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Abstract

We discuss here the convergence of relaxation methods for MPCC with approximate sequence of
stationary points by presenting a general framework to study these methods. It has been pointed out in
the literature, [23], that relaxation methods with approximate stationary points fail to give guarantee of
convergence. We show that by defining a new strong approximate stationarity we can attain the desired
goal of computing an M-stationary point. We also provide an algorithmic strategy to compute such point.
Existence of strong approximate stationary point in the neighborhood of an M-stationary point is proved.
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1 Introduction
We consider the Mathematical Program with Complementarity Constraints

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(MPCC)

with f : Rn → R, g : Rn → Rp, h : Rn → Rm and G,H : Rn → Rq. All these functions are assumed to
be continuously differentiable through this paper. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in
Rq is a shortcut for u ≥ 0, v ≥ 0 and uT v = 0. In this context solving the problem means finding a local
minimum. Even so this goal apparently modest is hard to achieve in general.

This problem has become an active subject in the literature since the last two decades and has been the
subject of several monographs [26, 27] and PhD thesis [11, 19, 17, 32, 30, 6]. The wide variety of applications
that can be casted as an MPCC is one of the reason for this popularity. Among other we can cite truss
topology optimization [17], discrete optimization [1], image restoration [3], optimal control [2, 16]. Otherwise,
another source of problem are bilevel programming problems [8, 9], where the lower-level problem is replaced
by its optimality conditions. This may lead to a more general kind of problem called Mathematical Program
with Equilibrium Constraint [27] or Optimization Problem with Variational Inequality Constraint [34]. The
MPCC formulation has been the most popular in the literature motivated by more accessible numerical
approaches.

(MPCC) is clearly a non-linear programming problem and in general most of the functions involved in
the formulation are non-convex. In this context solving the problem means finding a local minimum. Even
∗Département d’informatique, Université de Sherbrooke
†IRMAR-Insa
‡INSEA

1



so this goal apparently modest is hard to achieve in general due to the degenerate nature of the MPCC.
Therefore, numerical methods that consider only first order informations may expect to compute a stationary
point.

The wide variety of approaches with this aim computes the KKT conditions, which require that some
constraint qualification holds at the solution to be an optimality condition. However, it is well-known that
these constraint qualifications never hold in general for (MPCC). For instance, the classical Mangasarian-
Fromowitz constraint qualification that is very often used to guarantee convergence of algorithms is violated
at any feasible point. This is partly due to the geometry of the complementarity constraint that always has
an empty relative interior.

These issues have motivated the definition of enhanced constraint qualifications and optimality conditions
for (MPCC) as in [34, 33, 28, 13] to cite some of the earliest research. In 2005, Flegel & Kanzow provide an
essential result that defines the right necessary optimality condition to (MPCC). This optimality condition
is called M(Mordukhovich)-stationary condition. The name comes from the fact that those conditions are
derived by using Mordukhovich normal cone in the usual optimality conditions of (MPCC).

In view of the constraint qualifications issues that plague the (MPCC) the relaxation methods provide
an intuitive answer. The complementarity constraint is relaxed using a parameter so that the new feasible
domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 and h(x) = 0 are not
more difficult to handle than the complementarity constraint. Finally, the relaxing parameter is reduce to
converge to the feasible set of (MPCC) similar to an homotopy technique. The interest for such methods
has already been the subject of some PhD thesis in [30, 32] and is an active subject in the literature.

These methods have been suggested in the literature back to 2000 by Scheel & Scholtes in [28] replacing
the complementarity ∀i ∈ {1, . . . , q} by

Gi(x)Hi(x)− t ≤ 0.

For more clarity we denote Φt(x) the map that relaxed the complementarity constraint and so in this case
∀i ∈ {1, . . . , q}

ΦSSi (G(x), H(x); t) = Gi(x)Hi(x)− t. (SS)

This natural approach is later extended by Demiguel, Friedlander, Nogales & Scholtes in [7] by also relaxing
the positivity constraints G(x) ≥ −t, H(x) ≥ −t. In [25], Lin & Fukushima improve this relaxation
by expressing the same set with two constraints instead of three. This improvement leads to improved
constraint qualification satisfied by the relaxed sub-problem. Even so the feasible set is not modified this
improved regularity does not come as a surprise, since constraint qualification measures the way the feasible
set is described and not necessarily the geometry of the feasible set itself. In [31], the authors consider a
relaxation of the same type but only around the corner G(x) = H(x) = 0 in the following way ∀i ∈ {1, . . . , q}

ΦSUi (G(x), H(x); t) = Gi(x) +Hi(x)−

{
|Gi(x)−Hi(x)|, if |Gi(x)−Hi(x)| ≥ t,
tψ(Gi(x)−Hi(x)

t ), otherwise,
(SU)

where ψ is a suitable function as described in [31]. An example of such function being ψ(z) = 2
π sin(π2 z +

3π
2 ) + 1.

In the corresponding papers it has been shown that under suitable conditions providing convergence of
the methods they still might converge to some spurious point, called C-stationary point. The convergence to
M-stationary being guaranteed only under some second-order condition. Up to this point it is to be noted
that different methods used in the literature such as interior-point methods, smoothing of an NCP function
and elastic net methods share a lot of common properties with the (SS) method and its extension.

A new perspective for those schemes has been motivated in [20] providing an approximation scheme with
convergence to M-stationary point by considering ∀i ∈ {1, . . . , q}

ΦKDBi (G(x), H(x); t) = (Gi(x)− t)(Hi(x)− t). (KDB)

This is not a relaxation since the feasible domain of (MPCC) is not included in the feasible set of the
subproblems. The method has been extended has a relaxation method through a NCP function in [22]
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∀i ∈ {1, . . . , q} as
ΦKSi (G(x), H(x); t) = φ(Gi(x)− t,Hi(x)− t). (KS)

In a recent paper, [23], Kanzow & Schwartz discuss convergence of the method (KS) considering sequence
of approximate stationary points, that is a point that satisfy approximately the KKT conditions. They
illustrate the fact that the method may converge to spurious weak-stationary point. Our motivation in this
paper is to deal with this issue and present an algorithmic approach.

We present in this paper a generalized framework to study relaxation methods that encompass the meth-
ods KDB, KS and the recent butterfly relaxation. We introduce a new method called asymmetric relaxation
that also belong to this framework. Then, by introducing a new kind of approximate stationary point we
prove that the methods that belong to the generalized framework converge to M-stationary points. We also
deal with the question of existence and computation of such point. Existence is proved in the neighbourhood
of an M-stationary point without the need of constraint qualification. An active set-penalization scheme that
is a generalization of the penalized-active-set method proposed in [21] is proposed to solve the sub-problems
of the relaxation.

The rest of this paper is organized as follows : Section 2 introduces the basic knowledge from non-linear
programming and mathematical programming with complementarity constraints that will be extensively used
along this paper. Section 3 presents a unified framework to study relaxation methods and Section 4 illustrates
that the strongest existing methods as well as a new asymmetric relaxation belong to this framework. Section
5 motivates the difficulty of computing a stationary point of MPCC by using approximate sequences of
stationary point. These issues are solved in Section 6, which presents a new notion of approximate stationary
point that is sufficient to guarantee the well-behaviour of relaxation methods. Section 7 discuss existence of
approximate stationary points in a neighborhood of a solution that may not exist. These issues are handled
in two steps. Firstly, Section 8 introduces the MPCC with slack variables. Secondly, Section 9 shows that for
the MPCC with slack variables, existence of strong epsilon stationary points is guaranteed under very mild
conditions. Finally, Section 10 presents an algorithmic strategy to compute the new approximate stationary
point, while Section 11 shows preliminaries numerical results using this strategy.

Notations Through this paper, we use classical notation in optimization. Let xT denotes the transpose
of a vector or a matrix x. The gradient of a function f at a point x with respect to x is denoted ∇xf(x)
and ∇f(x) when the derivative is clear from the context. supp(x) for x ∈ Rn is the set of indices such that
xi 6= 0 for i ∈ {1, . . . , n}. 1l is the vector whose components are all one. R+ and R++ denotes the set of
non-negative and positive real numbers. Given two vectors u and v in Rn, let u ◦ v denotes the Hadamard
product of two vectors so that u ◦ v = (uivi)1≤i≤n. We also use classical asymptotic Landau notations :

f(x) = o(g(x)) as x→ a if and only if for all positive constant M there exists a positive number δ such
that |f(x)| ≤M |g(x)| for all |x− a| ≤ δ, in other words limx→a

f(x)
g(x) = 0.

f(x) = ω(g(x)) as x→ a if and only if for all positive constant M there exists a positive number δ such
that |f(x)| ≥M |g(x)| for all |x− a| ≤ δ.

f(x) ∼ (g(x)) as x→ a if and only limx→a
f(x)
g(x) = K with K a positive finite constant.

2 Preliminaries
We give classical definitions from non-linear programming and then present their enhanced version to MPCC
that will be used in the sequel.
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2.1 Non-Linear Programming
Let a general non-linear program be

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,
(NLP)

with g : Rn → Rp, h : Rn → Rm and f : Rn → R. Denote F the feasible region of (NLP), the set of active
indices Ig(x) := {i ∈ {1, ..., p} | gi(x) = 0} at x, the generalized Lagrangian Lr(x, λ) = rf(x) + g(x)Tλg +
h(x)Tλh with λ = (λg, λh) andMr(x) is the set of index r multipliers.

By definition, λ is an index r multiplier for (NLP) at a feasible point x if (r, λ) 6= 0 and ∇xLr(x, λ) =
0, λ ≥ 0, g(x)Tλ = 0. An index 0 multiplier is also called singular multiplier, [4], or an abnormal multiplier,
[5]. We call a KKT-point a couple (x, λ) with λ an 1-index multiplier at x. A couple (x, λ) with λ a 0-index
multiplier at x is called Fritz-John point.

In the context of solving non-linear program, that is finding a local minimum, one widely used technique
is to compute necessary conditions also called optimality conditions. The principle tool is the Karush-Kuhn-
Tucker (KKT) conditions. Let x∗ be a local minimum of (NLP) that satisfy a constraint qualification, then
there exists λ ∈M1(x∗) that satisfy

∇xL1(x∗, λ) = 0,

min(−g(x∗), λg) = 0, h(x∗) = 0.
(KKT)

A point (x∗, λ) that satisfy (KKT) is called a stationary point.
In the context of numerical computation it can be difficult to compute stationary points. Hence, it is of

interest to consider epsilon-stationary points.

Definition 2.1 (epsilon-stationary point). Given a general non-linear program (NLP) and ε ≥ 0. We say
that (x∗, λ) ∈ Rn × Rm × Rp is an epsilon-stationary point (or an epsilon-KKT point) if it satisfies∥∥∇xL1(x∗, λ)

∥∥
∞ ≤ ε,

and

gi(x
∗) ≤ ε, λgi ≥ 0, |λgi gi(x

∗)| ≤ ε, ∀i ∈ {1, . . . , p},
|hi(x∗)| ≤ ε, ∀i ∈ {1, . . . ,m}.

At ε = 0 we get the classical definition of a stationary point of (NLP).

2.2 Mathematical Program with Complementarity Constraints
Let Z be the set of feasible points of (MPCC). Given x ∈ Z, we denote

I+0(x) := {i ∈ {1, . . . , q} | Gi(x) > 0 and Hi(x) = 0},
I0+(x) := {i ∈ {1, . . . , q} | Gi(x) = 0 and Hi(x) > 0},
I00(x) := {i ∈ {1, . . . , q} | Gi(x) = 0 and Hi(x) = 0}.

We define the generalized MPCC-Lagrangian function of (MPCC) as

LrMPCC(x, λ) := rf(x) + λgg(x) + λhh(x)− λGG(x)− λHH(x),

with λ := (λg, λh, λG, λH).
We remind that the tangent cone of a set X at x∗ ∈ X is a closed cone defined by

TX(x∗) := {d ∈ Rn | ∃tk ≥ 0 and xk →X x∗ s.t. tk(xk − x∗)→ d}.
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The cone LMPCC , defined in [28], is given as the following not necessarily convex cone

LMPCC(x∗) := {d ∈ Rn|∇gi(x∗)T d ≤ 0 ∀i = 1, . . . , p,

∇hi(x∗)T d = 0 ∀i = 1, . . . ,m,

∇Gi(x∗)T d = 0 ∀i ∈ I0+(x∗),

∇Hi(x
∗)T d = 0 ∀i ∈ I+0(x∗),

∇Gi(x∗)T d ≥ 0,∇Hi(x)T d ≥ 0 ∀i ∈ I00(x∗),

(∇Gi(x∗)T d)(∇Hi(x
∗)T d) = 0 ∀i ∈ I00(x∗)}.

Due to [12], one always has the following inclusions

TZ(x∗) ⊆ LMPCC(x∗).

Given a cone K ⊂ Rn, the polar of K is the cone defined by K◦ := {z ∈ Rn | zTx ≤ 0, ∀x ∈ K}.
We can now define a mild constraint qualification for (MPCC) called MPCC-Guignard CQ.

Definition 2.2. Let x∗ ∈ Z. We say that MPCC-GCQ holds at x∗ if T ◦Z (x∗) = L ◦MPCC(x∗).

In general, there does not exist KKT stationary points since (MPCC) is highly degenerate and does not
satisfy classical constraint qualification from non-linear programming. So we introduce weaker stationary
concepts as in [28, 33].

