n)(x) for almost all 2 € RY.
88
Using Proposition 2.9-(ii), we conclude that (1.22) holds.

The condition is sufficient. We defined a sequence of nonnegative functions w,,, v.,, con-
tinuous near 9§ and such that —u,,, —v,, € ®*(Q), by the following iterative scheme for
m > 0,

Fyl—tumy1] =03t +p in RV,
Fy[—Vmi1] = us2 +1n in RV,

inf]RN Um+41 = infRN Um+1 = 0.

As in the previous proofs {u,,} is nondecreasing. By Theorem 5.3 we have

Umt1 < CSSW%,]C+1[U;% + ﬁ']’
RN
U1 < CSSW%,k—kl[ufg + p) a.e. in RV,

Then, by Proposition 2.7, there exists a constant M* > 0 depending only on N, p,q1,q2, R
such that if

w(K) < M* Capy 2k(s1+k) _ sysp (K)

s2
for any compact set K C RN with dw = (szTk1 kil /,L]) dx + dn, then

51
Um < CGQW%,k-i-l[w]’ Um < C70Wk2—_ﬁ,k+1[(w%,k+1[w]) ] + CasW%,lﬁ-l[u] V.m=>0
in Q where ¢, ¢, and c,, depend on N, k, s1,s2, R. Therefore the sequence {u,} is well
defined and nondecreasing. Thus, {u,,} converges a.e in Q to some function u for which
(1.27) is satisfied in RY. Furthermore, by the monotone convergence theorem we have
vl — v,us2 — win L} (RY). Finally, by Proposition 5.2, we obtain that (1.21) admits a

loc

nonnegative solutions u, v with —u, —v € ®*(RY) satisfying (1.27). O
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6 Further results

The method exposed in the previous sections, can be applied to types of problems. We give
below an example for a semilinear system in RY = {z = (2/,z,),2/ e RN "1z > 0}.

—Ay = on in RY
_ RN
—Av =y in RY (6.1)
U =01,V =09 in RV-1,

where we have identified R and RN ~'. We denote by P (resp. G) the Poisson kernel in
R% (resp the Green kernel in RY). The Poisson potential and the Green potential, P[.] and
G[.], associated to —A are defined resepctively by

Plol) = [ Pl.do(z). Gl = | Glu.o)f(a)ds,

N
R+

see [21]. We set p(x) = =, and define the capacity Capf, ; by

Capy, ((K) = inf{/ fpdx: f>0,L.[fpx v] > XK},
RY +

for all Borel set K C RY, where I, is the Riesz kernel of order « in RY.

Theorem 6.1 Let 1 < ¢; < %, q1q2 > 1. If there exists a constant ¢ > 0 such that if

/M@@bﬁ@Wwéé%ﬂw ()
K q1 ’araz—1 (6_2)
@),

JQ(G) < CC&pI?(Q2+1) 91492

q192 'q192—1
for all Borel sets K C Rf and G C RN=1 then the problem (6.1) admits a solution.

All solutions in above theorem are understood in the usual very weak sense: u € L}, (RY N
B), u®,v" € L}(RY N B) for any ball B and

/ u(—A¢)dx :/ vqlfdx—/ gdal,
RY RY ORY on
/ v(—Af)dx :/ uqudxf/ gdUQ,
RY RY aRY on

for any ¢ € C? (@) N C.(RY) with € = 0 on ORY . It is well-known that such a solution u
satisfies

u= G+ Plo1], v=Glu?]+ Ploy] a.e. in RY.
To prove theorem we need the following a basic estimate

Lemma 6.2 Assume that 0 < g1 < % Then for any w € M (RY),

L [(L[w])?] < ceQeWart2 41 [w] a.e. in RY, (6.3)

q1+1° q1

where cy, > 0 depends on q1,q2 and N.

