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Stopping with expectation
constraints: 3 points suffice

Stefan Ankirchner∗ Nabil Kazi-Tani Maike Klein
Thomas Kruse

May 20, 2017

We consider the problem of optimally stopping a one-dimensional continuous-
time Markov process with a stopping time satisfying an expectation con-
straint. We show that it is sufficient to consider only stopping times such
that the law of the process at the stopping time is a weighted sum of 3 Dirac
measures. The proof uses recent results on Skorokhod embeddings in order to
reduce the stopping problem to a linear optimization problem over a convex
set of probability measures.

Introduction

Let (Yt)t∈R≥0
be a one-dimensional strong Markov process with respect to a

right-continuous filtration (Ft). Let f : R → R be measurable and denote
by T (T ) the set of (Ft)-stopping times such that E[τ ] ≤ T ∈ R≥0. In the
following we consider the optimal stopping problem

maximize E[f(Yτ )] subject to τ ∈ T (T ). (0.1)

The problem (0.1) arises whenever an average time constraint applies for any
stopping rule. If a process has to be stopped repeatedly and independently of
the previous stopping times, then it is reasonable to impose an average time
constraint instead of a sharp constraint of the type τ ≤ T , a.s. For example
think of the question of when to stop searching for a parking space. If you
face this question every morning when driving to your work, it is more likely

∗Parts of the research results presented in this article have been obtained while S.A. and N. K.-T.
were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM) in August and
September 2016. Financial support from the VIASM is gratefully acknowledged.
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that you impose an average constraint on your searching time than just a
sharp upper bound.

Notice that there is no deterministic dependence of the constraint on time.
For solving the stopping problem (0.1) one needs to turn the expectation
constraint into a scenario-dependent constraint.

In this article we show that for the stopping problem (0.1) it is sufficient
to consider only stopping times τ such that the law of Yτ is a weighted sum
of at most 3 Dirac measures. Any such stopping time can be interpreted as
a composition of exit times from intervals.

We also show that in general a reduction to weighted sums of 2 Dirac
measures is not possible. In particular, one can not split the state space
into a deterministic stopping and continuation region. This is in contrast to
stopping problems with a sharp bound on the stopping time and to stopping
problems with infinite time horizon and discounting.

Our idea for proving a reduction to 3 Dirac measures is to rewrite the stop-
ping problem (0.1) as a linear optimization problem over a set of probability
measures. To this end we use recent results on the Skorokhod embedding
problem characterizing the set A(T ) of probability distributions that can be
embedded into Y (see [1] and [9]) with stopping times having expectation
smaller than or equal to T . As for standard linear problems the maximal
value of the optimization is attained by extreme points. The extreme points
of A(T ) turn out to be contained in the set of probability measures that can
be written as a weighted sums of at most 3 Dirac measures.

To the best of our knowledge, the idea of using Skorokhod embeddings to
analyze optimal stopping problems first appeared in [19], where the authors
solve an optimal stopping problem for the geometric Brownian motion, under
the Choquet integral, and where the only condition imposed on the stopping
times is that they are almost surely finite. When it comes to optimal stopping
problems with constraints on the stopping time distribution, the literature is
rather scarce: Kennedy [10] solves an optimal stopping problem with an ex-
pectation constraint for a discrete time process. The author uses Lagrangian
techniques to write the problem as an unconstrained one. Within a continu-
ous time setting, the article [2] formulates a dynamic programming principle
for stopping problems with expectation constraints and derives a verification
theorem. Different constraints have been recently studied: Bayraktar and
Miller [3] consider the problem of optimally stopping the Brownian motion
with a stopping time whose distribution is atomic with finitely many points
of mass. Miller [11] analyzes stopping problems with time inconsistent con-
straints. In [4], the authors use optimal transport techniques to treat the
problem of optimally stopping the Brownian motion with a stopping time
having a fixed specified distribution. Further stopping problems with an ex-
pectation constraint on the stopping time have been solved by Urusov [17].
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Let θ ∈ [0, 1] be the moment at which a standard Brownian motion attains
its maximal value on [0, 1] and let α ≥ 0. Then Urusov [17] characterizes the
stopping time that minimizes E[(τ −θ)+] over all stopping times τ satisfying
the expectation constraint E[(τ − θ)−] ≤ α.

The article is organized as follows. In Section 1 we describe the precise
setting of stopping problems considered. In Section 2 we show how one can
reduce the stopping problem to an optimization over the set of probability
measures that are weighted sums of 3 Dirac measures. In Section 3 we
provide sufficient conditions for the existence of an optimal stopping time.
Throughout we assume that the process to stop is in natural scale - this is,
as explained in Section 4, not a restriction.