Definition 2.3. [Stationary point] x∗ ∈ Z is said

• Weak-stationary if there exists λ ∈ Rm × Rp × Rq × Rq such that

∇xL1
MPCC(x∗, λ) = 0,

min(−g(x∗), λg) = 0, h(x∗) = 0,

∀i ∈ I+0(x∗), λGi = 0, and ∀i ∈ I0+(x∗), λHi = 0;

• Clarke-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi λ
H
i ≥ 0;

• Alternatively (or Abadie)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0 or λHi ≥ 0;

• Mordukhovich-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), either λGi > 0, λHi > 0 or λGi λ
H
i = 0;

• Strong-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0, λHi ≥ 0.

Relations between these notions are straightforward from the definition.
The following theorem is a keystone to define necessary optimality conditions for (MPCC).

Theorem 2.1 ([14]). A local minimum of (MPCC) that satisfies MPCC-GCQ or any stronger MPCC-CQ
is an M-stationary point.
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Figure 1: Signs of λG, λH for indices i ∈ I00. From the left to the right : weak-stationary, C-stationary,
A-stationary, M-stationary and S-stationay.

Therefore, devising algorithms to reach KKT stationary points (S-stationary) is not possible in general,
and we must satisfy ourselves in devising algorithms reaching M-stationary points. The following example
due to Kanzow and Schwartz exhibits a situation where the global minimizer is not a KKT point but an
M-stationary point. We will return to this example later on.

Example 2.1.
min
x∈R3

x1 + x2 − x3

s.t. g1(x) := −4x1 + x3 ≤ 0,
g2(x) := −4x2 + x3 ≤ 0,
0 ≤ G(x) := x1 ⊥ H(x) := x2 ≥ 0.

The global solution is (0, 0, 0)t but is not a KKT point. Indeed, the gradient of the Lagrangian equal to zero
yields

0 =

 1
1
−1

+ λg1

−4
0
1

+ λg2

 0
−4
1

− λG1
1

0
0

− λH2
0

1
0

+ η

0
0
0

 ,

and since λg1 + λg2 = 1(third line), summing the first two lines yields 2 − 4(λg1 + λg2) − λG1 − λH2 = 0 and
therefore λG1 + λH2 = −2; both cannot be non-negative.

Apart from MPCC-GCQ there exists a wide variety of MPCC constraint qualification described in the
literature. We conclude this section by defining only a short selection of them with interesting properties for
relaxation methods. Most of these conditions are constraint qualification from non-linear programming that
are extended for (MPCC).

One of the most principal constraint qualification used in the literature of (MPCC) is the MPCC-LICQ,
see [29] for a discussion on this CQ. In a similar way we extend CRCQ as in [15]. A condition that is similar
was used in [22, 18] to prove convergence of relaxation methods for (MPCC).

Definition 2.4. Let x∗ ∈ Z.

1. MPCC-LICQ holds at x∗ if the gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . ,m), ∇Gi(x∗) (i ∈ I00(x∗)∪I0+(x∗)), ∇Hi(x
∗) (i ∈ I00(x∗)∪I+0(x∗))}

are linearly independent.

2. MPCC-CRCQ holds at x∗ if there exists δ > 0 such that, for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . ,m},
I3 ⊆ I0+(x∗) ∪ I00(x∗), and I4 ⊆ I+0(x∗) ∪ I00(x∗), the family of gradients

{∇gi(x∗) (i ∈ I1), ∇hi(x∗) (i ∈ I2), ∇Gi(x∗) (i ∈ I3), ∇Hi(x
∗) (i ∈ I4)}

has the same rank for each x ∈ Bδ(x∗), where Bδ(x∗) is the ball of radius δ centered at x∗.
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In order to prove convergence of very general relaxation methods we consider the definition of MPCC-
CRSC, which was introduced and proved to be a constraint qualification very recently in [10].

The polar of the cone LMPCC is a key tool in the definition of constraint qualification. It is however not
trivial to compute. Therefore, we introduce the following cone:

PM (x∗) := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq

with λGi λ
H
i = 0 or λGi > 0, λHi > 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

Definition 2.5. Let x∗ ∈ Z. MPCC-CRSC holds at x∗ if for any partition I00
++ ∪I00

0− ∪I00
−0 = I00(x∗) such

that ∑
i∈Ig

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00++

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00++

λHi ∇Hi(x
∗)

+
∑
i∈I00−0

λGi ∇Gi(x∗) +
∑
i∈I000−

λHi ∇Hi(x
∗) = 0,

with λgi ≥ 0 (i ∈ Ig(x∗)),λGi and λHi ≥ 0 (i ∈ I00
++), λGi > 0 (i ∈ I00

−0), λHi (i ∈ I00
0−) > 0, there exists δ > 0

such that the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)},

has the same rank for every x ∈ Bδ(x∗), where

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈PM (x∗)},
I3 := I0+(x∗) ∪ {i ∈ I00

++|∇Gi(x∗) ∈PM (x∗)} ∪ I00
−0,

I4 := I+0(x∗) ∪ {i ∈ I00
++|∇Hi(x

∗) ∈PM (x∗)} ∪ I00
0−.

It is not necessary to add that the gradients −∇Gi(x∗) and −∇Hi(x
∗) belong to PM (x∗). Indeed, we

already require that λGi and λHi must be non-zero respectively for the indices i ∈ I00
−0 and i ∈ I00

0− and so it
implies that these gradients belong to this set.

Furthermore, MPCC-CRSC is weaker than MPCC-CRCQ. Indeed, MPCC-CRCQ requires that every
family of linearly dependant gradients remains linearly dependant in some neighbourhood, while the MPCC-
CRSC condition consider only the family of gradients that are linearly dependant with coefficients that have
M-stationary signs.

3 A Unified Framework for Relaxation/Approximation Methods
In the past decade, several methods have been proposed to compute an M-stationary point of (MPCC). The
first was the approximation scheme proposed by [20], which was latter improved as a relaxation by [22]. This
relaxation scheme has been generalized recently in [10] to a more general family of relaxation schemes. We
proposed in this section a unified framework that embraces those methods and may be used to derive new
ones.
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Consider the following parametric non-linear program Rt(x) parametrized by the vector t:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄(t)1l, H(x) ≥ −t̄(t)1l, Φ(G(x), H(x); t) ≤ 0,

(Rt(x))

with t̄ : Rl+ → R+ such that lim‖t‖→0 t̄(t) → 0 and the relaxation map Φ : Rn → Rq. In the sequel we skip
the dependency in t and denote t̄ to simplify the notation. It is to be noted here that t is a vector of an
arbitrary size denoted l as for instance in [10] where l = 2. The generalized Lagrangian function of (Rt(x))
is defined for ν ∈ Rp × Rm × Rq × Rq × Rq as

LrRt(x, ν) := rf(x) + g(x)T νg + h(x)T νh −G(x)T νG −H(x)T νH + Φ(G(x), H(x); t)T νΦ.

Let IΦ be the set of active indices for the constraint Φ(G(x), H(x); t) ≤ 0, i.e.

IΦ(x; t) := {i ∈ {1, . . . , q} | Φi(G(x), H(x); t) = 0}.

The definition of a generic relaxation scheme is completed by the following hypotheses:

• Φ(G(x), H(x); t) is a continuously differentiable real valued map extended component by component,
so that

Φi(G(x), H(x); t) := Φ(Gi(x), Hi(x); t). (H1)

• Direct computations give that the gradient with respect to x for i ∈ {1, . . . , q} of Φi(G(x), H(x); t) for
all x ∈ Rn is given by

∇xΦi(G(x), H(x); t) = ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

where αH(x; t) and αG(x; t) are continuous maps by smoothness assumption on Φ(G(x), H(x); t), which
we assume satisfy ∀x ∈ Z

lim
‖t‖→0

αH(x; t) = H(x) and lim
‖t‖→0

αG(x; t) = G(x). (H2)

• At the limit when ‖t‖ goes to 0, the feasible set of the parametric non-linear program (Rt(x)) must
converges to the feasible set of (MPCC). In other words, given F(t) the feasible set of (Rt(x)) it holds
that

lim
‖t‖→0

F(t) = Z, (H3)

where the limit is assumed pointwise.

• At the boundary of the feasible set of the relaxation of the complementarity constraint it holds that
for all i ∈ {1, . . . , q}

Φi(G(x), H(x); t) = 0 =⇒ FGi(x; t) = 0 or FHi(x; t) = 0, (H4)

where

FG(x; t) := G(x)− ψ(H(x); t),

FH(x; t) := H(x)− ψ(G(x); t),
(1)

and ψ is a continuously differentiable real valued function extended component by component. Note
that the function ψ may be two different functions in (1) as long as they satisfy the assumptions below.
Those functions ψ(H(x); t), ψ(G(x); t) are non-negative for all x ∈ {x ∈ Rn | Φ(G(x), H(x); t) = 0}
and satisfy ∀z ∈ Rq

lim
‖t‖→0

ψ(z; t) = 0. (H5)
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We will prove in Lemma 6.1 that this generic relaxation scheme for (MPCC) converges to an M-stationary
point requiring the following essential assumption on the functions ψ. As t goes to 0 the derivative with
respect to the first variable of ψ satisfies ∀z ∈ Rq

lim
‖t‖→0

∂ψ(x; t)

∂x

∣∣∣∣
x=z

= 0. (H6)

We conclude this section by giving an explicit formula for the relaxation map at the boundary of the
feasible set.

Lemma 3.1. Given Φ(G(x), H(x); t) be such that for all i ∈ IΦ(x; t)

Φi(G(x), H(x); t) = FGi(x; t)FHi(x; t).

The gradient with respect to x of Φi(G(x), H(x); t) for i ∈ IΦ(x; t) is given by

∇xΦi(G(x), H(x); t) := ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

with

αGi (x; t) = FGi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Hi(x)

FHi(x; t),

αHi (x; t) = FHi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Gi(x)

FGi(x; t).

4 Existing Methods under the Unified Framework
In this section, we illustrate the fact that the existing methods in the literature fall under this unified
framework. Indeed, the approximation method from Kadrani et al. [20] as well as the two relaxation
methods from Kanzow & Schwartz [22] and from Dussault,Haddou & Migot [10] satisfy those hypothesis.
We conclude this section by presenting a new asymetric relaxation method that also belong to our framework.

An optimization method that satisfies all of the 6 hypothesis defined in the previous section is called an
UF-method.

4.1 The Boxes Approximation
In 2009 Kadrani, Dussault and Bechakroun introduce a method, which enjoys the desired goal to converge
to an M-stationary point, see [20]. Their original method consider an approximation of the complementarity
constraints as a union of two boxes connected only on one point (t, t) (here t ∈ R), in the following way
∀i ∈ {1, . . . , q}:

ΦKDBi (x; t) = (Gi(x)− t)(Hi(x)− t). (2)

This is not a relaxation but an approximation, since the feasible domain of the relaxed problem does not
include the feasible domain of (MPCC) as illustrated on Figure 2.

Proposition 4.1. The approximation scheme (Rt(x)) with (2) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [20].
(H4) is satisfied by construction considering ψ(z; t) = t. In this case (H6) and (H5) are obviously satisfied.
Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈ {1, . . . , q} is given by

∇xΦKDBi (x; t) = ∇Gi(x)(Hi(x)− t) +∇Hi(x)(Gi(x)− t).

9



Figure 2: Feasible set of the approximation (2).

Therefore, αGi and αHi are given by

αHi (x; t) = Hi(x)− t,
αGi (x; t) = Gi(x)− t.

It clearly holds that αGi (x; t)→‖t‖→0 Gi(x) and αHi (x; t)→‖t‖→0 Hi(x). So, in this case (H2) is satisfied.
This completes the proof that all of the 6 hypothesis are satisfied and so the approximation (2) is an

UF-method.

4.2 The L-shape Relaxation
The previous method has latter been extended to a relaxation in [22] as illustrated on Figure 3 using a
piecewise NCP function by considering ∀i ∈ {1, . . . , q}

ΦKSi (x; t) = φ(Gi(x)− t,Hi(x)− t), (3)

where φ : R2 → R is a continuously differentiable NCP-function with for instance

φ(a, b) =

{
ab, if a+ b ≥ 0,

− 1
2 (a2 + b2), if a+ b < 0.

Proposition 4.2. The relaxation scheme (Rt(x)) with (3) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [22].
(H4) is satisfied by construction considering ψ(z; t) = t. In this case (H6) and (H5) are obviously satisfied.
Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈ {1, . . . , q} is given by

∇xΦKSi (x; t) =

{
∇Gi(x)(Hi(x)− t) +∇Hi(x)(Gi(x)− t), if Hi(x)− t+Gi(x)− t ≥ 0,

−∇Gi(x)(Gi(x)− t)−∇Hi(x)(Hi(x)− t), else.

Therefore, αGi and αHi are given by

αHi (x; t) =

{
Hi(x)− t, if Hi(x)− t+Gi(x)− t ≥ 0,

−(Gi(x)− t), otherwise,

αGi (x; t) =

{
Gi(x)− t, if Hi(x)− t+Gi(x)− t ≥ 0,

−(Hi(x)− t), otherwise.

10



Figure 3: Feasible set of the relaxation (3).

In the case Hi(x) − t + Gi(x) − t ≥ 0 it clearly holds that αGi (x; t) → Gi(x) and αHi (x; t) → Hi(x). So, in
this case (H2) is satisfied.

In the case Hi(x)−t+Gi(x)−t < 0 the opposite holds that is αGi (x; t)→ −Hi(x) and αHi (x; t)→ −Gi(x).
However, it is to be noted that sequences xt with xt →‖t‖→0 x

∗ that belong to this case satisfy i ∈ I00(x∗).
To sum up, in this case for x ∈ Z then αGi (x; t) → Hi(x) = Gi(x) = 0 and αHi (x; t) → Gi(x) = Hi(x) = 0.
This proves that (H2) holds in this case too and so this hypothesis holds for this relaxation.