Proof. The proof of Lemma 6.2 is similar to the one of Lemma 2.2 and details are omitted.
Note that if w € 9, (RY) it is extended by 0 in RY. O
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Remark 6.3 The condition 0 < q1 < w7 is necessary and sufficient condition for (I1[w N e
Ll (RYN) for any w € M (RY).

loc

Theorem 6.4 Let g1 > 1, giqgo > 1 and w € E)ﬁb(@). If

M(K) S Coo Capez1+2 4142

a1 ’4q192—1

(K) V¥V KcCRY, K Borel,

for some c,, > 0, then

q2
I, KWW q1+1[w]> pxw] < ¢y, 11[w] a.e. in RY. (6.4)

q1+1’ q1

Proof. Step 1. For any compact K C {x € Rf : ILH[prRN](fL') > )\}, we have
a1 +

W(K) < ¢y Capilj 9142 (K) < CooA (Hqégil / fqlq;;zlpdx

T ) N
1’4192 ]R+

by assumption and the definition of the capacity. Hence,
q1492 qa142
)\qlqz—lw({lqﬁfz[fpx N]>)\}> §cgo/ fae-Tpdx vV A>0.
a1 RY Rf
This implies an estimate in Lorentz space,

< > 0. .
quq’;sgl’oo(]RN,d ) ||fHqu;zq (RN x dix) v f = (6 5)
By

|Tarsz[fox, ]l
a1 +
Step 2. Since, for any g € C.(RY),

q1

/IM[gw]fpdx:/ Loz [fpx, v ]gdw,
RQ’ RN q1 +

we derive, using duality between LP'! and L¥">° Holder’s inequality therein and (6.5), that

L Tesz 017 < a0, e e g 90 e
= ||fHL T o RN,XRdim)||g||Lq1q2’1(RN7dw) Vfg=0.
+
Therefore,
||I<11qi+2[QW]HLHQ(RN,XRdix) < ||9HL<11<12’1(1RN,dw)- (6.6)
1 +

Step 3. Taking g = x,,,,, and since for ¢; > 1

Wi = [ (528 o

1
q1+ q1 p @

q1
*® v(B,(x
S Cso </ E\,ipqg +)2) d:l,’)
0 p a1

q1
=c, (1+ [u](x)> Vv € M (RY), Vo e RY,
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we derive that for almost all x € Rf ,

q2
/ (Wq1+2 q1+1 [XB (= }) pdy < CQOUJ(Bt($>)7
Rﬁ q1+1’ q1

from (6.6), which implies

t(N_ q1+2) 9192

_a1t2 _q192
a1 /ar1az2—1 tn q1 a192—1
W(Bt('r)) < Coy

since fBT(I) Xoy P dy =< rN

max{z,,r} for any x € RY r > 0 where the symbol
by

1
A=xB<+= —-B<A<c¢B forsome constant ¢ > 0.
c
It implies also

q2
/ (w [w]) X Py < (B ().
Bi(x) e

from which follows

q2
| =] (W wenlo]) Xt < T ).
0 Bi(z TR ¥

q1

Therefore, if the following inequality holds

[ (1 () %) wormo <t

it will imply (6.4).
Step 4. We claim that (6.9) holds. Since B, (y) € Ba,(x), y € Be(x),r >t

/Oo ; /Bf(gc) </ ( ffigﬂ))m ?)tp XRﬁpdydt

q1

q1 q2
1 [ w(Ba,(x)) dr
< — ZATer ) il
< [T e ([T (S2) )

r a1
q1 q2
) ) B . d
= / max{x,,t} / 0-)(27ql(i)) e
0 t T T

By integration by part,

[ ([ () )
=q /OOO/Ot max{z,,s}ds (/too (W)ql T)'D_l(w)ql @

r N-— a1 t

r N_a1t2

q1

r a1

o [ oot [ [ (@B @)™ )" (oBa@) | s wBaw)) d
,Q2/0/0 {Nv}d </t (NW> > (t ) t
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1 < Coy T
q1ap—1 (max{xn,t}) q1a2—1
/ Xyn P Y
Ba(z)

tN—l

=< is defined

(6.8)