1. Stopping after consecutive exit times

In this section we rigorously set the framework for the optimal stopping
problem. The process to stop is assumed to be a one-dimensional continuous
strong Markov process. Let the state space J ⊆ R be an open, half-open
or closed interval and denote by I := (l, r) the interior of J , where −∞ ≤
l < r ≤ ∞. Let Ω = C([0,∞), J) be the space of all continuous J-valued
functions and (Yt)t≥0 be the coordinate process, i.e. Yt(ω) = ω(t), t ≥ 0,
ω ∈ Ω. Let (F0

t ) be the σ-algebra generated by (Yt)t≥0 and F0 := F0
∞ :=∨

t≥0F0
t . Denote by (θt)t≥0 the family of shift operators on Ω defined by

(θtω)(s) = ω(t + s), s ≥ 0. Let (P x)x∈J be a family of probability measures
on (Ω,F0) that is a regular diffusion in the sense of [16, Chapter V.45].
In particular, we have P x[Y0 = x] = 1 for all x ∈ J . Regularity means
that for every y ∈ I and x ∈ J we have that P y[τx < ∞] > 0, where
τx = inf{t ≥ 0 : Yt = x}.
For a probability measure µ on (J,B(J)) let

P µ(A) :=

∫
P x(A)µ(dx), A ∈ F0.

Let Fµ be completion of F0 with respect to µ and set Fµt = σ(F0
t ,N ),

t ≥ 0, where N denotes the collection of P µ-null sets in Fµ. One can show
that (Ω,Fµ, (Fµt ), P µ) satisfies the usual conditions. We set Ft =

⋂
µF

µ
t

and F =
⋂
µFµ. Observe that (Ft) is right-continuous, but that in general

(Ω,F , (Ft), P µ) does not satisfy the usual conditions. The process (Yt)t≥0

fulfills the strong Markov property (cf. Theorem 9.4, Chapter III, in [15]):
For any bounded F -measurable mapping η and any finite (Ft)-stopping time
τ we have

Eµ [η ◦ θτ | Fτ ] = EYτ [η], P µ − a.s.
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Let m be the speed measure of the diffusion (P x)x∈J on J . Since Y is regular
we have for all a < b ∈ I

0 < m([a, b]) <∞.

For simplicity we assume that the diffusion Y is in natural scale. If Y is
not in natural scale, then there exists a function s : J → R, the so-called
scale function, such that s(Yt), t ≥ 0, is in natural scale. In Section 4 below
we show how to reduce the general stopping problem to the case where the
process to stop is in natural scale.

In addition, we assume that if an endpoint is accessible, then it is absorb-
ing. This implies Y is a local martingale (see Corollary 46.15 in [16]).
For y ∈ I and x ∈ J̄ we define qy : J̄ → [0,∞],

qy(x) =
1

2
m({y})|x− y|+

∫ x

y

m((y, u)) du (1.1)

with the convention that m((y, u)) = −m((u, y)) whenever u < y. Moreover,
we set qy(r) = limx↑r qy(x) if r =∞ and qy(l) = limx↓l qy(x) if l = −∞.
One can show that qy(Yt) − t, t ∈ R≥0, is a local martingale with respect

to P y and (Ft) (this follows e.g. from Theorem 3.6 in Chapter VII, [14]).
Moreover, the behavior of qy at l and r determines whether the process
attains the boundary points with a positive probability or not.

Lemma 1.1. We have qy(r) <∞ if and only if r ∈ J . Similarly, qy(l) <∞
if and only if l ∈ J .

Proof. Since we have not found a reference with a proof, we provide a sketch
of the proof in the appendix.

Let f : J → R be a Borel-measurable function determining the payoff of
the stopping problem. Throughout we make the following assumption on f :

Assumption (A). For every y ∈ J there exists a C(y) ∈ R≥0 such that

f(x) ≥ −C(y)(1 + qy(x)), x ∈ J. (1.2)

For any T ∈ R≥0, let T (T, y) be the set of all (Ft)-stopping times τ with
Ey[τ ] ≤ T .

Remark 1.2. Assumption (A) ensures that the expectation Ey[f(Yτ )] exists
for all y ∈ J , T ≥ 0 and τ ∈ T (T, y). Indeed, for an appropriately chosen
localizing sequence of stopping times (τn), it holds that

Ey[{f(Yτ )}−] ≤ Ey[C(y)(1 + qy(Yτ ))] = C(y)(1 + Ey[lim inf
n→∞

qy(Yτ∧τn)])

≤ C(y)(1 + lim inf
n→∞

Ey[qy(Yτ∧τn)]) = C(y)(1 + lim inf
n→∞

Ey[τ ∧ τn])

≤ C(y)(1 + T ).

4



We consider the problem of finding the stopping time in T (T, y) that
maximizes the expected payoff Ey[f(Yτ )]. The value function is defined by

v(T, y) = sup
τ∈T (T,y)

Ey[f(Yτ )], (1.3)

for all T ≥ 0 and y ∈ J .