This completes the proof that all of the 6 hypothesis are satisfied and so the relaxation (3) is an UF-
method.

4.3 The Butterfly Relaxation
The butterfly family of relaxations deal with two positive parameters (t1, t2) defined such that for all i ∈
{1, . . . , q}

ΦBi (x; t) := φ(F1i(x; t), F2i(x; t)), (4)

with

F1i(x; t) := Hi(x)− t1θt2(Gi(x)),

F2i(x; t) := Gi(x)− t1θt2(Hi(x)),

where θt2 : R→]−∞, 1] are continuously differentiable non-decreasing concave function with θ(0) = 0, and
lim
t2→0

θt2(x) = 1 ∀x ∈ R++ completed in a smooth way for negative values by considering θt2(z < 0) = zθ′(0)t1
t2

.

We assume the following relation between the parameter

t1 = o(t2) and t1 = ω(t22).

This method is illustrated on Figure 4.

Proposition 4.3. The relaxation scheme (Rt(x)) with (4) is an UF-method.

Proof. Continuity of the map Φ as well as (H3) has been proved in [10].
(H4) is satisfied by construction considering ψ(z; t) = t1θt2(z). In this case (H5) and (H6) are obviously

satisfied. The latter being insured by t1 = o(t2).
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Figure 4: Feasible set of the relaxation (4).

Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈ {1, . . . , q} is given by

∇xΦBi (x; t) =


(
F1i(x; t)− t1θ′t2(Gi(x))F2i(x; t)

)
∇Gi(x)

+
(
F2i(x; t)− t1θ′t2(Hi(x))F1i(x; t)

)
∇Hi(x), if F1i(x; t) + F2i(x; t) ≥ 0,(

t1θ
′
t2(Gi(x))F1i(x; t)− F2i(x; t)

)
∇Gi(x)

+
(
t1θ
′
t2(Hi(x))F2i(x; t)− F1i(x; t)

)
∇Hi(x), if F1i(x; t) + F2i(x; t) < 0.

Therefore, αGi and αHi are given by

αHi (x; t) =

{
F1i(x; t)− t1θ′t2(Gi(x))F2i(x; t), if F1i(x; t) + F2i(x; t) ≥ 0,

t1θ
′
t2(Gi(x))F1i(x; t)− F2i(x; t), otherwise,

αGi (x; t) =

{
F2i(x; t)− t1θ′t2(Hi(x))F1i(x; t), if F1i(x; t) + F2i(x; t) ≥ 0,

t1θ
′
t2(Hi(x))F2i(x; t)− F1i(x; t), otherwise.

In the case F1i(x; t) + F2i(x; t) ≥ 0 it clearly holds that αGi (x; t)→ Gi(x) and αHi (x; t)→ Hi(x). So, in this
case (H2) is satisfied.

In the case F1i(x; t)+F2i(x; t) < 0 the opposite holds that is αGi (x; t)→ −Hi(x) and αHi (x; t)→ −Gi(x).
However, it is to be noted that sequences xt with xt →‖t‖→0 x

∗ that belongs to this case satisfy i ∈ I00(x∗).
Therefore, in this case for x ∈ Z then αGi (x; t) → Hi(x) = Gi(x) = 0 and αHi (x; t) → Gi(x) = Hi(x) = 0.
This proves that (H2) holds in this case too and so this hypothesis holds for this relaxation.

This completes the proof that all of the 6 hypothesis are satisfied and so the relaxation (4) is an UF-
method.

4.4 An Asymmetric Relaxation
Up till now we only consider relaxation methods that are symmetric. We can define also asymmetric
relaxation methods illustrated on Figure 5 that respect the hypothesis of our unified framework.

Let IG and IH be two sets of indices such that IG∪IH = {1, . . . , q} and IG∩IH = ∅. Then, the relaxation
constraint is defined with

Φi(G(x), H(x); t) =

{
(Gi(x)− t)Hi(x), for i ∈ IG,
Gi(x)(Hi(x)− t), for i ∈ IH .

(5)
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Figure 5: Feasible set of the relaxation (5) with IH = {1} and IG = ∅.

Proposition 4.4. The relaxation scheme (Rt(x)) with (5) is an UF-method.

Proof. Continuity of the map Φ(G(x), H(x); t) as well as (H3) can be easily deduce from the definition of
(5).

(H4) is satisfied by construction considering ψ(z; t) = t or 0. In this case (H5) and (H6) are obviously
satisfied.

Now, we consider (H2). Direct computations give that the gradient of Φ for all i ∈ {1, . . . , q} is given by

∇xΦi(G(x), H(x); t)(x) =

{
∇Gi(x)Hi(x) +∇Hi(x)(Gi(x)− t), for i ∈ IG,
∇Gi(x)(Hi(x)− t) +∇Hi(x)Gi(x), for i ∈ IH .

Therefore, αGi and αHi are given by

αHi (x; t) =

{
Hi(x), for i ∈ IG,
Hi(x)− t, for i ∈ IH ,

αGi (x; t) =

{
Gi(x)− t, for i ∈ IG,
Gi(x), for i ∈ IH .

Clearly in both cases (H2) is satisfied.
This completes the proof that all of the 6 hypothesis are satisfied and so the relaxation (3) is an UF-

method.

5 Motivations on Epsilon-Solution to the Regularized Subproblems
We have seen in the previous sections a general framework to define relaxations of (MPCC). From an
algorithmic point of view, the main idea of relaxation methods to solve (MPCC) is to compute a sequence of
stationary points or more precisely approximate stationary points for each value of a sequence of parameter
{tk}. The following definition is a specialization of Definition 2.1 for (Rt(x)). It consists in replacing most
“0” in (KKT) by small quantities ε.

Definition 5.1. xk is an epsilon-stationary point for (Rt(x)) with εk ≥ 0 if there exists νk ∈ Rm × Rp ×
Rq × Rq × Rq such that ∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk
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and

gi(x
k) ≤ εk, νg,ki ≥ 0, |gi(xk)νg,ki | ≤ εk ∀i ∈ {1, . . . , p},

|h(xk)| ≤ εk ∀i ∈ {1, . . . ,m},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣∣νG,ki (Gi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄k ≥ −εk, νH,ki ≥ 0,
∣∣∣νH,ki (Hi(x

k) + t̄k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Φi(G(xk), H(xk); tk) ≤ εk, νΦ,k
i ≥ 0,

∣∣∣νΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}.
Unfortunately, it has been shown in [23] (Theorem 9 and 12) or [10] (Theorem 4.3) for the KDB, L-shape

and butterfly relaxations that under this definition, sequences of epsilon-stationary points only converge to
weak-stationary point without additional hypothesis. Our goal of computing an M-stationary point with a
realistic method is far from obvious. Indeed, epsilon-stationary points have two main drawbacks consider-
ing our goal. The difficulties may come from the approximation of the complementarity condition and the
approximate feasibility as shown in Example 5.1 or from the approximation of the feasibility of the relaxed
constraint as illustrated in Example 5.2. In those examples, we consider the scheme (2) in order to simplify
the presentation, but these observations can be easily generalized to the others methods.

Kanzow and Schwartz provide the following example exhibiting convergence to a W-stationary point.

Example 5.1. Consider the problem

minx∈R2 x2 − x1

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

If we perturb the relation νΦΦ(x1, x2; t) ≤ ε (leaving the other conditions νΦ ≥ 0, Φ(x1, x2; t) ≤ 0), νΦ may be
positive when the constraint Φ(x1, x2; t) is not active. For the case KDB Φ(x1, x2; t) = (x1− t)(x2− t) = −ε2
with ε = t2, the point x(t, ε) = (t−ε, t+ε)T ≥ (0, 0)T is epsilon–stationary for small enough ε: Φ(x1, x2; t) ≤ ε
and the choice νΦ = 1

ε makes the Lagrangian (−1, 1)T + νΦΦ(x1, x2; t) vanish. x(t) converges to the origin
when t, ε −→ 0 but the origin is only weakly stationary.

Now, if the complementarity constraint is relaxed, but the complementarity condition is guaranteed
convergence may occur to C-stationary points as shown in the following example.

Example 5.2. Consider the problem

minx∈R2
1
2 ((x1 − 1)2 + (x2 − 1)2)

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

We specialize the relations in Definition 5.1 as the following, for t and ε close to 0.∥∥∥∥( x1 − 1
x2 − 1

)
− νG

(
1
0

)
− νH

(
0
1

)
+ νΦ

(
x2 − t
x1 − t

)∥∥∥∥
∞
≤ ε,

0 ≤ νG, (x1 + t) ≥ 0, νG(x1 + t) ≤ ε,
0 ≤ νH , (x2 + t) ≥ 0, νH(x2 + t) ≤ ε,
0 ≤ νΦ, (x1 − t)(x2 − t) ≤ ε, νΦ [(x1 − t)(x2 − t)− ε] ≥ 0.

The points (t+
√
ε, t+

√
ε)T together with νG = νH = 0 and νΦ = 1−t−

√
ε√

ε
↗ +∞ satisfy the above relations.

The limit point when t, ε −→ 0 is the origin, which is a C-stationary point with νG = νH = −1.

On this example, the relaxed regularized complementarity constraint is active for any small enough
t, ε > 0; moreover, the relaxed regularized stationary point is a local maximum for t+ 2

√
ε < 1. The origin

is a local maximum for the original (MPCC).
Another example might help understanding the phenomenon.
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Figure 6: Butterfly relaxation with a constraint ΦB(x; t) ≤ ε.

Example 5.3. Consider the problem

minx∈R2 − 1
2 ((x1 − 1)2 + (x2 − 1)2)

s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

We again specialize the relations in Definition 5.1 as the following, for t and ε close to 0.∥∥∥∥( 1− x1

1− x2

)
− νG

(
1
0

)
− νH

(
0
1

)
+ νΦ

(
x2 − t
x1 − t

)∥∥∥∥
∞
≤ ε,

0 ≤ νG, (x1 + t) ≥ 0, νG(x1 + t) ≤ ε,
0 ≤ νH , (x2 + t) ≥ 0, νH(x2 + t) ≤ ε,
0 ≤ νΦ, (x1 − t)(x2 − t) ≤ ε, νΦ [(x1 − t)(x2 − t)− ε] ≥ 0.

This time, the points (t+
√
ε, t+

√
ε)T are no more epsilon-stationary but the points x = (1,−t)T , νH = 1+ t

and x = (−t, 1)T , νG = 1 + t are. Their limits are (1, 0)T and (0, 1)T which are KKT points for the original
MPCC with νH = 1, νG = 0 or νH = 0, νG = 1. The point (−t,−t)T with νH = 1 + t, νG = 1 + t is also
stationary, and of course converges to the origin, a local minimizer of the original MPCC.

In this example, the limit points are not minimizers for the original MPCC, but satisfy the first order
KKT conditions for a minimizer. The second order conditions fails for those limit points. The two examples
show limiting solutions of regularized subproblems which are not local minimizers of the original MPCC.
The first one fails to satisfy a first order condition while the second one satisfies such a first order condition
but not the second order one (it is a maximum on the active set).

The Figure 6 gives an intuition that explain the weak convergence in Example 5.2 by showing the ε-
feasible set of the butterfly relaxed complementarity constraint. It can be noticed that this feasible set is
very similar to the relaxation from Scheel and Scholtes, [28]. Therefore, it is no surprise that we can not
expect more than convergence to a C-stationary point in these conditions.

6 Convergence of Epsilon-Stationary Sequences
We now address the convergence of sequences of epsilon–stationary points. This motivates the definition of a
new kind of epsilon-stationary point called strong epsilon-stationary point, which is more stringent regarding
the complementarity constraint.

Definition 6.1. xk is a strong epsilon-stationary point for (Rt(x)) with εk ≥ 0 if there exists νk ∈ Rm ×
Rp × R3q such that ∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk
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and

gi(x
k) ≤ εk, νg,ki ≥ 0, |gi(xk)νg,ki | ≤ εk ∀i ∈ {1, . . . , p},

|h(xk)| ≤ t̄k +O(εk) ∀i ∈ {1, . . . ,m},

Gi(x
k) + t̄k ≥ −εk, νG,ki ≥ 0,

∣∣∣νG,ki (Gi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄k ≥ −εk, νH,ki ≥ 0,
∣∣∣νH,ki (Hi(x

k) + t̄k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

Φi(G(xk), H(xk); tk) ≤ 0, νΦ,k
i ≥ 0,

∣∣∣νΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ = 0 ∀i ∈ {1, . . . , q}.

In this case following a similar proof to the one of [23] and [10], we get an improved result that keep the
nice properties of the relaxations without strong assumption on the sequence of {εk}.

The following lemma shows that a sequence of strong epsilon-stationary points converges to a weak-
stationary point. This is not a new result since the same has been proved in [23] and [10] for a sequence
of epsilon-stationary points. However, the new definition allows to go further by showing convergence to an
M-stationary point.

Lemma 6.1. Given {tk} a sequence of parameter and {εk} a sequence of non-negative parameter such that
both sequences decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, νk} be a sequence
of strong epsilon-stationary points of (Rt(x)) according to definition 6.1 for all k ∈ N with xk → x∗. Let
{ηG,k}, {ηH,k} be two sequences such that

ηG,k := νG,k − νΦ,kαH(xk; tk),

ηH,k := νH,k − νΦ,kαG(xk; tk).
(6)

Assume that the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is bounded. Then, x∗ is an M-stationary point
of (MPCC).

