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A two-level domain-decomposition
preconditioner for the time-harmonic
Maxwell’s equations

Marcella Bonazzoli1, Victorita Dolean1,2, Ivan G. Graham3, Euan A.
Spence3, and Pierre-Henri Tournier4

1 Introduction

The construction of fast iterative solvers for the indefinite time-harmonic
Maxwell’s system at high-frequency is a problem of great current inter-
est. Some of the difficulties that arise are similar to those encountered in
the case of the high-frequency Helmholtz equation. Here we investigate how
domain-decomposition (DD) solvers recently proposed for the high-frequency
Helmholtz equation work in the Maxwell case.

The idea of preconditioning discretisations of the Helmholtz equation with
discretisations of the corresponding problem with absorption was introduced
in Erlangga et al. [2004]. In Graham et al. [2017a], a two-level domain-
decomposition method was proposed that uses absorption, along with a
wavenumber dependent coarse space correction. Note that, in this method,
the choice of absorption is motivated by the analysis in both Graham et al.
[2017a] and the earlier work Gander et al. [2015].

Our aim is to extend these ideas to the time-harmonic Maxwell’s equations,
both from the theoretical and numerical points of view. These results will
appear in full in the forthcoming paper Bonazzoli et al. [2017].

Our theory will apply to the boundary value problem (BVP)

{
∇× (∇×E)− (k2 + iκ)E = J in Ω

E× n = 0 on Γ := ∂Ω
(1)

where Ω is a bounded Lipschitz polyhedron in R
3 with boundary Γ and

outward-pointing unit normal vector n, k is the wave number, and J is the
source term. The PDE in (1) is obtained from Maxwell’s equations by as-
suming that the electric field E is of the form E(x, t) = ℜ(E(x)e−iωt), where
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ω > 0 is the angular frequency. The boundary condition in (1) is called Per-
fect Electric Conductor (PEC) boundary condition. The parameter κ dictates
the absorption/damping in the problem; in the case of a conductive medium,
κ = kσZ, where σ is the electrical conductivity of the medium and Z the
impedance. If σ = 0, the solution is not unique for all k > 0 but a sufficient
condition for existence of a solution is ∇ · J = 0.

We will also give numerical experiments for the BVP (1) where the PEC
boundary condition is replaced by an impedance boundary condition, i.e. the
BVP {

∇× (∇×E)− (k2 + iκ)E = J in Ω
(∇×E)× n− i k n× (E× n) = 0 on Γ := ∂Ω

(2)

In contrast to the PEC problem, the solution of the impedance problem is
unique for every k > 0. There is large interest in solving (1) and (2) both

when κ = 0 and when κ 6= 0. We will consider both these cases, in each case
constructing preconditioners by using larger values of κ.

2 Variational formulation and discretisation

Let H0(curl;Ω) := {v ∈ L2(Ω),∇ × v ∈ L2(Ω),v × n = 0}. We introduce
the k-weighted inner product on H0(curl;Ω):

(v,w)curl,k = (∇× v,∇×w)L2(Ω) + k2(v,w)L2(Ω).

The standard variational formulation of (1) is: Given J ∈ L2(Ω), κ ∈ R and
k > 0, find E ∈ H0(curl;Ω) such that

aκ(E,v) = F (v) for all v ∈ H0(curl;Ω), (3)

where

aκ(E,v) :=

∫

Ω

∇×E · ∇ × v − (k2 + iκ)

∫

Ω

E · v (4)

and F (v) :=
∫
Ω J ·v.When κ > 0, it is well-known that the sesquilinear form

is coercive (see, e.g., Bonazzoli et al. [2017] and the references therein) and
so existence and uniqueness follow from the Lax–Milgram theorem.