Remark 1.3. If Assumption (A) is replaced by the stronger assumption that
for every y ∈ J there exists a C(y) ∈ R≥0 such that

|f(x)| ≤ C(y)(1 + qy(x)), x ∈ J, (1.4)

then the value function is finite. Indeed, it follows by using similar arguments
as in Remark 1.2 that supτ∈T (T,y) E

y[f(Yτ )] ≤ C(y)(1 + T ) in this case. The
following example shows that in general one can not dispense with condition
(1.4) if we want to guarantee that v is finite. For a Brownian motion W we
have q0(x) = x2. Let f(x) = |x|2+ε, ε > 0, be the payoff function. For every
T > 0 the first time ρ(a, T ), a > 0, when W hits a or −T/a has expectation
T under P 0. Hence,

v(T, 0) ≥ sup
a>0

E0[f(Wρ(a,T ))] = sup
a>0

{
a2+ε T

a2 + T
+

a2

a2+ε

T 2+ε

a2 + T

}
=∞.

For stopping problems without an expectation constraint an optimal stop-
ping time is given by the exit time of the continuation region (see Corollary
2.9, Chapter I in [13]). In particular, for solving unconstrained stopping
problems it is enough to consider exit times from intervals. For constrained
stopping problems a reduction to simple exit times is not possible. We show,
however, that it is enough to consider at most three consecutive exit times.

To give a precise statement, we denote for a, b ∈ R with a ≤ b the first
hitting time of a by τa = inf{t ≥ 0 : Yt = a} and the first exit time from
the interval (a, b) after time r ≥ 0 by τa,b(r) = inf{t ≥ r : Yt /∈ (a, b)}.
Moreover, we write T3(T, y) for the collection of stopping times τ ∈ T (T, y)
for which there exist p1, p2, p3 ∈ [0, 1] with p1 + p2 + p3 = 1 and a, c, d ∈ R
with a ≤ c ≤ d such that

τ = τa,b(τµ̄) + 1{Yτa,b(τµ̄)=b} inf{t ≥ 0 : Yt+τa,b(τµ̄) ∈ {c, d}},

where µ̄ = p1a+ p2c+ p3d and b = p2c+p3d
1−p1

. Notice that b ∈ (c, d).
One of our main results is that the stopping problem (1.3) can be simplified

to the set T3(T, y).

Theorem 1.4. We have

v(T, y) = sup
τ∈T3(T,y)

Ey[f(Yτ )]. (1.5)
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We prove Theorem 1.4 in the following section. We do so by reducing
problem (1.3) to an optimization over a set of probability measures.

Theorem 1.4 brings up the question whether the supremum is attained in
T3(T, y). In Section 3 below we provide sufficient conditions guaranteeing
the existence of an optimal stopping time in T3(T, y).

2. Optimal stopping as a measure
optimization

In this section we first explain how one can reduce the stopping problem (1.3)
to a linear optimization problem over a set of probability measures satisfying
some integrability constraints. The linear nature of the measure optimization
allows us then to conclude that the maximum values are attained by extreme
points, which here are weighted sums of three Dirac measures.

We denote by M = M(J) the set of all probability measures on R with
support in J and byM1 the set of all measures inM with finite first moment
µ̄ =

∫
xµ(dx). Let A(T, y) be the set of measures µ ∈ M1 satisfying the

following properties:

1. a) If l > −∞, then µ̄ ≤ y.
b) If r <∞, then µ̄ ≥ y.

2. µ integrates qy such that∫
qy(x)µ(dx) ≤ T −H(y, µ̄),

where

H(y, µ̄) =


(y − µ̄)

(
m((y,∞)) + 1

2
m({y})

)
, µ̄ < y,

0, µ̄ = y,

(µ̄− y)
(
m((−∞, y)) + 1

2
m({y})

)
, µ̄ > y.

Results from [9] on the Skorokhod embedding problem for diffusions (and
from [1] for processes described in terms of SDEs) imply that A(T, y) co-
incides with the set of probability measures that can be embedded into Y
under P y with stopping times τ satisfying Ey(τ) ≤ T . More precisely, we
have the following:

Proposition 2.1. Let µ ∈ M. There exists a stopping time τ ∈ T (T, y)
with Yτ ∼ µ under P y if and only if µ ∈ A(T, y).

Proof. Let τ ∈ T (T, y) be an embedding of µ in Y under P y, i.e. let Yτ have
the distribution µ under P y. Then [7] and [12] imply that

• if l > −∞, then µ̄ ≤ y,
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• if r <∞, then µ̄ ≥ y.

Thus, µ ∈ M1 whenever r or l is finite. Section 3.5 in [9] shows that if
I = (−∞,∞) and τ is an integrable embedding for µ, then µ ∈ M1. If
µ̄ = y, then it follows from Theorem 2.4. in [9] that∫

qy(x)µ(dx) ≤ Ey[τ ] ≤ T = T −H(y, µ).

If µ̄ < y, then we conclude from Theorem 3.6 in [9] that∫
qy(x)µ(dx) + (y − µ̄)

(
m((y,∞)) +

1

2
m({y})

)
≤ T,

which implies that 2. holds true. If µ̄ > y, we again apply Theorem 3.6 in
[9] to obtain

∫
qy(x)µ(dx) ≤ T −H(y, µ̄).