Proof. The proof is divided in two parts. We first show that x∗ is a weak-stationary point and then we prove
that is an M-stationary point.

Let us prove the first part of the lemma. By definition {xk, νk} is a sequence of strong epsilon-stationary
points of (Rt(x)). We make the condition on the Lagrangian∥∥∇L1

Rt(x
k, νk; tk)

∥∥
∞ ≤ εk,

more explicit. By construction of Φ(G(x), H(x); t) this condition becomes∥∥∇f(xk) +∇g(xk)T νg,k +∇h(xk)T νh,k −∇G(xk)T ηG,k −∇H(xk)T ηH,k
∥∥
∞ ≤ εk. (7)

Besides, the sequence of multipliers {νh,k, νg,k, ηG,k, ηH,k} is assumed bounded. Therefore, it follows that
the sequence converges to some limit point

{νh,k, νg,k, ηG,k, ηH,k} → (νh, νg, ηG, ηH).

It is to be noted that for k sufficiently large it holds

supp(νg) ⊂ supp(νg,k),

supp(ηG) ⊂ supp(ηG,k),

supp(ηH) ⊂ supp(ηH,k).

We prove that (x∗, νh, νg, ηG, ηH) is a weak-stationary point. Obviously, since εk ↓ 0 it follows that x∗ ∈ Z,
∇xL1

MPCC(x∗, νh, νg, ηG, ηH) = 0 by (7) and that νgi = 0 for i /∈ Ig(x∗). It remains to show that for indices
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i ∈ I+0(x∗), ηGi = 0. The opposite case for indices i ∈ I0+(x∗) would follow in a completely similar way.
So, let i be in I+0(x∗).
By definition of strong εk-stationarity it holds for all k that

|νG,ki (Gi(x
k) + t̄k)| ≤ εk.

Therefore, νG,ki →k→∞ 0 since εk ↓ 0 and Gi(xk)→ Gi(x
∗) > 0.

Without loss of generality we may assume that for k sufficiently large νΦ,k
i 6= 0 otherwise ηGi = 0 and the

proof is complete. By strong ε-stationarity νΦ,k
i 6= 0 implies that FH,i(xk; tk) = 0 by (H4). (H2) yields

αHi (xk; tk)→ Hi(x
∗) and so ηGi = 0 unless νΦ,k diverges as k grows. We now prove that the latter case leads

to a contradiction.
Assume that νΦ,k → ∞, boundedness hypothesis on ηGi gives that there exists a finite non-vanishing

constant C such that
νΦ,k
i αHi (xk; tk)→ C.

Moreover, since ηHi is finite and νΦ,k
i αGi (xk; tk)→∞ as Gi(xk) > 0 then necessarily νH,ki →∞. Furthermore,

noticing that FH(xk; tk) = 0 gives Hi(x
k) ≥ 0, leads to a contradiction with νH,ki →∞ since by ε-stationarity

we get ∣∣∣νH,ki (Hi(x
k) + t̄k)

∣∣∣ =
∣∣∣νH,ki Hi(x

k)
∣∣∣+
∣∣∣νH,ki t̄k

∣∣∣ ≤ εk,
and εk = o(t̄k).

We can conclude that for i ∈ I+0(x∗), ηGi = 0 and therefore x∗ is a weak-stationary point.

Now, let us prove that x∗ is even stronger that weak-stationary point since it is an M-stationary point.
We now consider indices i ∈ I00(x∗). Our aim here is to prove that either ηGi > 0, ηHi > 0 or ηGi ηHi = 0. It
is clear that if νΦ,k

i = 0, then ηGi and ηHi are non-negative values and the result holds true. So, without loss
of generality we may assume that νΦ,k

i ≥ 0 and then Φi(G(xk), H(xk); tk) = 0 by Definition 6.1.
By construction of Φi(G(xk), H(xk); tk) given in hypothesis (H4) it follows that Φi(G(xk), H(xk); tk) =

0⇐⇒ FG,i(x
k; tk) = 0 or FH,i(xk; tk) = 0 where we remind that

FG,i(x
k; tk) = Gi(x

k)− ψ(Hi(x
k); tk),

FH,i(x
k; tk) = Hi(x

k)− ψ(Gi(x
k); tk),

Without loss of generality we assume that FG,i(xk; tk) = 0 since the other case is completely similar.
Furthermore by construction of Φi(G(xk), H(xk); tk) it holds that Gi(xk) is non-negative in this case.

Considering one of the complementarity condition of the strong ε-stationarity gives

εk ≥ |νG,ki (Gi(x
k) + t̄k)| = |νG,ki Gi(x

k)|+ |νG,ki t̄k|,

since Gi(xk) is non-negative and it follows that

|νG,ki t̄k| ≤ εk.

Necessarily νG,ki →k→∞ 0 as we assume in our statement that εk = o(t̄k).
Now at xk we can use Lemma 3.1 that for FGi(xk; tk) = 0 gives

αGi (xk; tk) = − ∂ψ(x; tk)

∂x

∣∣∣∣
x=Hi(xk)

FHi(x
k; tk),

αHi (xk; tk) = FHi(x
k; tk).

Obviously, if FHi(xk; tk) = 0 we are done and so assume that FHi(xk; tk) 6= 0. By hypothesis (H6), it
holds that ∂ψ(x;tk)

∂x

∣∣∣
x=Hi(xk)

→k→∞ 0. Therefore, αGi (xk; tk)νΦ,k
i going to a non-zero limit would imply that
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αHi (xk; tk)νΦ,k
i goes to infinity. However, this is a contradiction with ηGi being finite. We can conclude that

necessarily αGi (xk; tk)νΦ,k
i converges to zero.

Finally, we examine two cases regarding the sign of FHi(xk; tk). For FHi(xk; tk) ≤ 0, we get ηGi , ηHi
non-negative, which satisfy the desired condition. For FHi(xk; tk) ≥ 0 we get νH,ki →k→∞ 0 using the same
argument than for νG,ki . Thus, it follows that ηHi = 0.

This concludes the proof that x∗ is an M-stationary point, since additionally to the proof of weak-
stationarity of x∗ we proved for every i ∈ I00(x∗) that either ηHi > 0, ηGi > 0 or ηHi ηGi = 0.

The following theorem is a direct consequence of both previous lemmas and is our main statement.

Theorem 6.1. Given {tk} a sequence of parameter and {εk} a sequence of non-negative parameter such
that both sequences decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, νk} be a
sequence of epsilon-stationary points of (Rt(x)) according to definition 6.1 for all k ∈ N with xk → x∗ such
that MPCC-CRSC holds at x∗. Then, x∗ is an M-stationary point of (MPCC).

Proof. The proof is direct by Lemma 6.1 and Corollary 2.3 of [10] that ensures boundedness of the sequence
(6) under MPCC-CRSC.

Theorem (6.1) attains the ultimate goal, however it is not a trivial task to compute such a sequence
of epsilon-stationary points. This is discussed later. Another important question is the existence of strong
epsilon-stationary points in the neighbourhood of an M-stationary point. This problem is tackled in the
following sections.

7 On Lagrange Multipliers of the Regularization
The following example develops on Example 2.1 due to Kanzow and Schwartz exhibits a situation where the
regularized subproblems have no KKT point.

Example 7.1. The KDB regularized problem is

min
x∈R3

x1 + x2 − x3

s.t. −4x1 + x3 ≤ 0,
−4x2 + x3 ≤ 0,
x1 ≥ −t,
x2 ≥ −t,
(x1 − t)(x2 − t) ≤ 0.

(8)

The point (t, t, 4t)t is feasible so that the minimum value of this program is ≤ −2t. Moreover, whenever
x1 > t, we must have x2 <= t to satisfy (x1 − t)(x2 − t) ≤ 0. This allows to conclude that (t, t, 4t)t is the
global minimum of the regularized problem. νG = νH = 0 and the gradient of the Lagrangian equal to zero
yields

0 =

 1
1
−1

+ νg1

−4
0
1

+ νg2

 0
−4
1

+ νΦ

0
0
0

 , (9)

which cannot be satisfied.

This last example seems to contradict Theorem 4.6 in [22], but MPCC-LICQ is not satisfied by four
constraints in R3.

It has been pointed out earlier that a practical algorithm may not be able to compute stationary point
of the regularized subproblem, but only some approximate epsilon-stationary point. An intuitive idea would
be that weaker constraint qualification may guarantee existence of such points. However, the following one
dimensional example shows that things are not that simple taking for instance the approximate method
KDB, (2).
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Example 7.2. Consider the problem

min
x∈R
−x, s.t 0 ≤ G(x) := x ⊥ H(x) := 0 ≥ 0.

G and H are linear functions, so MPCC-CRCQ holds at each feasible point. Clearly, x = 0 is an M-stationary
point with λG = −1 and λH = 0. Indeed, the gradient of the Lagrangian is given by

0 = −1− λG.

We now verify that there is no epsilon-stationary point of the approximation KDB for this example :

min
x∈R
−x, s.t x ≥ −t, −t(x− t) ≤ 0.

Now, considering that the gradient of the Lagrangian function for this problem must be lower or equal as ε
gives

‖ − 1− νG − tνΦ‖ ≤ ε.
Noticing that νG, νH , νΦ ≥ 0 leads to

1 + νG + tνΦ ≤ ε,
which leads to a contradiction for ε < 1. So, there is no sequence of approximate stationary points that goes
to the origin.

The previous example illustrates the fact that even so strong constraint qualification holds for the problem
existence of epsilon-stationary point are not ensured at an M-stationary point. Even so, this problem seems
intractable by reformulating the (MPCC) with slack variables things could be slightly different.

Example 7.3. (Example 7.2 continued) We now verify that there is strong epsilon-stationary point of the
approximation KDB written with slack variables for this example :

min
x∈R
−x, s.t sG = x, sH = 0 , sG ≥ −t, sH ≥ −t, (sG − t)(sH − t) ≤ 0.

Given δ > 0, consider the point x = 0, (sG, sH) = (t, t+ δ) and Lagrange multiplier (νsG , νsH , νG, νH , νΦ) =
(−1, 0, 0, 0, 1

δ ).

• Condition on the gradient of the Lagrangian

|∇xL1(x, s, ν)| = | − 1− νsG | = 0,

|∇sGL1(x, s, ν)| = |νsG − νG + νΦ(sH − t)| = 0,

|∇sHL1(x, s, ν)| = |νsH − νH + νΦ(sG − t)| = 0.

• Condition on the feasibility

|x− sG| = t ≤ ε,
|0− sH | = t+ δ ≤ ε,
sG + t = 2t ≥ −ε, sH + t = 2t+ δ ≥ −ε,
(sG − t)(sH − t) = 0.

• Condition on the complementarity

|(sG + t)νG| = 0, |(sH + t)νH | = 0,

|(sG − t)(sH − t)νΦ| = 0.

This completes the proof that there is a strong epsilon-stationary point for the formulation with slack variables.

This example motivates the use of slack variables to define the (MPCC) and in this case study the
existence of strong epsilon-stationary point in a neighbourhood of an M-stationary point.
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8 The MPCC with Slack Variables
Consider the following parametric non-linear program Rt(x, s) parametrized by t:

min
(x,s)∈Rn×R2q

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),

sG ≥ −t̄1l, sH ≥ −t̄1l, Φ(sG, sH ; t) ≤ 0,

(Rst (x, s))

with lim‖t‖→0 t̄ = 0+ and the relaxation map Φ(sG, sH ; t) : Rq × Rq → Rq is defined by replacing G(x) and
H(x) by sG and sH in the map Φ(G(x), H(x); t).

The generalized Lagrangian function of (Rst (x, s)) is defined as

Lrs(x, s, ν; t) :=rf(x) + g(x)T νg + h(x)T νh − (G(x)− sG)T νsG − (H(x)− sH)T νsH

− sGT νG − sHT νH + Φ(sG, sH ; t)T νΦ.

Let Fs be the feasible set of (Rst (x, s)).
The following result is a direct corollary of Theorem 6.1 stating that the reformulation with slack variables

does not alter the convergence result.

Corollary 8.1. Given {tk} a sequence of parameter and {εk} a sequence of non-negative parameter such
that both sequences decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, νk} be a
sequence of strong epsilon-stationary points of (Rst (x, s)) for all k ∈ N with xk → x∗ such that MPCC-CRSC
holds at x∗. Then, x∗ is an M-stationary point of (MPCC).

Proof. Let h̃(x) : Rn → Rm×Rq×Rq be such that h̃(x) := (h(x), sG−G(x), sH−H(x)) and x̃ := (x, sG, sH).
It is clear that the non-linear program (Rst (x, s)) fall under the formulation (Rt(x)). Therefore, we can apply
6.1 to conclude this proof.

The following lemma giving an explicit form of the gradient of the Lagrangian function of (Rst (x, s)) can
be deduced through direct computations.

Lemma 8.1. The gradient of Lrs(x, s, ν; t) is given by

∇xLrs(x, s, ν; t) = r∇f(x) +∇g(x)T νg +∇h(x)T νh −∇G(x)T νsG −∇H(x)T νsH , (10)

∇sGLrs(x, s, ν; t) = νsG − νG +∇sGΦ(sG, sH ; t)T νΦ,

∇sHLrs(x, s, ν; t) = νsH − νH +∇sHΦ(sG, sH ; t)T νΦ.
(11)

There is two direct consequences of this result. First, it is easy to see from this lemma that computing
a stationary point of Lrs(x, s, ν; t) is equivalent to computing a stationary point of Lr(x, ν; t). Secondly, a
stationary point of Lrs(x, s, ν; t) with r = 1 satisfies one of the condition of weak-stationary point of (MPCC)
that is ∇L1

MPCC(x, ν) = 0.