Nédélec edge elements are particularly suited for the approximation of
electromagnetic fields. They provide a conformal discretisation of H(curl, Ω),
since their tangential component across faces shared by adjacent tetrahedra
of a simplicial mesh T h is continuous. We therefore define our approximation
space Vh ⊂ H0(curl;Ω) as the lowest-order edge finite element space on the
mesh T h with functions whose tangential trace is zero on Γ . More precisely,
over each tetrahedron τ , we write the discretised field as Eh =

∑
e∈τ cewe,

a linear combination with coefficients ce of the basis functions we associ-
ated with the edges e of τ , and the coefficients ce will be the unknowns of
the resulting linear system. The Galerkin method applied to the variational
problem (3) is
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find Eh ∈ Vh such that aκ(Eh,vh) = F (vh) for all vh ∈ Vh. (5)

The Galerkin matrix Aκ is defined by (Aκ)ij := aκ(wei ,wej ) and the
Galerkin method is then equivalent to solving the linear system AκU = F,
where Fi := F (wei) and Uj := cej .

3 Domain decomposition

To define appropriate subspaces of Vh, we start with a collection of open
subsets {Ω̃ℓ : ℓ = 1, . . . , N} of Rd of maximum diameter Hsub that form an

overlapping cover of Ω, and we set Ωℓ = Ω̃ℓ ∩ Ω. Each Ωℓ is assumed to be
non-empty and is assumed to consist of a union of elements of the mesh Th.
Then, for each ℓ = 1, . . . , N , we set

Vℓ := Vh ∩H0(curl, Ωℓ),

where H0(curl, Ωℓ) is considered as a subset of H0(curl;Ω) by extending
functions in H0(curl, Ωℓ) by zero, thus the tangential traces of elements of
Vℓ vanish on the internal boundary ∂Ωℓ\Γ (as well as on ∂Ωℓ ∩ Γ ). Thus a
solve of the Maxwell problem (3) in the space Vℓ involves a PEC boundary
condition on ∂Ωℓ (including any external parts of ∂Ωℓ). When κ 6= 0, such
solves are always well-defined by uniqueness of the solution of the BVP (1).

Let Ih be the set of interior edges of elements of the triangulation; this set
can be identified with the degrees of freedom of Vh. Similarly, let Ih(Ωℓ) be
the set of edges of elements contained in (the interior of) Ωℓ (corresponding to
degrees of freedom on those edges). We then have that Ih = ∪N

ℓ=1I
h(Ωℓ). For

e ∈ Ih(Ωℓ) and e′ ∈ Ih, we define the restriction matrices (Rℓ)e,e′ := δe,e′ .
We will assume that we have matrices (Dℓ)

N
ℓ=1 satisfying

N∑

ℓ=1

RT
ℓ DℓRℓ = I; (6)

such matrices (Dℓ)
N
ℓ=1 are called a partition of unity.

For two-level methods we need to define a coarse space. Let {T H} be a
sequence of shape-regular, tetrahedral meshes on Ω, with mesh diameter H .
We assume that each element of T H consists of the union of a set of fine
grid elements. Let IH be an index set for the coarse mesh edges. The coarse
basis functions {wH

e } are taken to be Nédélec edge elements on T H with
zero tangential traces on Γ . From these functions we define the coarse space
V0 := span{wH

ep : p ∈ IH} , and we define the restriction matrix

(R0)pj := ψej (w
H
ep)=

∫

ej

wH
ep · t, j ∈ Ih, p ∈ IH , (7)

where ψe are the degrees of freedom on the fine mesh.
With the restriction matrices (Rℓ)

N
ℓ=0 defined above, we define
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Aκ,ℓ := RℓAκR
T
ℓ , ℓ = 0, . . . , N

For ℓ = 1, . . . , N , the matrix Aκ,ℓ is then just the minor of Aκ correspond-
ing to rows and columns taken from Ih(Ωℓ). That is Aκ,ℓ corresponds to
the Maxwell problem on Ωℓ with homogeneous PEC boundary condition on
∂Ωℓ\Γ . The matrix Aκ,0 is the Galerkin matrix for the problem (1) discre-
tised in V0. In a similar way as for the global problem it can be proven that
matrices Aκ,ℓ, ℓ = 0, . . . , N , are invertible for all mesh sizes h and all choices
of κ 6= 0.