For the reverse direction let µ ∈ A(T, y) and assume first that µ is centered
around y. Then µ can be embedded in Y under P y for −∞ ≤ l < r ≤ ∞ by
[7] and [12]. It follows from Theorem 3.4 in [9] that there exists a minimal
stopping time τ with Yτ ∼ µ under P y and

Ey[τ ] =

∫
qy(x)µ(dx) ≤ T.

Hence, τ ∈ T (T, y).
Now let µ ∈ A(T, y) with µ̄ < y. Then we have r = ∞. Theorem 3.6 in

[9] shows the existence of a minimal embedding τ of µ in Y under P y with

Ey[τ ] =

∫
qy(x)µ(dx) + (y − µ̄)

(
m((y,∞)) +

1

2
m({y})

)
≤ T,

where the last inequality follows from the second property of µ. Hence,
τ ∈ T (T, y).
Finally, for µ ∈ A(T, y) with µ̄ > y, using similar arguments, one can show

that there exists a stopping time τ with Yτ ∼ µ under P y and Ey[τ ] ≤ T .

Remark 2.2. The function qy appearing in the definition of the set of mea-
sures A(T, y) plays for the Markov process Y the same role than the function
x 7→ x2 plays for the Brownian motion. Indeed, we know that when Y is a
Brownian motion starting in y = 0, we can find an embedding of µ with an
integrable stopping time if and only if µ is centered and in L2. The papers
[9] and [1] identify the function qy as the counterpart of the second-order
moment when Y is a general diffusion.

Remark 2.3. When µ is not centered around y, there is a non zero function
H in the constraint 2. of A(T, y). To understand this condition, notice that
H(y, µ̄) = Ey[inf{t ≥ 0 : Yt = µ̄}]. This tells that to embed a measure µ
such that µ̄ 6= y, we first wait until the first hitting time of µ̄ and then we
embed µ in Y , started at µ̄.
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Proposition 2.1 allows to reformulate the stopping problem (1.3) as a linear
problem onM.

Corollary 2.4. We have

v(T, y) = sup
µ∈A(T,y)

∫
f(x)µ(dx) (2.1)

and for any optimal µ ∈ A(T, y) there exists an optimal stopping time τ ∈
T (T, y) in (1.3) with Yτ ∼ µ under P y.

Notice that the functional µ 7→
∫
f(x)µ(dx) is linear on A(T, y). We have

thus obtained a linear problem over a set of probability measures µ with
some integrability constraints. Recall that for standard linear problems the
maximum value is attained by extreme points. We have a similar result for
an optimization problem

∫
gdµ over measures µ ∈ M satisfying moment

constraints of the form
∫
fidµ ≤ ci, g and fi measurable, ci ∈ R, 1 ≤

i ≤ n. The maximum value of
∫
gdµ is also attained in the set of extreme

points, see [18]. Furthermore, the extreme points are contained in the set of
all weighted Dirac measures with at most n + 1 mass points satisfying the
moment constraints.

In the following we denote the extreme points of a convex set A ⊆ M by
E(A) and for any M ⊆ M we denote by M3 the set of all measures in M
which are a weighted sum of at most 3 Dirac measures.
Now we reduce the optimization problem (2.1) to an optimization problem

over weighted sums of Dirac measures.

Theorem 2.5. We have

v(T, y) = sup
µ∈A3(T,y)

∫
f(x)µ(dx). (2.2)

Proof. We consider two cases. In the first case we assume that all measures
µ in A(T, y) are centered around y, i.e. µ̄ = y. Observe that µ̄ = y for all
µ ∈ A(T, y) if and only if one of the following four cases is satisfied: 1. I is
bounded, 2. l > −∞, r = ∞ and m((y,∞)) = ∞, 3. l = −∞, r < ∞ and
m((−∞, y)) =∞ and 4. I = R, m((y,∞)) =∞ and m((−∞, y)) =∞. The
optimization problem (2.1) can be rewritten as

v(T, y) = sup
t∈[0,T ]

sup
µ∈D(t,y)

∫
f(x)µ(dx),

where D(t, y) = {µ ∈ M1 : µ̄ = y and
∫
qy(x)µ(dx) = t}, 0 ≤ t ≤ T .

Theorem 2.1(b) and Theorem 3.2 in [18] imply that

sup
µ∈D(t,y)

∫
f(x)µ(dx) = sup

µ∈E(D(t,y))

∫
f(x)µ(dx) = sup

µ∈D3(t,y)

∫
f(x)µ(dx)
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because D3(t, y) coincides with E(D(t, y)). For t ∈ [0, T ] we have D3(t, y) ⊆
A3(T, y). Therefore,

v(T, y) = sup
t∈[0,T ]

sup
µ∈D3(t,y)

∫
f(x)µ(dx) = sup

µ∈A3(T,y)

∫
f(x)µ(dx).