In the next section, we now consider the existence of strong epsilon-stationary point for the relaxation
with slack variables (Rst (x, s)).

9 Existence of Strong Epsilon-Stationary Points for the Regular-
ization with Slack Variables

Before stating our main result we give a serie of additional hypothesis on the relaxation and the function ψ.
It is essential to note once again, that all these hypothesis are not restrictive, since they are satisfied by the
existing methods in the literature.
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9.1 Assumptions
The assumptions made in this section are divided in two parts. The first part concerns assumptions on the
domain of the relaxation. The second part is assumptions on the relaxation function ψ that has been used
to define the relaxation map on the boundary of the feasible set in Section 3.

9.1.1 Assumptions on the Relaxations

We denote Bcε((−t̄1l,−t̄1l)T ) the ball of radius cε and centered in (−t̄1l,−t̄1l)T . We assume that the schemes
considered in the sequel satisfy belong to one of two following cases for positive constants c, ε and t̄ :

Case 1
Bcε((−t̄1l,−t̄1l)T ) ∩ {(sG, sH)T | sG ≥ −t̄1l, sH ≥ −t̄1l} ⊂ Fs; (F1)

Case 2 (
Bcε((−t̄1l, ψ(−t̄1l; t))T ) ∪ Bcε((ψ(−t̄1l; t),−t̄)T )

)
∩{(sG, sH)T | sG ≥ −t̄1l, sH ≥ −t̄1l, Φ(sG, sH ; t) = 0} ⊂ Fs.

(F2)

The first case includes the butterfly relaxation and the KS relaxation, while the second case includes the
approximation KDB.

9.1.2 Assumptions on the Relaxation Function

For all t ∈ Rl++, we make the following supplementary assumptions on the function ψ for all x ∈ Rq. We
remind here that the functions ψ are separable with respect to x.

•
∂ψ(x; t)

∂t
> 0; (A1)

•
∂ψ(x; t)

∂x
≥ 0; (A2)

•
ψ(ψ(‖t‖∞; t); t) ≤ ‖t‖∞; (A3)

•
ψ(−‖t‖∞; t) ≤ ‖t‖∞. (A4)

Hypothesis (A1) in particular implies some monotonicity on the feasible set of the relaxed problems.
Assumption (A4) is used for the second kind of relaxations only. It is to be noted here that the assumptions
(A1),(A2),(A3) and (A4) are not the weakest for obtaining the following results. However, those assumptions
are satisfied by all the relaxations defined in the literature.

Lemma 9.1. Assume that (A1), (A2) and (A3) hold true. Then, giving constants c > 0, t̄ > 0 and ε > 0
the following holds true for all ‖t‖∞ ∈ (0, t̄+ cε)

t̄+ cε− ψ(ψ(t̄+ cε; t); t) > 0.

Proof. Using (A1), (A2) and that ‖t‖∞ ∈ (0, t̄+ cε) yields

t̄+ cε− ψ(ψ(t̄+ cε; t); t) > t̄+ cε− ψ(ψ(t̄+ cε; e(t̄+ cε)); e(t̄+ cε)) ≥ 0.

The conclusion comes from assumption (A3).
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Lemma 9.2. Assume that (A1) and (A3) holds true. Then, giving constants c > 0, t̄ > 0 and ε > 0 the
following holds true for all ‖t‖∞ ∈ (0, t̄+ cε]

ψ(t̄+ cε; t) ≤ t̄+ cε.

Proof. Using assumption (A1) and then (A3) gives

ψ(t̄+ cε; t) < ψ(t̄+ cε; e(t̄+ cε)) ≤ t̄+ cε,

which concludes the proof.

Lemma 9.3. Given positive constants t̄, c, ε,K. There exists a t∗ > 0 such that for all t ∈ (0, t∗] it holds
that

∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

≤ Kε,

and
0 ≤ t̄− ∂ψ(x; t)

∂x

∣∣∣∣
x=cε

≤ Kε.

Proof. The proof is clear from Assumption (H6) on the relaxation.

Lemma 9.4. Assume that (A1) and (A4) holds true. Then, giving constants c > 0, t̄ > 0 and ε > 0 with
t̄ > cε the following holds true for all ‖t‖∞ ∈ (0, t̄− cε]

ψ(t̄− cε; t) ≤ t̄+ cε.

Proof. Using assumption (A1) and then (A4) gives

ψ(t̄− cε; t) < ψ(t̄− cε; e(t̄− cε)) ≤ t̄− cε ≤ t̄+ cε,

which concludes the proof.

9.2 Main Theorem on Existence of Lagrange Multiplier
All of the supplementary assumptions made above are now used to derive the following result.

Theorem 9.1. Let x∗ ∈ Z be an M-stationary point and ε > 0 be arbitrarily small. Furthermore, assume
that the hypothesis (A1),(A2),(A3),(A4) on ψ and the hypothesis (F1) or (F2) on the relaxation introduced
above hold true. Then, there exists positive constants c, t∗ and t̄∗ with t̄∗ > cε and a neighbourhood U(x∗)
of (x∗, 0)T such that for all t ∈ (0, t∗) and t̄ ∈ (0, t̄∗) there exists (x, s)T ∈ U(x∗), which is strong epsilon-
stationary point of the relaxation (Rst (x, s)).

Regarding the value of t∗ we need at least that ‖t‖∞ ≤ t̄− cε. The constant c is given in the proof and
depends on the multipliers of the M-stationary point.

Proof. The proof is conducted in two steps. First, we construct a point based on the solution that is a
candidate to be a strong epsilon-stationary point. Then, we verify that this candidate is actually a strong
epsilon-stationary point.

x∗ is assumed to be an M-stationary point. Therefore, there exists λ = (λg, λh, λG, λH) such that

∇L1
MPCC(x∗, λ) = 0,

min(λg,−gi(x∗)) = 0, h(x∗) = 0, λGI+0(x∗) = 0, λHI0+(x∗) = 0,

either λGi > 0, λHi > 0 either λGi λ
H
i = 0 for i ∈ I00(x∗).

Let c be the positive constant bounding the value of the Lagrange multipliers so that

c := max
i∈supp(λG),j∈supp(λH)

1

|λGi |
+

1

|λHj |
.
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Construction of the point (x̂, ŝ, ν̂) Let us construct a point (x̂, ŝ, ν̂) that satisfy the strong epsilon-
stationary conditions (6.1).

x̂ := x∗, ν̂g := λg, ν̂h := λh, ν̂sG := λG, ν̂sH := λH .

We now split into two cases (A) and (B) corresponding to the two different kind of relaxations. Denote
the following set of indices

I00
−0(x∗, λ) := {i ∈ {1, . . . , q} | λGi < 0, λHi = 0},
I00

0−(x∗, λ) := {i ∈ {1, . . . , q} | λGi = 0, λHi < 0},
IνG := supp(ν̂sG) \ (I00

−0(x∗, λ) ∪ I00
0−(x∗, λ)),

IνH := supp(ν̂sH ) \ (I00
−0(x∗, λ) ∪ I00

0−(x∗, λ)),

A) Consider the Case 1, we choose ŝG, ŝH , ν̂G, ν̂H and ν̂Φ such that :

ŝG :=


ψ(t̄+ cε; t), i ∈ I00

−0(x∗, λ),

t̄+ cε, i ∈ I00
0−(x∗, λ),

ε−t̄ν̂G
ν̂G

, i ∈ IνG ,
∈ F otherwise,

ŝH :=


t̄+ cε, i ∈ I00

0−(x∗, λ),

ψ(t̄+ cε; t), i ∈ I00
−0(x∗, λ),

ε−t̄ν̂H
ν̂H

, i ∈ IνH ,
∈ F otherwise,

ν̂G :=

{
ν̂sGi for i ∈ I0+(x∗) ∪ I00(x∗)\(I00

−0(x∗, λ) ∪ I00
0−(x∗, λ)),

0 otherwise,

ν̂H :=

{
ν̂sHi for i ∈ I+0(x∗) ∪ I00(x∗)\(I00

−0(x∗, λ) ∪ I00
0−(x∗, λ)),

0 otherwise,

and finally

ν̂Φ :=


−ν̂sGi
αHi (s;t)

, for i ∈ I00
−0(x∗, λ),

−ν̂sHi
αGi (s;t)

, for i ∈ I00
0−(x∗, λ),

0, otherwise.

(x̂, ŝ, ν̂) satisfy the stationarity : Finally, we verify that in both cases we satisfy the strong epsilon-
stationary conditions, that is ∥∥∇L1

s(x̂, ŝ, ν̂; t)
∥∥
∞ ≤ ε,

and
gi(x̂) ≤ ε, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ ε ∀i ∈ {1, . . . , p},
|hi(x̂)| ≤ t̄+ cε ∀i ∈ {1, . . . ,m},
|Gi(x̂)− ŝG,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q},
|Hi(x̂)− ŝH,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q},
ŝG,i + t̄ ≥ −ε, ν̂Gi ≥ 0,

∣∣ν̂Gi (ŝG,i + t̄)
∣∣ ≤ ε ∀i ∈ {1, . . . , q},

ŝH,i + t̄ ≥ −ε, ν̂Hi ≥ 0,
∣∣ν̂Hi (ŝH,i + t̄)

∣∣ ≤ ε ∀i ∈ {1, . . . , q},
Φi(ŝG, ŝH ; t) ≤ 0, ν̂Φ

i ≥ 0,
∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤ 0 ∀i ∈ {1, . . . , q}.

We split the rest of the proof of A) in 6 parts:
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I.
∥∥∇xL1

s(x̂, ŝ, ν̂; t)
∥∥
∞ ≤ ε, gi(x̂) ≤ ε, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ ε ∀i ∈ {1, . . . , p} and |hi(x̂)| ≤ t̄ + cε ∀i ∈

{1, . . . ,m};

II.
∥∥∇sL1

s(x̂, ŝ, ν̂; t)
∥∥
∞ ≤ ε;

III. |Gi(x̂)− ŝG,i| ≤ t̄+ cε, |Hi(x̂)− ŝH,i| ≤ t̄+ cε ∀i ∈ {1, . . . , q};

IV. ŝG,i + t̄ ≥ −ε,
∣∣ν̂Gi (ŝG,i + t̄)

∣∣ ≤ ε, ŝH,i + t̄ ≥ −ε,
∣∣ν̂Hi (ŝH,i + t̄)

∣∣ ≤ ε ∀i ∈ {1, . . . , q};
V. Φi(ŝG, ŝH ; t) ≤ 0, ,

∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤ 0 ∀i ∈ {1, . . . , q};

VI. ν̂Gi ≥ 0, ν̂Hi ≥ 0, ν̂Φ
i ≥ 0.

Let us now run through these 6 conditions.
I. Since, x̂ = x∗ and (ν̂g, ν̂h, νsG , νsH ) = (λg, λh, λG, λH) it holds that∥∥∇xL1

s(x̂, ŝ, ν̂; t)
∥∥
∞ = 0,

and

gi(x̂) ≤ 0, ν̂gi ≥ 0, |gi(x̂)ν̂gi | ≤ 0 ∀i ∈ {1, . . . , p},
|hi(x̂)| = 0 ∀i ∈ {1, . . . ,m}.

II. The gradient of the Lagrangian with respect to s is given by

∇sGL1
s(x̂, ŝ, ν̂; t) = ν̂sG − ν̂G + ν̂ΦαH(ŝ; t),

∇sHL1
s(x̂, ŝ, ν̂; t) = ν̂sH − ν̂H + ν̂ΦαG(ŝ; t).

In the case I00
−0(x∗, λ) (the case I00

−0(x∗, λ) is similar by symmetry) it is true that ν̂Gi = ν̂Hi = 0 and

ν̂Φ
i =

−ν̂sGi
αHi (ŝ;t)

. Therefore

∇sG,iL1
s(x̂, ŝ, ν̂; t) = 0,

∇sH,iL1
s(x̂, ŝ, ν̂; t) =

−ν̂sGi αGi (ŝ; t)

αHi (ŝ; t)
= ν̂sGi

∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

,

since for i ∈ I00
−0(x∗, λ) by construction of ŝG, ŝH it holds that FGi = 0 and ŝH,i = t̄ + cε. The conclusion

follows by Lemma 9.3, which gives
∂ψ(x; t)

∂x

∣∣∣∣
x=t̄+cε

≤ ε.

Now, in the cases I0+(x∗) ∪ I00(x∗) \ (I00
−0(x∗, λ) ∪ I00

0−(x∗, λ)) and I+0(x∗) ∪ I00(x∗) \ (I00
−0(x∗, λ) ∪

I00
0−(x∗, λ)) the construction of the multipliers gives directly that ∇(sG,sH)L1

s(x̂, ŝ, ν̂; t) = 0.
This concludes the proof of II.
III. x̂ feasible for the MPCC yields to

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = 0, for i ∈ I0+(x∗),

|Gi(x̂)− ŝG,i| = 0 and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I+0(x∗),

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I00(x∗).

By symmetry it is sufficient to consider the variables sG. We analyse the cases where i ∈ I00
0−(x∗, λ), I00

−0(x∗, λ) and IνG .

• Let i ∈ I00
0−(x∗, λ), then ŝG,i = t̄+ cε;

• Let i ∈ I00
−0(x∗, λ), then ŝG,i = ψ(t̄+ cε; t) ≤ t̄+ cε by Lemma 9.2;
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• Let i ∈ IνG , then ŝG,i =
∣∣∣ εν̂Gi − t̄∣∣∣ ≤ ∣∣∣ εν̂Gi ∣∣∣+ t̄ ≤ t̄+ cε.