In this paper we consider two-level preconditioners, i.e. those involving
both local and coarse solves, except if ‘1-level’ is specified in the numerical
experiments. The classical two-level Additive Schwarz (AS) and Restricted

Additive Schwarz (RAS) preconditioners for Aκ are defined by

M−1
κ,AS :=

N∑

ℓ=0

RT
ℓ A

−1
κ,ℓRℓ M−1

κ,RAS :=

N∑

ℓ=0

RT
ℓ DℓA

−1
κ,ℓRℓ. (8)

In the numerical experiments we will also consider two other precondition-
ers: (i) M−1

κ,ImpRAS, which is similar to M−1
κ,RAS, but the solves with Aκ,ℓ are

replaced by solves with matrices corresponding to the Maxwell problem on
Ωℓ with homogeneous impedance boundary condition on ∂Ωℓ\Γ , and (ii) the
hybrid version of RAS

M−1
κ,HRAS := (I − ΞAκ)

(
N∑

ℓ=1

RT
ℓ DℓA

−1
κ,ℓRℓ

)
(I −AκΞ) + Ξ, Ξ = RT

0 A
−1
κ,0R0.

(9)
In a similar manner we can define M−1

κ,HAS, M
−1
κ,ImpHRAS, the hybrid versions

of AS and ImpRAS.

4 Theoretical results

The following result is the Maxwell-analogue of the Helmholtz-result in [Gra-
ham et al., 2017b, Theorem 5.6] and will appear in Bonazzoli et al. [2017].
We state this result for κ ∼ k2, but note that Bonazzoli et al. [2017] treats
more general κ.

Theorem 1 (GMRES convergence for left preconditioning with κ ∼
k2). Assume that Ω is a convex polyhedron. Let Ck be the matrix representing

the (·, ·)curl,k inner product on the finite element space Vh in the sense that

if vh, wh ∈ Vh with coefficient vectors V,W then

(vh, wh)curl,k = 〈V,W〉Ck
. (10)

Consider the weighted GMRES method where the residual is minimised in the

norm induced by Ck. Let r
m denote the mth residual of GMRES applied to

the system Aκ, left preconditioned with M−1
κ,AS

. Then
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‖rm‖Ck

‖r0‖Ck

.

(
1−

(
1 +

H

δ

)−2
)m/2

, (11)

provided the following condition holds:

max {kHsub, kH} ≤ C1

(
1 +

H

δ

)−1

. (12)

where Hsub and H are the typical diameters of a subdomain and of the coarse

grid, δ denotes the size of the overlap, and C1 is a constant independent of

all parameters.

As a particular example we see that, provided κ ∼ k2, H ∼ Hsub ∼ k−1 and
δ ∼ H (“generous overlap”), then GMRES will converge with a number of
iterations independent of all parameters. This property is illustrated in the
numerical experiments in the next section. A result analogous to Theorem 1
for right-preconditioning will appear in Bonazzoli et al. [2017].

5 Numerical results

In this section we will perform several numerical experiments in a cube
domain with PEC boundary conditions (Experiments 1-2) or impedance
boundary conditions (Experiments 3-4). The right-hand side is given by
J = [f, f, f ], where f = − exp(−400((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)).

We solve the linear system with GMRES with right preconditioning, start-
ing with a random initial guess, which ensures, unlike a zero initial guess,
that all frequencies are present in the error; the stopping criterion, with a
tolerance of 10−6, is based on the relative residual. The maximum num-
ber of iterations allowed is 200. We consider a regular decomposition into
subdomains (cubes), the overlap for each subdomain is of size O(2h) (ex-
cept in Experiment 1, where we take generous overlap) in all directions.
All the computations are done in FreeFem++, an open source domain spe-
cific language (DSL) specialised for solving BVPs with variational methods
(http://www.freefem.org/ff++/). The code is parallelised and run on the
TGCC Curie supercomputer and the CINES Occigen supercomputer. We as-
sign each subdomain to one processor. Thus in our experiments the number
of processors increases if the number of subdomains increases. To apply the
preconditioner, the local problems in each subdomain and the coarse space
problem are solved with a direct solver (MUMPS on one processor). In all
the experiments the fine mesh diameter is h ∼ k−3/2, which is believed to
remove the pollution effect.

