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The New Butterfly Relaxation Method for
Mathematical Programs with Complementarity
Constraints

J.-P. Dussault and M. Haddou and T. Migot

AbstractWepropose a new family of relaxation schemes for mathematical programs
with complementarity constraints. We discuss the properties of the sequence of
relaxed non-linear programs as well as stationary properties of limiting points. A
sub-family of our relaxation schemes has the desired property of converging to an
M-stationary point. A stronger convergence result is also proved in the affine case.
A comprehensive numerical comparison between existing relaxations methods is
performed on the library of test problemsMacMPEC which shows promising results
for our new method.

Preprint version of an article published in https://link.springer.com/
chapter/10.1007/978-981-16-1819-2_3

1 Introduction

We consider the Mathematical Program with Complementarity Constraints (MPCC)

min
G∈R=

5 (G) s.t. 6(G) ≤ 0, ℎ(G) = 0, 0 ≤ � (G) ⊥ � (G) ≥ 0, (1)
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where 5 : R= → R, 6 : R= → R<, ℎ : R= → R? and �, � : R= → R@ are assumed
continuously differentiable. The notation 0 ≤ D ⊥ E ≥ 0 for two vectors D and E in
R@ is a shortcut for D ≥ 0, E ≥ 0 and D) E = 0 for all 8 ∈ {1, . . . , @}. This problem has
become an active subject in the literature in the last two decades. The wide variety
of applications that can be cast as a MPCC is one of the reasons for this popularity.

The MPCC is a non-linear program, but with a special structure since, apart from
the usual equality and inequality constraints, they have the additional complemen-
tarity constraints, which may be equivalently rewritten as

�8 (G) ≥ 0, �8 (G) ≥ 0, �8 (G)�8 (G) ≤ 0, ∀8 ∈ {1, . . . , @}. (2)

A popular approach to tackle a non-linear program computes the KKT conditions,
which require that some constraint qualification holds at the solution to be an op-
timality condition. However, it is well-known that these constraint qualifications
don’t hold in general for (1) due to the complementarity constraint. For instance, the
classical Mangasarian-Fromowitz constraint qualification is violated at any feasible
point [38].

During the past two decades, many researchers introduced necessary optimality
conditions such as the Clarke (C-), Mordukhovich (M-), strong (S-), and Bouligand
(B-) stationarity conditions for the MPCC; see, e.g., [11, 18, 30, 35, 36, 37, 38].
Among these stationarities, the B-stationarity is known to be a good candidate for
optimality, but since it is computationally difficult, it is rarely used in algorithmic
analysis; the S-stationarity is the strongest and equivalent to the KKT conditions
(see, e.g., [10, 15]), but its interest is reduced since it does not always hold for
the MPCC. The M-stationarity, which has already widely been investigated (see,
e.g.,[11, 18, 26, 35, 36, 37, 38]), is the most relevant concept since it is the weakest
necessary condition holding, under suitable constraint qualifications, at any local
minimizer of the MPCC and is computationaly tractable.

The feasible set of the MPCC involves a complementarity constraint equivalent
to � (G) = 0 OR � (G) = 0. This is a thin set exhibiting some irregularity when
� (G) = 0 AND � (G) = 0. It is this thinness that makes constraint qualifications fail
at any feasible point. In view of the constraint qualifications issues that plague the
MPCC, the relaxation methods provide an intuitive answer. The complementarity
constraint is relaxed using a parameter so that the new feasible domain is not thin
anymore. It is assumed here that the classical constraints 6(G) ≤ 0 and ℎ(G) = 0
are not more difficult to handle than the complementarity constraint. Finally, as the
relaxing parameter is reduced, convergence to the feasible set of (1) is obtained
similarly to a homotopy technique.

These methods have been suggested in the literature back in 2000 by Scheel
and Scholtes in [30, 31]. Their natural approach was later extended by Demiguel,
Friedlander, Nogales and Scholtes in [6] In [23], Lin and Fukushima improved this
relaxation by expressing the same set with two constraints instead of three. This
improvement leads to an improved constraint qualification satisfied by the relaxed
sub-problem. Even so, the feasible set is not modified, this improved regularity
does not come as a surprise, since a constraint qualification measures the way the
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feasible set is described and not necessarily the geometry of the feasible set itself. In
[33], the authors consider a relaxation of the same type but only around the corner
� (G) = � (G) = 0. In the corresponding papers it has been shown that under classical
conditions convergence to some spurious points, called C-stationary points, may still
happen, the convergence to M-stationary points being guaranteed only under some
second-order condition.

A new perspective for those schemes has been given in [17] relaxing the con-
straints (2) by C ≥ 0 as

(�8 (G) − C) (�8 (G) − C) ≤ 0, ∀8 ∈ {1, . . . , @}. (3)

This approximation scheme converges as C decreases to 0 under classical assump-
tions to M-stationary points without second-order or strict complementarity-type
conditions. This is not a relaxation since the feasible domain of (1) is not included in
the feasible set of the sub-problems. The method has been extended as a relaxation
method in [19] through an NCP function q:

q(�8 (G) − C, �8 (G) − C) ≤ 0, ∀8 ∈ {1, . . . , @}, (4)

where q(0, 1) := {01, if 0 + 1 ≥ 0,− 1
2 (0

2 + 12), otherwise}.
The main aim of this paper is to continue this discussion and extend the relaxation

of Kanzow and Schwartz [19] by introducing the new butterfly relaxation:

q
(
�8 (G) − C2\C1 (�8 (G)), �8 (G) − C2\C1 (�8 (G))

)
≤ 0, ∀8 ∈ {1, . . . , @}.