In the second case the set A(T, y) also contains uncentered measures. We
define

A+(T, y) =

{
{µ ∈ A(T, y) : µ̄ ≥ y}, if ∃µ ∈ A(T, y) with µ̄ > y

∅, if µ̄ ≤ y for all µ ∈ A(t, y),

A−(T, y) =

{
{µ ∈ A(T, y) : µ̄ ≤ y}, if ∃µ ∈ A(T, y) with µ̄ < y

∅, if µ̄ ≥ y for all µ ∈ A(t, y),

Observe that at least one of the sets A+(T, y) or A−(T, y) is nonempty and
that (2.1) can be reduced to the two optimization problems supµ∈A+(T,y)

∫
f(x)µ(dx)

and supµ∈A−(T,y)

∫
f(x)µ(dx), where we follow the convention that the supre-

mum over the empty set is equal to −∞. If A+(T, y) is nonempty, then

A+(T, y) =

{
µ ∈M1 : µ̄ ≥ y,

∫
qy(x)µ(dx) ≤ T −H(y, µ̄)

}
=

{
µ ∈M1 :

∫
−xµ(dx) ≤ −y,

∫
(qy(x) + Cx)µ(dx) ≤ T + Cy

}
,

where C = m((−∞, y)) + 1
2
m({y}) < ∞. Therefore, Theorem 3.2 in [18]

implies that

sup
µ∈A+(T,y)

∫
f(x)µ(dx) = sup

µ∈E(A+(T,y))

∫
f(x)µ(dx).

By Theorem 2.1(a) in [18] we have E(A+(T, y)) ⊆ A+
3 (T, y). Thus,

sup
µ∈A+(T,y)

∫
f(x)µ(dx) = sup

µ∈A+
3 (T,y)

∫
f(x)µ(dx). (2.3)

IfA−(T, y) is nonempty, similar arguments show that (2.3) holds withA+(T, y)
andA+

3 (T, y) replaced byA−(T, y) andA−3 (T, y), respectively. SinceA3(T, y) =
A−3 (T, y) ∪ A+

3 (T, y) we conclude that

v(T, y) = sup
µ∈A3(T,y)

∫
f(x)µ(dx).

With Theorem 2.5 we can prove Theorem 1.4.
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Proof of Theorem 1.4. Let µ ∈ A3(T, y) with exactly three mass points a <
c < d. First observe that we can assume that µ is centered around y. Oth-
erwise the first hitting time of µ̄ is integrable wrt. P y (Theorem 2.4 in [9])
and we wait until Y hits µ̄ and then continue as in the centered case.

Extending the Balayage method developed by Chacon and Walsh in [6],
we construct consecutive exit times as follows:

τ1 = inf{t ≥ 0 : Yt /∈ (a, b)}
τ2 = τ1 + inf{t ≥ 0 : Yt /∈ (c, d)} ◦ θτ1 ,

where b = (µ({c})c + µ({d})d)/(1 − µ({a})). Notice that b ∈ (c, d). The
stopping time τ2 is an embedding of µ into Y under P y. By using that
qy(Yt) − t is a local martingale, one can show Ey[τ2] = Ey[qy(Yτ2)] ≤ T ;
hence τ2 ∈ T3(T, y).
If µ has two mass points a < c, then τ = inf{t ≥ 0 : Yt /∈ (a, c)} ∈ T3(T, y).

And similar, if µ = δa, then τ = inf{t ≥ 0 : Yt /∈ J\{a}} ∈ T3(T, y).

The following example shows that in general a reduction to A2(T, y), the
set of probability measures in A(T, y) that are weighted sums of at most 2
Dirac measures, is not possible.

Example 2.6. Let (Yt)t≥0 be a Brownian motion starting in 0 and let f(x) =
1{|x|≥1}, x ∈ R, be the payoff function. We claim that

v = sup
µ∈A(T,0)

∫
f(x)µ(dx) = T ∧ 1,

and

sup
µ∈A2

∫
f(x)µ(dx) =

{
T

1+T
, T < 1,

1, T ≥ 1.

Now we derive the value of the optimization problems over all measure µ ∈
A(T, 0) resp. µ ∈ A2(T, 0). For T ≥ 1 an optimal measure µ∗ is given by

µ∗ =
1

2
δ−1 +

1

2
δ1.

Now let T < 1 and observe that for every measure µ ∈ A2(T, 0) at least one
atom is contained in (−1, 1). Due to the symmetry of the problem and the
form of f , we can restrict ourselves to measures of the form

µS =
1

1 + S
δ−S +

S

1 + S
δ1,

where S ∈ (0, T ]. Then we obtain

sup
µ∈A2(T,0)

∫
f(x)µ(dx) = sup

S∈(0,T ]

∫
f(x)µS(dx) =

T

1 + T
.

10



Next we turn to measures with three atoms. Observe that all measures
in A3(T, y) are centered. Theorem 1.4 and Theorem 2.5 imply that it is
sufficient to consider measures µ of the form

µ =
b

1 + b
δ−1 +

1− b
(1 + b)(1− c)

δc +
b− c

(1 + b)(1− c)
δ1,

where 0 < b < 1 and c < b < 1. The measure µ corresponds to the
distribution of Yτ under P y, where

τ = τ−1,b(0) + 1{Yτ−1,b(0)=b} inf
{
t ≥ 0 |Yt+τ−1,b(0) ∈ {c, 1}

}
.