In our experiments we will often choose Hsub ∼ H and our precondition-
ers are thus determined by choices of H and κ, which we denote by Hprec

and κprec. The absorption parameter of the problem to be solved is denoted
κprob. The coarse grid problem is of size ∼ H−2

prec and there are ∼ H−2
prec local

problems of size (Hprec/h)
2 (case Hsub ∼ H). In the tables of results, n de-
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notes the size of the system being solved, nCS the size of the coarse space, the
figures in the tables denote the GMRES iterations corresponding to a given
method, e.g. # iter AS is the number of iterations for the AS preconditioner,
whereas Time denotes the total time (in seconds) for the solve. For some of
the experiments we compute (by linear least squares) the approximate value
of γ so that the entries of this column grow with kγ . We also compute ξ
so that the entries of the column grow with nξ (here ξ = γ · 2/9, because
n ∼ (h3/2)3 = k9/2).

Experiment 1. The purpose of this experiment is to test the theoretical
result which says that even with AS (i.e. when solving PEC local problems),
provided H ∼ Hsub ∼ k−1, δ ∼ H (generous overlap), κprob = κprec = k2,
the number of GMRES iterations should be bounded as k increases. Here we
compare three two-level preconditioners: additive Schwarz, restricted additive
Schwarz, and the hybrid version of restricted additive Schwarz. Note that in
theory we would expect AS to be eventually robust, although its inferiority
compared to the other methods is to be expected Graham et al. [2017a].

k # iter AS # iter RAS # iter HRAS

10 53 26 12

15 59 28 12
20 76 29 17

Table 1 δ ∼ H (generous overlap), H ∼ Hsub ∼ k−1, κprob = κprec = k2.

Experiment 2. In this experiment we set κprob = κprec = k2 and H ∼
Hsub ∼ k−0.8. The overlap is O(2h) in all directions.

k n # iter RAS (HRAS) # iter ImpRAS (ImpHRAS) Time ImpHRAS

10 2.6× 105 34 (23) 27 (20) 11.03
20 7.1× 106 43 (31) 35 (28) 42.6

30 4.1× 107 47 (34) 39 (32) 100.9
40 1.3× 108 49 (36) 42 (35) 264.5

γ 4.5 2.23

Table 2 δ ∼ 2h, H ∼ Hsub ∼ k−0.8, κprob = κprec = k2.

As we are not in the case Hprec ∼ k−1 and we do not have generous over-
lap, we do not expect a bounded number of iterations here. Nevertheless, the
method still performs well. Not surprisingly, the best method is ImpHRAS,
as better transmission conditions at the interfaces between submains are used
in the preconditioner. It is important to note that the time is growing very
much slower than the dimension of the problem being solved.

Experiment 3 In this case we take κprob = k, which is the physically rel-
evant case of absorption. Moreover, we take impedance boundary conditions
on ∂Ω. We take H ∼ Hsub ∼ k−α, κprec = kβ , and we use ImpHRAS as a
preconditioner.
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α = 0.6 α = 0.8

k # iter # iter

10 31 29
20 87 60
30 148 90
40 200 154

β = 1 β = 2

k n nCS # iter (Time) # iter (Time)

10 3.4× 105 1.8× 103 29 (12.9) 37 (13.1)
20 7.1× 106 7.9× 103 60 (63.7) 70 (69.8)
30 4.1× 107 2.5× 104 90 (200.4) 101 (221.2)
40 1.3× 108 5.1× 104 154 (771.7) 137 (707.6)

γ 4.5 2.4 1.2 (2.9) 0.94 (2.8)

ξ 1.0 0.5 0.3 (0.6) 0.2 (0.6)

Table 3 κprob = k, H ∼ Hsub ∼ k−α, κprec = kβ , Left: β = 2, α = 0.6, 0.8, Right:
α = 0.8, β = 1, 2.