In every cases it holds that |ŝG,i| ≤ t̄+ cε and so this III is verified.
IV. By construction ŝG,i and ŝH,i are both non-negative as ψ(.; t) is assumed non-negative for indices i

such that Φi(ŝG, ŝH ; t) = 0.
It remains to verify the condition in the case where i ∈ IνG and i ∈ IνH . However, in both cases it holds

that

∀i ∈ IνG , ŝG,i + t̄ =
ε− t̄ν̂Gi
ν̂Gi

+ t̄ =
ε

ν̂Gi
> 0 ≥ −ε,

∀i ∈ IνH , ŝH,i + t̄ =
ε− t̄ν̂Hi
ν̂Hi

+ t̄ =
ε

ν̂Hi
> 0 ≥ −ε.

So, the feasibility in condition IV is satisfied. Now, regarding the complementarity condition it holds that

∀i ∈ IνG , |(ŝG,i + t̄)ν̂Gi | =
∣∣∣∣(ε− t̄ν̂Giν̂Gi

+ t̄

)
ν̂Gi

∣∣∣∣ = ε,

∀i ∈ IνH , |(ŝH,i + t̄)ν̂Hi | =
∣∣∣∣(ε− t̄ν̂Hiν̂Hi

+ t̄

)
ν̂Hi

∣∣∣∣ = ε.

This proves that the complementarity condition holds true for the relaxed positivity constraints and so
condition IV is verified.

V. The feasibility Φi(ŝG, ŝH ; t) ≤ 0 and the complementarity condition
∣∣ν̂Φ
i Φi(ŝG, ŝH ; t)

∣∣ ≤ 0 are satisfied
by construction and by hypothesis on the relaxation.

VI. The multiplier ν̂Φ is non-negative since for i ∈ I00
−0(x∗, λ) it holds that

αHi (ŝ; t) = FHi(ŝ; t)−
∂ψ(x; t)

∂x

∣∣∣∣
x=sG,i

FGi(ŝ; t) = FHi(ŝ; t) > 0, (12)

since FGi(ŝ; t) = 0 by construction of ŝG,i and FH(t̄ + cε; t) > 0 by Lemma 9.1. The case i ∈ I00
0−(x∗, λ)

follows by symmetry.
The others multipliers are obviously non-negative by construction. This concludes the case VI.

The verification of all 6 cases proves that the point constructed above is strong epsilon-stationary, which
concludes the proof of the relaxations (A).

B) Consider the Case 2. Let ŝG, ŝH , ν̂G, ν̂H and ν̂Φ be such that :

ŝG :=



ψ(t̄+ cε; t), i ∈ I00
−0(x∗, λ),

t̄+ cε, i ∈ I00
0−(x∗, λ),

ε−t̄ν̂G
ν̂G

, i ∈ IνG ∩ IνH ,
ψ
(
ε−t̄ν̂H
ν̂H

; t
)
, i ∈ IνH \ IνG ,

∈ F otherwise,

(13)

ŝH :=



t̄+ cε, i ∈ I00
0−(x∗, λ),

ψ(t̄+ cε), i ∈ I00
−0(x∗, λ),

ψ
(
ε−t̄ν̂G
ν̂G

; t
)
, i ∈ IνG ∩ IνH ,

ε−t̄ν̂H
ν̂H

, i ∈ I2,
∈ F otherwise,

(14)
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ν̂G :=

{
ν̂sGi for i ∈ IνG ∩ IνH ,
0 otherwise,

(15)

ν̂H :=

{
ν̂sHi for i ∈ IνH \ IνG ,
0 otherwise,

(16)

ν̂Φ :=


−ν̂sGi
αHi (ŝ;t)

for i ∈ I00
−0(x∗, λ),

−ν̂sHi
αGi (ŝ;t)

for i ∈ I00
0−(x∗, λ) ∪ IνG ∩ IνH ,

0 otherwise.

(17)

Once again we run through the 6 conditions. It is to be noted that the variables involved in I. have not been
changed so this condition stands true.

II. As pointed out earlier, the gradient of the Lagrangian with respect to s is given by

∇sGL1
s(x̂, ŝ, ν̂; t) = ν̂sG − ν̂G + ν̂ΦαH(ŝ; t),

∇sHL1
s(x̂, ŝ, ν̂; t) = ν̂sH − ν̂H + ν̂ΦαG(ŝ; t).

For indices i in I00
−0(x∗, λ) and I00

−0(x∗, λ) we refer to case (A). Let us consider indices i in IνG ∩ IνH and

IνH \ IνG . For i ∈ IνG ∩ IνH , then ν̂Gi > 0, ν̂Hi = 0 and ν̂Φ
i =

−ν̂sHi
αGi (ŝ;t)

and so the gradient of the Lagrangian
with respect to s becomes

∇sG,iL1
s(x̂, ŝ, ν̂; t) = ν̂sGi − ν̂

G
i + ν̂Φ

i α
H
i (ŝ; t) =

−ν̂sHi αHi (ŝ; t)

αGi (ŝ; t)
,

∇sH,iL1
s(x̂, ŝ, ν̂; t) = ν̂sHi − ν̂

H
i + ν̂Φ

i α
G
i (ŝ; t) = 0.

By construction of ŝG,i and ŝH,i, it holds that FHi(ŝ; t) = 0 and so

∇sGL1
s(x̂, ŝ, ν̂; t) =

−ν̂sHi αHi (ŝ; t)

αGi (ŝ; t)
= ν̂sHi

∂ψ(x; t)

∂x

∣∣∣∣
x=sG,i

= ν̂sHi
∂ψ(x; t)

∂x

∣∣∣∣
x= ε

ν̂
sG
i

−t̄
≤ ε ,

for some t ∈ (0, t∗) according to Lemma 9.3.
Now, for indices i ∈ IνH \ IνG it holds that ν̂sGi = 0 so by the choice of multipliers νG, νH and νΦ the

gradient of the Lagrangian with respect to s vanishes.
This allows to conclude that the condition II holds true.
III. Since x̂ is feasible for the MPCC therefore

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = 0, for i ∈ I0+(x∗),

|Gi(x̂)− ŝG,i| = 0 and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I+0(x∗),

|Gi(x̂)− ŝG,i| = |ŝG,i| and |Hi(x̂)− ŝH,i| = |ŝH,i|, for i ∈ I00(x∗).

Let us consider the case where i ∈ IνG ∩IνH noticing that i ∈ IνH \ IνG is similar by symmetry. The others
cases have been checked in case (A) of this proof. It follows that

|ŝG,i| =
∣∣∣∣ε− t̄ν̂Gν̂G

∣∣∣∣ ≤ ∣∣∣∣ εν̂Gi
∣∣∣∣+ t̄ ≤ t̄+ cε,

|ŝH,i| =
∣∣∣∣ψ(ε− t̄ν̂Giν̂Gi

; t

)∣∣∣∣ .
The second condition is ensured by Lemma 9.4.

IV. and V. These conditions are straightforward and follows the same path that condition IV. in the
case A.
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VI. The proof for indices is very similar to the condition VI in case (A) except in the case where i is in
IνG ∩ IνH . In this case

ν̂Φ
i =

−ν̂sHi
αGi (ŝ; t)

=
−ν̂sHi
FGi(ŝ; t)

,

since by construction of ŝG and ŝH , FHi(ŝ; t) = 0 here. Now, by definition of FG(ŝ; t) it follows

ν̂Φ
i =

−ν̂sHi
ŝG,i − ψ(ŝH,i; t)

=
−ν̂sHi

ε/ν̂sGi − t̄− ψ(ŝH,i; t)
≥ 0,

for cε ≤ t̄ since ψ is non-negative whenever sG and sH are chosen such that FHi(s; t) = 0 (Assumption (H5)).
The verification of all 6 cases proves that the point constructed above is strong epsilon-stationary, which

concludes the proof of the relaxations (B) and complete the whole proof.

It is to be noted that no constraint qualification is required for this result. This is a clear improvement
over what was obtained in the literature in the ideal case of sequence of stationary points. For instance,
Theorem 5.1 in [20] requires some second-order information to get a result on existence of stationary points
for the regularized sub-problems.

Theorem 9.2. For any M-stationary point of (MPCC) that satisfies MPCC-CRSC, there exists a sequence
of strong epsilon-stationary points of the relaxation (Rst (x, s)) that converges to that point.

Proof. Theorem 9.1 gives more relations between the parameters that are compatible with Corollary 8.1.
Indeed for a chosen sequence of arbitrarily small parameters {εk}, Corollary 8.1 requires that εk = o(t̄k) and
Theorem 9.1 requires that t̄k > cε and tk must be sufficiently small, in particular smaller than t̄k − cεk.

Thus, a straightforward application of both of these results provides the result.

Previous section point out that such result can not be obtained without a formulation with slack variables.

10 How to Compute Strong Epsilon-Stationary Points
The previous section introduces the new concept of strong epsilon-stationary point of the relaxed sub-
problems. In this section, we answer the non-trivial question of how to compute such an approximate
stationary point. We present here a generalization of the penalization with active set scheme proposed in
[21] and illustrate the fact that it has the desired property.

10.1 A Penalization Formulation
The following minimization problem aims at finding (x, s) ∈ Rn × R2q so that

min
x,s

Ψρ(x, s) := f(x) +
1

2ρ
φ(x, s)

s.t. sG ≥ −t̄1l, sH ≥ −t̄1l, Φ(sG, sH ; t) ≤ 0,

(P tρ(x, s))

where φ is the penalty function

φ(x, s) := ‖max(g(x), 0), h(x), G(x)− sG, H(x)− sH‖2.

An adaptation of Theorem 6.1 gives the following result that validate the penalization approach.

Theorem 10.1. Given a decreasing sequence {ρk} of positive parameter and {εk} a sequence of non-negative
parameter that decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, νk} be a sequence
of strong epsilon-stationary points of (P tρ(x, s)) according to Definition 6.1 for all k ∈ N with xk → x∗ such
that MPCC-CRSC holds at x∗. If x∗ is feasible, then it is an M-stationary point of (MPCC).
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Proof. Assuming that x∗ is feasible for (MPCC), the result is a straightforward adaptation of Theorem
6.1.

Unfortunately, the strong assumption on the previous theorem that x∗ must be feasible is hard to avoid.
Indeed, it is a classical pitfall of penalization methods in optimization to possibly compute a limit point that
minimizes the linear combination of the constraints. In other words, we compute a point x∗ infeasible that
satisfies
p∑
i=1

max(−gi(x∗), 0)∇gi(x∗)+
m∑
i=1

hi(x
∗)∇hi(x∗)−

q∑
i=1

max(Gi(x
∗), 0)∇Gi(x∗)−

q∑
i=1

max(Hi(x
∗), 0)∇Hi(x

∗) = 0.

This phenomenon has been well-known in non-linear programming methods for instance with filter methods.
Such a point is sometimes called infeasible stationary point.

It is interesting to note that the way the penalty parameter ρ behave may provide some informations
on the stationarity of the limit point. Indeed, if we find a stationary point of the initial problem without
driving ρ to zero, then we get an S-stationary point. This observation was introduced in [6] in the context
of elastic interior-point for (MPCC) and then adapted to the penalization technique from [21].

Theorem 10.2. Let (x, s) be a strong epsilon-stationary point of (P tρ(x, s)) with ρ > 0. If x is feasible for
(MPCC), then x is an S-stationary point of (MPCC).

This fact was already observed in Theorem 2 of [21] in a slightly weaker but similar framework. We do
not repeat the proof, but gives an interpretation of this result.

It has been made clear in the proof of the convergence theorem, Theorem 6.1, that the case where x∗
is an M-stationary point only occur if the sequence of multipliers {νΦ,k} diverges. Therefore, it is to be
expected that the penalty parameter must be driven to its limit to observe such phenomenon.

10.2 Overview of the Algorithm
We present here the general steps of our algorithm to compute an M-stationary point of the (MPCC). The
algorithm is composed of two loops: the regularization loop, and the penalization-active set loop.

The main loop presented in Algorithm 2 deals with the regularization method. Based on a predefined
sequence of precision εk, we compute the parameters of the relaxation tk and t̄k as well as a safeguard
parameter used ρmin,k for the penalization. For each of these parameters, we compute a sequence {zk} of
iterates and a sequence {ρk} of penalty parameters using the penalization-active set strategy, such that zk+1

is an approximate stationary point of (P tρ(x, s)) with ρk+1 ≥ ρmin,k.
The sequence of iterate is computed through the inner loop dealing with the penalization-active set

strategy described in Algorithm 1. The penalization parameter is updated during the process each time not
enough progress in term of feasibility is made. However, this reduction can be done only a finite number of
time, since the parameter must be larger than the safeguard value ρmin,k. Then, Lemma 10.1 and Theo-
rem 10.3 will show that the set of active constraints is also changed a finite number of times and guarantee
convergence under mild assumption to a strong-epsilon stationary point, which should be sufficient to get
convergence of the whole process according to Theorem 10.1.

In the sequel, we get into the details of the algorithm and its theoretical properties.

10.3 Active Set Method for the Penalized Problem
We discuss here an active set method to solve the penalized problem (P tρ(x, s)). This method is an extension
of the method proposed in [21] to the general class of methods presented in previous sections.
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The set of points that satisfies the constraints of (Rst (x, s)) is denoted by Ft,t̄ and let βt,t̄(x, s) denotes
the measure of feasibility

βt,t̄(x, s) :=‖max(g(x), 0)‖2 + ‖h(x)‖2 + ‖G(x)− sG‖2 + ‖H(x)− sH‖2+

‖max(−sG + t̄1l, 0)‖2 + ‖max(−sH + t̄1l, 0)‖2 + ‖max(−Φ(sG, sH ; t), 0)‖2.