µ is a centered probability measure and∫
q0(x)µ(dx) =

∫
x2 µ(dx) =

2b+ bc− c
1 + b

.

Let S ∈ (0, T ], b < S and set c = S− 2(b−S)
1−b . Then we obtain c ∈ (−1, b) and∫

q0(x)µ(dx) = S. The payoff of the measure µ is given by∫
f(x)µ(dx) = 1− (1− b)2

(1 + b)(1− 3b+ S + bS)
,

which is maximized for bS = S
2−S ∈ (0, S) with corresponding optimal cS = 0.

Hence, we obtain

sup
µ∈A(T,0)

∫
f(x)µ(dx) = sup

µ∈A3(T,0)

f(x)µ(dx) =

∫
f(x)µ∗(dx) = T

with

µ∗ =
T

2
δ−1 + (1− T ) δ0 +

T

2
δ1.

3. Existence of an optimizer

The next example shows that the supremum in (2.2) is not always attained.

Example 3.1. Let f1(x) = x2 |x|
1+|x| , x ∈ R, and Y be a Brownian motion

starting in 0 under P y. In this case there does not exist an optimal stopping
time. To prove this let v1 := supτ∈T (T,0)E

0[f1(Yτ )]. Moreover, consider the
second payoff function f2(x) = x2. Note that for any integrable stopping
time τ we have E0[Y 2

τ ] = E0[τ ]. Therefore, v2 := supτ∈T (T,0)E
0[f2(Yτ )] = T .

One can show that v1 = v2. Indeed, on the one hand it must hold that
v1 ≤ v2 since f1 ≤ f2. On the other hand, for the stopping times τn = τ−1/n,nT

we have Ey[τn] = T and

E0 [f1(Yτn)] =
nT

1/n+ nT

1

n2

1/n

1 + 1/n
+

1/n

1/n+ nT
n2T 2 nT

1 + nT
−→ T,

11



as n→∞, and hence v1 ≥ v2.
From v1 = v2 we can deduce that the supremum can not be attained in v1,

because for any stopping time τ 6= 0 with E0[τ ] < ∞ we have P 0[f1(Yτ ) <
f2(Yτ )] > 0.

In the case where I is bounded we have the following existence result.

Theorem 3.2. Assume that I is a finite interval and f is upper-semicontinuous.
Then there exists an optimal stopping time in (1.3).

Proof. Let (µn) be a sequence in A(T, y) such that limn→∞
∫
fdµn = v.

Since Ī is compact, (µn) is tight. By Prokhorov’s Theorem (µn) converges
weakly along a subsequence to a probability measure µ on J . We show
that µ ∈ A(T, y). Observe that y = µn :=

∫
xµn(dx) →

∫
xµ(dx) = µ̄

as n → ∞. Thus, µ̄ = y. Next, lower-semicontinuity of q on J implies∫
qdµ ≤ lim infn→∞

∫
qdµn ≤ T . Since f is upper-semicontinuous we have

v = limn→∞
∫
fdµn ≤

∫
fdµ ≤ v. Hence µ is optimal in (2.1) and by

Corollary 2.4 there exists an optimal stopping in (1.3).

If the state space equals R, there exists an optimizer under conditions on
the payoff function f and the speed measure m.

Theorem 3.3. Assume that J = R, m((−∞, y)) = m((y,∞)) =∞, lim supx→∞
f(x)
qy(x)

≤
0, lim supx→−∞

f(x)
qy(x)

≤ 0 and that f is upper semi-continuous. Then there
exists an optimal stopping time in T3(T, y) for (1.5).

Proof. First observe that the assumption m((−∞, y)) = m((y,∞)) = ∞
ensures that

∫
xν(dx) = y for all ν ∈ A(T, y). Now, let µn =

∑3
j=1 p

j
nδxjn ∈

A(T, y), n ∈ N, be a sequence of measures such that

lim
n→∞

∫
fdµn = v(T, y).

If the sequence (x1
n)n∈N is unbounded, choose a subsequence, also denoted

by (x1
n)n∈N, such that either limn→∞ x

1
n = −∞ =: x1 or limn→∞ x

1
n = ∞ =:

x1. If (x1
n)n∈N is bounded, extract a subsequence such that limn→∞ x

1
n =

x1 ∈ R. By extracting further subsequences, proceed in the same way with
(x2

n)n∈N and (x3
n)n∈N. Then, refine once again the sequence to obtain that

(p1
n, p

2
n, p

3
n) → (p1, p2, p3) ∈ [0, 1]3 as n → ∞. Overall we obtain for n → ∞

that

(x1
n, x

2
n, x

3
n, p

1
n, p

2
n, p

3
n)→ (x1, x2, x3, p1, p2, p3) ∈ (R∪{−∞}∪{∞})3× [0, 1]3.