In the table on the right we see that the dimension of the coarse space is

nCS = (k−0.8)−3 = k2.4 = O(n0.5).

This is reflected in the γ and ξ figures in the nCS column. For this method
the reduction factor nCS/n is substantial (about 3.9 × 10−4 when k = 40).
The computation time grows only slightly faster than the dimension of the
coarse space, showing (a) weak scaling and (b) MUMPS is still performing
close to optimally for Maxwell systems of size 5× 104. Iteration numbers are
growing with about n0.3 at worst. Note that the iteration numbers may be
improved by separating the coarse grid size from the subdomain size, making
the coarse grid finer and the subdomains bigger.

Experiment 4. Here we solve the pure Maxwell problem without ab-
sorption, i.e. κprob = 0, with impedance boundary conditions on ∂Ω. In
the preconditioner we take κprec = k. Results are given in Table 4, where

Hsub ∼ k−α, H ∼ k−α′

. These methods are close to being load balanced in
the sense that the coarse grid and subdomain problem size are very similar
when α+ α′ = 3/2.

Out of the methods tested, the 2-level method (ImpHRAS) with (α, α′) =
(0.6, 0.9) gives the best iteration count, but is more expensive. The method
(α, α′) = (0.7, 0.8) is nearly twice as fast (for k = 30) but its iteration count
grows more quickly, so its advantage will diminish as k increases further.
We have no explanation for the curious reduction in iterations in the 2-level
method as k increases for (α, α′) = (0.6, 0.9). For (α, α′) = (0.6, 0.9) the
coarse grid size grows with O(n0.64) while the time grows with O(n0.80).
For (α, α′) = (0.7, 0.8) the rates are O(n0.54) and O(n0.75). The subdomain
problems are solved on individual processors so the number of processors
used grows as k increases. In the current implementation a sequential direct
solver on one processor is used to factorize the coarse problem matrix, which
is clearly a limiting factor for the scalability of the algorithm. The timings
could be significantly improved by using a distributed direct solver, or by
adding a further level of domain decomposition for the coarse problem solve.
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α = 0.6, α′ = 0.9

k n Nsub 2-level nCS Time 1-level Time

10 2.6× 105 27 65 2.9× 103 31.7 37 19.7
15 1.5× 106 125 87 1.0× 104 53.5 70 37.3
20 5.2× 106 216 76 2.1× 104 102.6 94 91.8
25 1.4× 107 216 33 4.4× 104 214.2 105 310.3
30 3.3× 107 343 38 6.9× 104 600.7 132 1179.6

α = 0.7, α′ = 0.8

k n Nsub 2-level nCS Time 1-level Time

10 3.1× 105 125 49 1.9× 103 11.7 58 9.7
15 1.5× 106 216 39 4.2× 103 24.5 82 27.0

20 6.3× 106 512 74 7.9× 103 63.1 123 67.0
25 1.4× 107 729 84 1.7× 104 117.5 148 135.6
30 3.5× 107 1000 108 2.6× 104 378.9 179 507.3

α = 0.8, α′ = 0.8

k n Nsub 2-level nCS Time 1-level Time

10 3.4× 105 216 31 1.9× 103 12.6 67 11.7
20 7.1× 106 1000 70 7.9× 103 76.9 147 58.3
30 4.1× 107 3375 109 2.6× 104 238.0 >200 -
40 1.3× 108 6859 193 5.1× 104 948.9 >200 -

Table 4 κprob = 0, Hsub ∼ k−α, H ∼ k−α′

.
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