We have

t
/ max{z,, stds < tmax{x,,t},
0

@ q2—1 a2 ¢ q-1
[ () ) ([ )
PA\P2r\b)) il <c @
c\NE )T "\ \nax(e, rpmes )
=t (‘11:12;2(‘772;1) (maX{CEN ’ t})_ qél(gé:}) )
by (6.7) and
q1—1 _ q1+2 q2—1
w(Bat(x)) 2 t alaiaz=—D 2
_— ta <c tau
N— a1+2 95
t o (max{z,,t )0142 1
_(@+2)(a1=1) | 2 _ a1
= Cgst q1(q192—1) q1 (max{IN’ }) q192—1
Thus,
¢ I q1 g2—1 q1—1
w(Bar(z)) ) dr w(Ba(z)) 2
ZAmar\ ) i TN <
/0 max{z,,s}ds (/t < P " N- T e < e,
and we obtain (6.9). O

Lemma 6.5 Let « > 0, s > 1 such that o + % < N — 1 where s = - Forallm €
M (RN, there holds

/ < p(Bi(z")) dt\*
/ Ta[n ® 0tz —03])° xwdxx/ (/ m> dz’, (6.10)
RN RN-1 o t a=7 t

where Ig is the Riesz potential of order 3 in RN-1. As a consequence, we have

Capf, ((E x {z, = 0}) < Cap, E) VE Cc RN™' | EBorel. (6.11)

a+2/s’—175(

Proof. We have

’

’ dw (77 ® 5{1 :()})(Br(l‘)) dr 3
—_nl)? > N il
/RN Talr ® Otz 0y )7 endw 2 /RN (/zx rN—a s wnde

N
’

. (”‘i%yf’”)st N
> ¢ / B <t>0 ~ Bll(a/))2> dz. (6.12)

By using Lemma 2.1 we derive

’

= n(By(a") dr ) ,

_ < —_—
dt
=6 /]RN / (tN 1= a) 7d
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On the other hand, by [23, Proposition 5.1], there holds

n(B; ) / / / ( z')) )5 /
dz | ) 2y
/]RNfl <il>1%) tN 1 O(_* RN-1 tN 1 a—=7 t v
- (/wnumwgdvs¢ﬁ
RN-1 0 tN—l—(x—? t

Combining (6.12), (6.13) and (6.14) we obtain (6.10). Moreover, we derive (6.11) from (6.10)
and [1, Theorem 2.5.1], which ends the proof. O

(6.14)

Proof of Theorem 6.1 The following estimates are cclassical

Y Y
G InYn < — 6.15
) = N T max(fo — gl onogn 2 o gV (6:15)
T 1
].)(ZZZ'7 Z) = Cunﬁ S Clolm (616)
Thus,
G [(Po1])®] + Ploa] < ¢, 11 [w] (6.17)

where w(z) = p(P[01])% + o3 in RY. Therefore, we infer that if

L (L [(Lifw]) )™ Xoy P| < G Talw] in RY (6.18)

for some ¢,,, > 0 small enough, then (6.1) admits a positive solution (u,v). On the other
hand, we deduce (6.18) from Lemma 6.2 and Theorem 6.4. The proof is complete. (|

Remark 6.6 The system

—Au=v" + e m Q
—Av =u® + en in (6.19)
U = €301,V = €409 in 0%,

where d(.)p, d(.)\ belong to MM (Q), o1,02 to MT(OQ) and the €; are positive numbers, is
analyzed in [10, Th 4.6]. Therein it is proved that if

/ (Glp] + PA)™™ (02 gy < oo, (6.20)
Q

which is equivalent to a capacitary estimate, and

. a+1 g2+ 1 N+1
min , < , 6.21
{Q2q2+1Q1q1+1} N1 ( )

and if the €; are small enough, then (6.19) admits a positive solution. Now condition (6.21)
is a subcriticality assumption (for at least one of the two exponents q;) since there is no
condition on the boundary measures.
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