Let K = {j ∈ {1, 2, 3}|xj ∈ R} and µ =
∑

j∈K pjδxj . Let i ∈ {1, 2, 3} \K.
From the fact that

pinqy(x
i
n) ≤

3∑
j=1

pjnqy(x
j
n) =

∫
qy(x)µn(dx) ≤ T (3.1)

12



it follows that

lim sup
n→∞

pin = lim sup
n→∞

1

qy(xin)
pinqy(x

i
n) = 0

and hence
lim
n→∞

pin = 0. (3.2)

Next observe that the assumption m((−∞, y)) = m((y,∞)) = ∞ implies
that limx→∞

qy(x)

|x| = limx→−∞
qy(x)

|x| = ∞. Combining this with (3.1) yields
that

lim sup
n→∞

|xin|pin = lim sup
n→∞

|xin|
qy(xin)

pinqy(x
i
n) = 0

and hence
lim
n→∞

xinp
i
n = 0. (3.3)

Combining (3.1) and the assumptions lim supx→∞
f(x)
qy(x)

≤ 0 and lim supx→−∞
f(x)
qy(x)

≤
0 yields that

lim sup
n→∞

f(xin)pin = lim sup
n→∞

f(xin)

qy(xin)
pinqy(x

i
n) ≤ 0. (3.4)

Observe that it follows from (3.2) that

µ(R) =
∑
j∈K

pj = lim
n→∞

∑
j∈K

pjn = lim
n→∞

3∑
i=1

pin = lim
n→∞

µn(R) = 1.

Moreover, (3.3) proves that

µ̄ =

∫
xµ(dx) =

∑
j∈K

xjpj = lim
n→∞

∑
j∈K

pjnx
j
n = lim

n→∞

3∑
i=1

pinx
i
n = lim

n→∞

∫
xµn(dx) = y.

This implies that∫
qy(x)µ(dx) =

∑
j∈K

pjqy(x
j) = lim

n→∞

∑
j∈K

pjnqy(x
j
n) ≤ lim sup

n→∞

3∑
i=1

pinqy(x
i
n)

= lim sup
n→∞

∫
qy(x)µn(dx) ≤ T = T −H(y, µ̄).

Consequently, we have that µ ∈ A3(T, y) and in particular v(T, y) ≥
∫
fdµ.

Finally, it follows from (3.4) and upper semi-continuity of f that∫
fdµ =

∑
j∈K

pjf(xj) ≥ lim sup
n→∞

∑
j∈K

pjnf(xjn)

≥ lim sup
n→∞

∑
j∈K

pjnf(xjn) + lim sup
n→∞

∑
j /∈K

pjnf(xjn)

≥ lim sup
n→∞

3∑
i=1

pinf(xin) = lim
n→∞

∫
fdµn = v(T, y),

13



which implies that v(T, y) =
∫
fdµ.

Remark 3.4. Example 3.1 shows that the condition that lim supx→∞
f(x)
qy(x)

=

lim supx→−∞
f(x)
qy(x)

= 0 in Theorem 3.3 cannot be weakened in general.

4. General Diffusions

In this section we show how to deal with the optimal stopping problem (1.3)
if Y is not in natural scale.
Let s be the scale function of Y and m its speed measure. Define Zt =

s(Yt), t ≥ 0. Then Z (or more precisely (Qz)z∈s(J), where Qz is the P s−1(z)

distribution of (s(Yt))t≥0) is a diffusion in natural scale on JZ := s(J)
by Theorem 46.12, in Chapter V, [16], respectively Theorem 2.1 in [5].
The speed measure mZ of Z is given by mZ = m ◦ s−1, i.e. mZ((a, b)) =
m
(
(s−1(a), s−1(b))

)
for all [a, b] ⊆ JZ . Denote by IZ := (lZ , rZ) := (s(l), s(r))

the interior of JZ and for z ∈ IZ let qZz be the function on JZ defined in
(1.1) with m = mZ . In this section we impose the following assumption on
f : J → R.

Assumption: For every y ∈ J there exists C(y) ∈ R≥0 such that

f(w) ≥ −C(y)

(
1 +

∫ s(w)

s(y)

m
(
(y, s−1(u))

)
du

)
, w ∈ J.

The optimal stopping problem (1.3) can be rewritten as

v(T, y) = sup
τ∈T (T,y)

EP y [f(Yτ )] = sup
τ∈T Z(T,s(y))

EQs(y)

[(f ◦ s−1)(Zτ )],

where T Z(T, z) denotes the set of all (Ft)-stopping times with EQz [τ ] ≤ T .
Hence we can convert the optimal stopping problem with reward function f
for the process Y under P y into an optimal stopping problem with reward
function f ◦ s−1 for Z under Qs(y). Observe that v is well-defined, because
we have for all z ∈ JZ

f
(
s−1(z)

)
≥ −C(y)

(
1 +

∫ z

s(y)

m
(
(y, s−1(u))

)
du

)
= −C(y)

(
1 +

∫ z

s(y)

mZ
(
s(y), u

)
du

)
= −C(y)

(
1 + qZs(y)(z)

)
.