Let W(s; t, t̄) be the set of active constraints among the constraints

sG ≥ −t̄1l, sH ≥ −t̄1l, Φ(sG, sH ; t) ≤ 0, (18)

and FRt,t̄ denotes the set of points that satisfies those constraints. We can be even more specific when for
some i ∈ {1, . . . , q} the relaxed constraint is active since

Φi(sG, sH ; t) = 0 =⇒ sH,i = ψ(sG,i; t) or sG,i = ψ(sH,i; t).

Remark 10.1. It is essential to note here that active constraints act almost like bound constraints since an
active constraint means that for some i ∈ {1, . . . , q} one (possibly both) of the two cases holds

sG,i = −t̄ or ψ(sH,i; t), or sH,i = −t̄ or ψ(sG,i; t).

Considering the relaxation from Kanzow & Schwartz it is obviously a bound constraint since ψ(sG,i; t) =
ψ(sH,i; t) = t. The butterfly relaxation gives ψ(sG,i; t) = t1θt2(sH,i) and ψ(sH,i; t) = t1θt2(sG,i). This is not
a bound constraint but we can easily use a substitution technique. This key observation is another motivation
to use a formulation with slack variables.

Furthermore, a careful choice of the function ψ may allow to get an analytical solution of the following
equation in α for given values of sG, sH , dsG , dsH :

sG,i + αdsG,i − ψ(sH,i + αdsH,i ; t) = 0.

Solving exactly this equation is very useful while computing the largest step so that the iterates remain feasible
along a given direction. For the butterfly relaxation with θt2(x) = x

x+t2
, the equation above is reduced to the

following second order polynomial equation if sH,i + αdsH,i ≥ 0:

(sH,i + αdsH,i + t2)(sG,i + αdsG,i)− t1(sH,i + αdsH,i) = 0. (19)

Algorithm 1 presents an active-set scheme to solve (P tρ(x, s)), which is described in depth in the sequel of
this section. Apart from some specific parameters most of the input data are given in this algorithm through
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the relaxation loop that will be discussed in Algorithm 2 (page 35).

Data:
Input Data: xk−1, sk−1; precision ε > 0 ;
ρ0 > 0 initial value of ρ, ρmin lower bound on the penalty parameter ;
Algorithm Parameters: σρ ∈ (0, 1) update in ρ; τvio ∈ (0, 1); sat:=true;
Initial estimate of the multiplier ν0;

1 Begin ;
2 Set j := 0, ρ := ρ0 ;
3 (xk,0, sk,0,W0, A0)=Projection of (xk−1, sk−1) if not feasible for (P tρ(x, s)) ;
4 while sat and

(
‖∇L1(xk,j , sG

k,j , sH
k,j , νj ; tk))‖2∞ > ε‖νj‖∞ or min(νj) < 0 or βtk,t̄k(xk,j , sk,j) > ε

)
do

5 Substitution of the variables that are fixed by the active constraints in Wj ;
6 Compute a feasible direction dj that lies in the subspace defined by the working set Wj (see (21))

and satisfies the conditions (SDD);
7 Compute ᾱ the maximum non-negative feasible step along dj

ᾱ := sup{α : (xk,j , sk,j) + αdj ∈ Ft,t̄}

Compute a step length αj ≤ ᾱ (see (19)) such that Armijo condition (22) holds ;
8 if αj = ᾱ then
9 Update the working set →Wj+1 and compute Aj+1 the matrix of gradients of active

constraints
10 (xk,j+1, sk,j+1) = (xk,j , sk,j) + αjd

j ;
11 j:=j+1 ;
12 if βtk,t̄k(xk,j+1, sk,j+1) ≥ max(τvioβtk,t̄k(xk,j , sk,j), ε) then
13 ρ := max(σρρ, ρmin)
14 else
15 Determine the approximate multipliers νj+1 = (νG, νH , νΦ) by solving

νj+1 ∈ arg min
ν∈R|Wj |

‖ATj+1ν −∇Ψρ(x
k,j , sk,j)‖2

Relaxing rule : if ∃ i, νj+1
i < 0 and (satisfy (23) or αj = 0 ) then

16 Update of the working set Wj+1 (with an anti-cycling rule) ;
17 sat:=‖dj‖ > ε

18 return: xk, sk, ρ or a decision of unboundedness.

Algorithm 1: Active-Set Penalization Algorithm for the relaxed non-linear program (P tρ(x, s)).

At each step, the set Wj denotes the set of active constraints of the current iterate sk,j . As pointed
out in Remark 10.1, these active constraints fix some of the variables. Therefore, by replacing these fixed
variables we can rewrite the problem in a subspace of the initial domain. Thus, we consider the following
minimization problem

min
(x,s)∈Rn×R|SG|+|SH |

Ψρ(x, sSG∪SH )

s.t. sG,i ≥ −t̄ for i ∈ SG, sH,i ≥ −t̄ for i ∈ SH ,
Φi(sG, sH ; t) ≤ 0 for i ∈ SG ∪ SH ,

(20)
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where we denote

IG := {i ∈ {1, . . . , q} | sGi = −t̄},
IH := {i ∈ {1, . . . , q} | sHi = −t̄},
I0+
GH := {i ∈ {1, . . . , q} | sHi = ψ(sG; t)},
I+0
GH := {i ∈ {1, . . . , q} | sGi = ψ(sH ; t)},
I00
GH := {i ∈ {1, . . . , q} | sGi = sHi = ψ(0; t)},
SG := {i ∈ {1, . . . , q}}\(IG ∪ I+0

GH ∪ I
00
GH),

SH := {i ∈ {1, . . . , q}}\(IH ∪ I0+
GH ∪ I

00
GH).

SG and SH respectively denote the set of indices where the variables sG and sH are free.
Some of the fixed variables are replaced by a constant and others are replaced by an expression that

depends on the free variables. It is rather clear from this observation that the use of slack variables is an
essential tool to handle the non-linear bounds.

A major consequence here is that the gradient of Ψ in this subspace can be done using the composition
of the derivative formula:

∇ΨWj
ρ (x, sSG∪SH ) = JTW̄j

∇Ψρ(x, s), (21)

where JW̄j
is an (n+ 2q)× (n+ #SG + #SH) matrix defined such that

JW̄j
:=

 JxW̄j

JsGW̄j

JsHW̄j

 .

The three sub-matrices used to define JW̄j
are computed in the following way

JxW̄j
= Idn,

JsGW̄j ,i
=


eTi , for i ∈ SG,
∂ψ(x;t)
∂x

∣∣∣
x=sH

eTi , for i ∈ I
+0
GH ,

0, for i ∈ ({1, . . . , q}\SG)\I+0
GH ,

JsHW̄j ,i
=


eTi , for i ∈ SH ,
∂ψ(x;t)
∂x

∣∣∣
x=sG

eTi , for i ∈ I
0+
GH ,

0, for i ∈ ({1, . . . , q}\SH)\I0+
GH ,

where JW̄j ,i denotes the i-th line of a matrix and ei is a vector of zero whose i-th component is one. We may
proceed in a similar way to compute the hessian matrix of Ψρ(x, sSG∪SH ).

The feasible direction dj is constructed to lie in a subspace defined by the working set and satisfying the
sufficient-descent direction conditions for zj ∈ Rn+|SG|+|SH |:

∇ΨWj (zj)T dj ≤ −µ0‖∇ΨWj (zj)‖2,
‖dj‖ ≤ µ1‖∇ΨWj (zj)‖,

(SDD)

where µ0 > 0, µ1 > 0.
The step length αj ∈ (0, ᾱ] is respectively computed to satisfy the Armijo and Wolfe conditions for

zj ∈ Rn+|SG|+|SH |:
Ψ(zj + αjd

j) ≤ Ψ(zj) + τ0αj∇ΨWj (zj)T dj , τ0 ∈ (0, 1), (22)

∇ΨWj (zj + αjd
j)T dj ≥ τ1∇ΨWj (zj)T dj , τ1 ∈ (τ0, 1). (23)
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If ᾱ satisfies the Armijo condition (22), the active set strategy adds a new active constraint and the Wolfe
condition (23) is not enforced. Otherwise, the Armijo condition requires α < ᾱ and the Wolfe condition is
enforced.

The relaxing rule is given by the following scheme : Relax some constraint i0 if and only if the two
following conditions are fulfilled:

1. νji0 < 0;

2. No constraint was added at the arrival point (xk,j , sk,j) and no constraint was deleted at the previous
iteration.

The convergence result will rely on the fact that at least one step satisfying Wolfe’s condition will be
performed before removing an active constraint.

Remark 10.2. One should pay attention here that the algorithm is handling simultaneously the active-set
strategy as well as the penalization, since the penalty parameter can be reduced if the feasibility is not reduced
enough in step 13. This reduction can only happen a finite number of time (ρ ≥ ρmin), which will be of
importance to show the convergence of the algorithm. Since we expect to compute a strong ε-stationary, ρmin
depends on ε.

10.4 Convergence of Algorithm 1
We now present an extension of the convergence analysis of [21] to Algorithm 1.

We make the following additional assumption on the problem:

• f is bounded from below;

• the gradients of the objective and constraints satisfy a Lipschitz condition.

Therefore, Ψ is also bounded from below, and ∇Ψ is Lipschitz with a constant denoted L∇.
We restrict our study to the class of methods from the UF Framework that satisfies the following as-

sumption
Φi(G(x), H(x); t) = 0⇐⇒ FGi(x; t) = 0 or FHi(x; t) = 0. (24)

This is a stronger assumption than (H4) presented earlier (page 8). This assumption excludes the relaxation
KS. However, it still includes a large range of methods including the method KDB introduced earlier, but
also,

• the approximate butterfly
Φ(a, b) = (b− t1θt2(a)) (a− t1θt2(b)) ;

• the modified butterfly

Φ(a, b) =

{
< 0, if F1i(x; t) < 0 & F2i(x; t) < 0,

(b− t1θt2(a)) (a− t1θt2(b)) , otherwise.

As pointed out in previous studies on active-set methods in the literature, the most important aspect of
the convergence is the relaxing rule. So that, the working set should not be reduced unless the relaxing rule
is satisfied. However, it is not clear for us, to know how to react in the situation, where sG,i = ψ(sH,i; t) (or
sH,i = ψ(sG,i; t)) and Φi(G(x), H(x); t) < 0.

We now move to the proof of the convergence of Algorithm 1. Thanks to the several remarks made in
the previous section, we can adapt the proof given in [21] by following the same path.
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Lemma 10.1. Let {zj} ∈ Rn+|SG|+|SH | be a sequence computed on some active set W by using the relaxing
rule. For each j ∈ N, it holds that

zj+1 = zj + αjdj ,

where dj satisfies (SDD) and αj satisfies (22), (23). Let {ρj} be a sequence computed according to step 13
in Algorithm 1. Then, for any converging subsequence J ⊂ N, it holds that

∀ε > 0, ∃j̄ ∈ N =⇒ ∀j ≥ j̄, xj is an ε-stationary point of (20) with ρj ≥ ρmin.

Proof. Consider any working set W visited infinitely often but possessing a finite number of pairs of consec-
utive iterates. For such a working set, ᾱ is used infinitely often and cluster points actually belong to some
other working set with at least one more active constraint than W. It suffices then to consider that the
sequence {zj} possesses infinitely many pairs of consecutive iterates on W.

Furthermore, the update of the penalty parameter is done only a finite number of time, since it is bounded
below by ρmin and reduced at each update step. Thus, the sequence {ρj} converges to some value ρ greater
or equal than ρmin in a finite number of iteration.

By conditions (SDD), we have Ψ(zj+1) ≤ Ψ(zj), for all j. By hypothesis, for all ε̄ ≥ 0, there exists a j̄
such that for all J 3 j ≥ j̄

‖Ψ(zj+1)−Ψ(zj)‖ ≤ ε̄. (25)

Armijo condition, (22), is satisfied by every iterate,

Ψ(zj+1) ≤ Ψ(zj) + τ0αj∇ΨW(zj)T dj .

Since ∇ΨW(zj)T dj ≤ 0, we have

Ψ(zj+1) ≤ Ψ(zj) + τ0αj∇ΨW(zj)T dj ≤ Ψ(zj),

⇐⇒ Ψ(zj+1)−Ψ(zj) ≤ τ0αj∇ΨW(zj)T dj ≤ 0.

Now, for all j ≥ j̄, (25) and previous inequalities give

‖αj∇ΨW(zj)T dj‖ ≤ ε̄

τ0
. (26)

Suppose that zj is not a stationary point of the restricted problem (20). Then, there exists M > 0 such
that for j sufficiently large, we have:

‖∇ΨW(zj)‖ ≥M. (27)

By using the first condition of (SDD), we have

αj∇ΨWj (zj)T dj ≤ −µ0αj‖∇ΨWj (zj)‖2 < 0.

Using assumption (27), we get
αj∇ΨWj (zj)T dj ≤ −µ0αjM

2.