Therefore, Assumption (A) is satisfied. Let AZ(T, z) be the set of all proba-
bility measures ν on R with support in JZ and finite first moment satisfying

14



Properties 1. and 2. of Section 2, where l = lZ , r = rZ , qz = qZz and m = mZ .
Denote by AZ3 (T, z) the set of all probability measures in AZ(T, z) which can
be written as a weighted sum of at most 3 Dirac measures. Theorem 2.5 im-
plies that

v(T, y) = sup
ν∈AZ3 (T,s(y))

∫
f
(
s−1(x)

)
ν(dx). (4.1)

In the reduced optimization problem (4.1) the set AZ3 (T, s(y)) depends on
the process Z, its state space JZ and speed measure mZ . Next we aim to
characterize the set of measure AZ3 (T, s(y)) in terms of the primal process Y ,
its state space J and speed measure m. First observe that an (Ft)-stopping
time τ embeds µ in Y under P y if and only if τ embeds ν := µ ◦ s−1 in Z
under Qs(y). In order to transfer the properties of ν ∈ AZ3 (T, s(y)) to µ we
introduce the set As(T, y) of probability measures ρ on R with support in J
which satisfy the following properties:
1.
∫
J
|s(x)|ρ(dx) <∞.

2. a) If s(l) > −∞, then
∫
J
s(x) ρ(dx) ≤ s(y).

b) If s(r) <∞, then
∫
J
s(x) ρ(dx) ≥ s(y).

3. ρ integrates qy such that

1

2
m({y})

∫
J

|s(x)− s(y)| ρ(dx) +

∫
J

∫ s(x)

s(y)

m
(
(y, s−1(u)

)
du ρ(dx)

≤ T −H
(
s(y),

∫
J

s(x) ρ(dx)

)
,

where

H(x,w) =


(x− w)

(
m((s−1(x), r)) + 1

2
m({s−1(x)})

)
, w < x,

0, w = x,

(w − x)
(
m((l, s−1(x))) + 1

2
m({s−1(x)})

)
, w > x.

Let As3(T, y) be the measures in As(T, y) which can be written as a weighted
sum of at most 3 Dirac measures.

Let y ∈ I. Then the mapping µ 7→ ν := µ◦s−1 is a bijection from As(T, y)
to AZ(T, s(y)), because∫

JZ
|x| ν(dx) =

∫
J

|s(x)|µ(dx),∫
JZ
x ν(dx) =

∫
J

s(x)µ(dx),∫
JZ
qZs(y)(x) ν(dx) =

∫
J

qZs(y)

(
s(x)

)
µ(dx)

=
1

2
m({y})

∫
J

|s(x)− s(y)|µ(dx) +

∫
J

∫ s(x)

s(y)

m
(
(y, s−1(u)

)
duµ(dx).
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Furthermore, the number of mass points of µ and ν coincide. Thus, we have
proven the following theorem.

Theorem 4.1. For a diffusion Y with scale function s we have

v(T, y) = sup
ν∈AZ3 (T,s(y))

∫
f
(
s−1(x)

)
ν(dx) = sup

µ∈As3(T,y)

∫
f(x)µ(dx).

A. Proof of auxiliary results

We proof in this appendix Lemma 1.1 that characterizes in terms of qy
whether a boundary point is attained with a positive probability or not.

Proof of Lemma 1.1. We prove the statement only for r.
If r =∞, then qy(r) =∞. Next suppose that r ∈ J (in particular r <∞).

Fix a ∈ (l, y) and let τa,r be the first exit time of the interval (a, r). Since
qy(Yt)−t is a local martingale, we have Ey[τa,r] = Ey

[
qy
(
Yτa,r

)]
. This further

entails

Ey[τa,r] =
r − y
r − a

qy(a) +
y − a
r − a

qy(r) ≥
y − a
r − a

qy(r).

Proposition 3.1 in Chapter VII, [14], implies that τa,r is integrable and, hence,
qy(r) <∞.

Now consider the case when r /∈ J and r <∞. Then the first hitting time
τr of the point r satisfies τr =∞, P y-almost surely. Assume that qy(r) <∞
for some y ∈ I. Let l < a < y < b < r and denote by τa,b the first exit time
of the interval (a, b). Similar to the first case one can show

Ey[τa,b] = Ey
[
qy
(
Yτa,b

)]
=
b− y
b− a

qy(a) +
y − a
b− a

qy(b).

Hence,

Ey[τa] = Ey[τa,r] = lim
b↑r

Ey[τa,b] = lim
b↑r

{
b− y
b− a

qy(a) +
y − a
b− a

qy(b)

}
=
r − y
r − a

qy(a) +
r − a
b− a

qy(r).

In particular, τa < ∞, P y-almost surely, and τa embeds the Dirac measure
δa into Y y. But if r <∞, a measure µ can be embedded into Y under P y if
and only if µ̄ =

∫
xµ(dx) ≥ y by [12] and [8]. Therefore, qy(r) =∞.
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