Using (26), we obtain

‖αj‖ ≤
ε̄

τ0µ0M2
. (28)

The second part of (SDD) gives

‖αjdj‖ ≤ µ1αj‖∇ΨWj (zj)‖ ≤ µ1αjL∇‖zj‖,

using Lipschitz assumption. Now, by (28), we have

‖αjdj‖ ≤ ε̄
µ1L∇Ψ‖zj‖
τ0µ0M2

. (29)
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Wolfe condition, (23), gives that

∇ΨWj (zj + αjd
j)T dj ≥ τ1∇ΨWj (zj)T dj ,

and subtracting ∇ΨWj (zj)T dj yields to

‖(∇ΨWj (zj + αjd
j)−∇ΨWj (zj))T dj‖ ≥ (1− τ1)‖∇ΨWj (zj)T dj‖.

Using Cauchy-Schwarz inequality, we obtain

‖∇ΨWj (zj + αjd
j)−∇ΨWj (zj)‖‖dj‖ ≥ (1− τ1)‖∇ΨWj (zj)T dj‖.

By Lipschitz assumption, it follows that

αjL∇‖dj‖2 ≥ (1− τ1)‖∇ΨWj (zj)T dj‖.

Using the second condition in (SDD) and (29) leads to

‖∇ΨWj (zj)T dj‖ ≤ ε̄ µ2
1L

3
∇‖zj‖

τ0µ0M2(1− τ1)
. (30)

Using the first condition in (SDD) gives

‖∇ΨWj (zj)T dj‖ ≥ µ0‖∇ΨWj (zj)‖2.

By equation (30) and (27), we have

ε̄
µ2

1L
3
∇‖zj‖

τ0µ2
0M

2(1− τ1)
≥M2. (31)

This, however, leads to a contradiction, since ε̄ can be made arbitrarily small with the only consequence that
j̄ becomes larger. Here, we use that since J is a converging subsequence, there exists a positive constant
that bounds the sequence.

Thus, (27) can not hold, which proves the result.

In order to prove the global convergence of Algorithm 1 we enrich the relaxation conditions by assuming
that the current iterate satisfied the Wolfe conditions. This is denoted as sufficient-long relaxing step in [21].
We now state the result, which once again is a straightforward application of Theorem 3 from [21].

Theorem 10.3. Let {zj} ∈ Rn+2q and {ρj} be sequences computed by Algorithm 1. Then, for any converging
subsequence J ⊂ N, it holds that

∀ε > 0, ∃j̄ =⇒ ∀j ≥ j̄, xj is a strong ε-stationary point of (P tρ(x, s)) with ρj ≥ ρmin.

Proof. First, we verify the result for (not necessarily strong) ε-stationary point of (P tρ(x, s)).
Since, from Lemma 10.1, for each subsequence J ⊂ N, up to some rank, the iterates are ε-stationary

points of some restricted problem, it suffices to examine an infinite subsequence {zj} of relaxing steps.
In the same way as in Lemma 10.1, the sequence of penalty parameter {ρj} converges in finite number

of iteration to some value ρ greater or equal to ρmin.
Let zj+ denote the point reached after a relaxation step has been taken

Ψ(zj+) ≤ Ψ(zj) + τ0αj∇ΨW(zj)T dj .

Since dj+ is a descent direction then

Ψ(zj+1) ≤ Ψ(zj+) ≤ Ψ(zj) + τ0αj∇ΨW(zj)T dj . (32)
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Let ε ≥ 0 be fixed. Assume that there is no j̄ such that for all j ≥ j̄, zj is an ε-stationary point of
(P tρ(x, s)). The relaxing rule force the algorithm to take a relaxing step and the sufficient-long relaxing step,
(23), implies for j ∈ [j̄,∞]

αj > δ, (33)

with δ independent of j. By using the sufficient-descent direction property of dj , for j sufficiently large, we
have

αj∇ΨW(zj)T dj ≤ −µ0αj‖∇ΨW(zj)‖2 ≤ −µ0αjK,

for some K > 0 (non-optimality implies ‖∇ΨW(zj)‖ > ε). Then, (32) implies

Ψ(zj+1) ≤ Ψ(zj) + τ0 − µ0αjK.

Now, since (33), we have
lim
j→∞

Ψ(zj) = −∞,

which contradicts the fact that Ψ is bounded below, since f is bounded below. This concludes that neces-
sarily there exists an index j̄ such that for all j ≥ j̄, zj is an ε-stationary point of (P tρ(x, s)).

The strong ε-stationary property trivially follows, since each iterates satisfy exactly the relaxed comple-
mentarity constraint, by the active-set strategy, and also the complementarity condition, since the support
of the multipliers are computed exactly.

10.5 An Algorithm for MPCC
Along this paper, we analyze an algorithm to solve (MPCC) through a regularization scheme and an active
set-penalization method to solve the sub-problems. The latter has been described in the previous sections.
We now formally defined the regularization scheme in Algorithm 2.

Data: Let z0 = (x0, s0) be an initial point;
Let ρ0 be an initial value of the penalty parameter;
Choose a sequence of precision {εk}, a desired precision ε∞ and a safeguard εmin;
Set k = 0 ;

1 Begin ;
2 repeat
3 (tk, t̄k, ρmin,k):=Oracle(εk) ;
4 zk+1, ρk+1 = Algorithm1(zk, εk, ρk, ρmin,k): from the starting point zk, use Algorithm 1 to

compute zk+1 an approximate stationary point of (P tρ(x, s)) with penalty parameter
ρk ≥ ρk+1 ≥ ρmin,k;

5 Set k ← k + 1;
6 until

(
‖min(G(xk+1, H(xk+1)‖∞ ≤ ε∞ and φ(zk+1) ≤ ε∞

)
or εk < εmin;

7 return: fopt := f(xk+1) the optimal value at the solution xopt := xk+1 or a decision of infeasibility or
unboundedness.

Algorithm 2: Relaxation method for Problem (MPCC).
In step 3 of Algorithm 2, an oracle compute (t, t̄, ρmin) using the chosen value of εk that respect the

conditions discussed in Section 9.2, while the value of ρmin,k should also depend on the precision. Indeed,
approximate feasibility of the iterates for k sufficiently large is not guaranteed by Algorithm 1, since we can
reduce finitely many times ρ to some value ρmin. So, this safeguard value should be chosen sufficiently small.

According to Theorem 10.1 and Theorem 10.3, whenever the final iterate xk in Algorithm 2 is feasible
for (MPCC) and satisfies MPCC-CRSC, then it is an M-stationary point up to some precision ε̄.
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Definition 10.1. x∗ is said an M stationary point up to ε̄, if there exists λ ∈ Rm×Rp×Rq ×Rq satisfying

‖∇xL1
MPCC(x∗, λ)‖ ≤ ε̄,

‖min(−g(x∗), λg)‖ ≤ ε̄, ‖h(x∗)‖ ≤ ε̄, ‖min(G(x∗), H(x∗))‖ ≤ ε̄,
‖Gi(x∗)λGi ‖ ≤ ε̄, ‖Hi(x

∗)λHi ‖ ≤ ε̄, ‖min
(
|λGi λHi |,max(−λGi , 0) + max(−λHi , 0)

)
‖ ≤ ε̄ ∀i ∈ {1, . . . , q}.

Finally, we can conclude the convergence of the whole process.

Theorem 10.4. Given {εk} a sequence of non-negative parameter that decrease to zero as k ∈ N goes to
infinity. Assume that εk = o(t̄k). Let {xk, sk} be a sequence of points computed by Algorithm 2. If for any
k sufficiently large φ(xk, sk) ≤ εk and MPCC-CRSC holds at xk, then it holds that

∀ε > 0, ∃k̄ =⇒ ∀k ≥ k̄, xk is an M-stationary point of (MPCC) up to ε.

Proof. Theorem 10.3 guarantees convergence of Algorithm 1 to a strong ε-stationary point of (P tρ(x, s)).
Therefore, Algorithm 2 computes a sequence of strong ε-stationary point, which converges to an M-

stationary point under the stated assumptions as proved by Theorem 10.3.

The following corollary is a direct consequence and state the convergence of our approach. This is our
main result proving convergence of the regularization-penalization-active set scheme to solve (MPCC).

Corollary 10.1. Given {εk} a sequence of non-negative parameter that decrease to zero as k ∈ N goes to
infinity. Assume that εk = o(t̄k). Let {x∗, s∗} be an accumulation point of the sequence of points {xk, sk}
computed by Algorithm 2. If x∗ is feasible for (MPCC) and MPCC-CRSC holds at x∗, then x∗ is an
M-stationary point.

This algorithm is the first from the literature offering guarantees of convergence for (MPCC). Indeed,
we remind here that most of the methods proposed face the problem of dealing with approximate stationary
points as pointed out in [23].

11 Numerics
In what follows, we present a small set of instances to show the behaviour of our algorithm. Beforehand, we
give some supplementary informations regarding the implementation of Algorithm 2 and Algorithm 1. An
extended butterfly relaxation has been used, which consider t ∈ R3 and

ψ(z; t) = t3 + t2θ
1
t1(z − t3),

where θ1
t1(z−t3) = z−t3

z−t3+t1
for z ≥ t3 and θ1

t1(z−t3) = z−t3
t1
− (z−t3)2

2t21
for z < t3. The list of parameters used in

the process is detailed in Table 1. It is to be noted that no attempt has been made to optimize the performance
of the algorithm and the results come from a straightforward implementation of the algorithm in the JULIA
programming language. The direction dj used in Algorithm 1 is computed through a Newton method.
The computation of the constrained step length along this direction is computed through a backtracking line
search technique. A comparison between some methods to compute the descent direction has been conducted
in [21].

We now introduce two examples and give the result of our method.
The first example is the continuation of Example 5.1, which illustrate a case where (0, 0) is a weak-

stationary point.

Example 11.1. Consider the problem

min
x∈R2

x1 − x2

s.t. 0 ≤ x1 ⊥ x2 ≥ 0, x2 ≤ 1.
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parameter function default value
Parameters for Algorithm 2

t0 relaxation parameter (0.1,0.1,0.01)
σt update of relaxation parameter (0.1,0.1,0.01)
t̄ t1
ε sequence of precision max(r, s, t)
ε∞ precision of (MPCC) 10−4

Parameters for Algorithm 1
ρ0 0.1
σρ 0.5
ρmin 10−8

τvio 0.5
τ0 Armijo parameter 0.25
τ1 Wolfe parameter 0.9

Table 1: List of parameter for Algorithm 2 and their default values.

Iter xk sk f(xk) ρ−1 # inner Iter
0 (1.0,1.0) - 0.0 - -
1 (-0.2,1.1) (-0.1,1.1) -1.3 10.0 5
2 (-0.06,1.05) (-0.06,1.05) -1.11 20.0 5
3 (-0.026,1.025) (-0.001,1.025) -1.051 40.0 4
4 (-0.0126,1.0125) (-0.0001,1.0) -1.0251 80.0 4
5 (-0.003135,1.00313) (-1.0e-5,1.00313) -1.00626 320.0 5
6 (-0.003126,1.00156) (-1.0e-6,1.00156) -1.003126 640.0 5
7 (-0.00078135,1.0) (-1.0e-7,1.00078) -1.0015626 1280.0 4
8 (-0.000195322,1.0002) (-1.0e-8,1.002) -1.000390635 5120.0 5
9 (-9.76572e-5,1.0001) (-1.0e-9,1.0001) -1.0001953135 10240.0 4

Table 2: Solutions and optimal values of Example 11.1.

By starting from the initial point (x1, x2) = (1.0, 1.0), our algorithm finds the solution after 9 iterations.
Table 2 summarizes the results of the algorithm.

The last example is a continuation of Example 2.1 and illustrates a case where the solution (0, 0, 0)t is
an M-stationary point.

Example 11.2. Consider the problem

min
x∈R3

x1 + x2 − x3

s.t. −4x1 + x3 ≤ 0,
−4x2 + x3 ≤ 0,
0 ≤ x1 ⊥ x2 ≥ 0.

By starting from the initial point (x1, x2, x3) = (0.5, 1.0, 1.0), our algorithm finds the solution after 8
iterations. Table 3 summarizes the results of the algorithm.

12 Concluding Remarks
A generalized framework presented in this article is used to analyze relaxation methods that aim to converge
to M-stationary points. Motivated by the approximate resolution of the sub-problems we defined a new notion
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Iter xk sk f(xk) ρ−1 # inner Iter
0 (0.5,1.0,0.0) - 1.5 - -
1 (0.207806,0.214056,0.868723) (0.105328,0.214056) -0.44686139008 20.0 4
2 (0.0600906,0.0632156,0.259112) (0.0100842,0.0632156) -0.13580620018 40.0 4
3 (0.026001,0.0275635,0.113379) (0.00100096,0.0275635) -0.05981445899 80.0 4
4 (0.00635001,0.00674063,0.0277438) (0.00010001,0.00674063) -0.01465314485 320.0 5
5 (0.0015725,0.00167016,0.00687594) (1.00001e-5,0.00167016) -0.00363328144 1280.0 5
6 (0.00078225,0.000831078,0.00342197) (1.0e-6,0.000831078) -0.00180864062 2560.0 4
7 (0.000390725,0.000415139,0.00170938) (1.0e-7,0.000415139) -0.00090352031 5120.0 4
8 (0.000195323,0.00020753,0.000854532) (1.0e-8,0.00020753) -0.00045168015 10240.0 4

Table 3: Solutions and optimal values of Example 11.2.

of approximate stationary point. We proved existence of such approximate point in the neighbourhood of
an M-stationary point and provided an algorithmic strategy to compute such point.

The final section provide some preliminary numerical results to validate our approach. Although no
attempt has been made to improve the code and we do believe that in many ways it could be improved.
Further research concerns the implementation of this algorithmic strategy in JULIA and comparison with
existing methods on the library of test problem MacMPEC, [24]. Theoretical analysis of the algorithm
proposed here is the subject of future research.
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