This newmethod handling two relaxing parameters, C1 and C2, allows a non-linear per-
turbation, \, of the domain. Thus, we extend the butterfly relaxation introduced in [8]
for mathematical program with vanishing constraints to the case of complementarity
constraints.

The following example shows that the butterfly relaxation may improve the relax-
ations from [17] and [19]. Indeed, it illustrates an example where their is no sequence
of stationary point1 that converges to a non-optimal point.

Example 1
min
G∈R2
−G1 s.t. G1 ≤ 1, 0 ≤ G1 ⊥ G2 ≥ 0.

In this example, there are two stationary points: an S-stationary point (1, 0) that is the
global minimum and an M-stationary point (0, 0), which is not a local minimum.2
Unlike the relaxations (3) and (4) where for C: = 1

:
a sequence G: = (C: , 2C: )) ,

with the Lagrange multiplier associated to the regularized constraint _Φ,: = : , may
converge to (0, 0) as : goes to infinity, there is no sequence of stationary points that
converges to this undesirable point with the butterfly relaxation.

Our main contributions in this paper are the following:

1 Definitions of stationary points of a non-linear program at the beginning of Section 2.1 page 4.
2 Definitions of M- and S-stationarity points are given in Definition 3 page 6.
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1. We prove convergence of the butterfly relaxation scheme to A-stationary points,
and to M-stationary points for C2,: = >(C1,: ).

2. We prove for the affine MPCC that the butterfly relaxation scheme converges
to S-stationary points under MPCC-LICQ, thus generalizing the situation of
Example 1.

3. We prove that the butterfly relaxation scheme computing approximate stationary
points at each step converges to an M-stationary point assuming C2,: = >(C1,: )
and n: = >(max(�8 (G: ), �8 (G: )).

4. We provide extensive numerical results showing that the butterfly relaxation can
efficiently solve the MPCC.

In Section 2, we introduce classical definitions and results from non-linear pro-
gramming and MPCC literature. In Section 3, we define the relaxation scheme with
the new butterfly relaxation. In Section 4, we prove theoretical results on conver-
gence and the existence of multipliers of the relaxed sub-problems. We also provide
an analysis of the convergence of approximate stationary points. We also generalize
the situation of Example 1 to illustrate a situation where the non-linear perturbation
allows us to escape from undesirable points. In Section 5, we provide an extensive
numerical study by giving details on the implementation and a comparison with
other methods. Finally, in Section 6, we discuss some perspectives of this work.

2 Preliminaries

In this section, we introduce classical notations and definitions for non-linear pro-
grams and mathematical programs with complementarity constraints used in the
sequel.

2.1 Non-Linear Programming

Let a general non-linear program be

min
G∈R=

5 (G) s.t. 6(G) ≤ 0, ℎ(G) = 0, (5)

with 5 : R= → R, 6 : R= → R<, and ℎ : R= → R? . Denote F the feasible region
of (5), and I6 (G) := {8 ∈ {1, ..., <} : 68 (G) = 0} the set of active indices. The
Lagrangian function of (5) is defined as L(G, _) := 5 (G) + 6(G)) _6 + ℎ(G)) _ℎ ,
where _ = (_6, _ℎ) ∈ R< × R? is the vector of Lagrange multipliers.

We call a KKT point a couple (G, _) with G ∈ F such that ∇GL(G, _) = 0, _6 ≥ 0
and 6(G)) _6 = 0. We call G a stationary point if there exists _ such that (G, _) is a
KKT point. We remind that the tangent cone of a set - ⊆ R= at G∗ ∈ - is a closed
cone defined by
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T- (G∗) := {3 ∈ R= | ∃g: ≥ 0 and - 3 G: →:→∞ G
∗ s.t. g: (G: − G∗) →:→∞ 3}.

Another useful tool for our study is the linearized cone of (5) at G∗ ∈ F defined by

ℒ(G∗) := {3 ∈ R= | ∇68 (G)) 3 ≤ 0,∀8 ∈ I6 (G∗), ∇ℎ8 (G)) 3 = 0,∀8 = 1, . . . , ?}.

In the context of solving non-linear programs, that is finding a local minimum of
(5), one widely used technique is to compute necessary conditions. The main tool is
the Karush-Kuhn-Tucker (KKT) conditions. Let G∗ be a local minimum of (5) that
satisfies a constraint qualification, then there exists a Lagrange multiplier _∗ such
that (G∗, _∗) is a KKT point of (5). Constraint qualifications are used to ensure the
existence of the multiplier at G∗.

We now define some of the classical constraint qualifications. Note that there
exists a wide variety of such notions and we define here those that are essential for
our purpose.

Definition 1 Let G∗ ∈ F .
(a) Linear Independence CQ (LICQ) holds at G∗ if the family of gradients
{∇68 (G∗) (8 ∈ I6 (G∗)), ∇ℎ8 (G∗) (8 = 1, ..., ?)} is linearly independent.

(b) Mangasarian-Fromovitz CQ (MFCQ) holds at G∗ if the family of gradients
{∇ℎ8 (G∗) (8 = 1, . . . , ?)} is linearly independent and there exists a 3 ∈ R=
such that ∇68 (G∗)) 3 < 0 (8 ∈ I6 (G∗)) and ∇ℎ8 (G∗)) 3 = 0 (8 = 1, . . . , ?).

Remark 1 The definition of MFCQ given here is the most classical. It can be shown
using some theorem of the alternative that this definition is equivalent to the family
of active gradients being positively linearly independent, so that under MFCQ, the
only solution of

∑
8∈I6 (G∗) _

6

8
∇68 (G∗)+

∑?

8=1 _
ℎ
8
∇ℎ8 (G∗) = 0with _6

8
≥ 0,∀8 ∈ I6 (G∗)

is the trivial solution.

A local minimum is characterized by the fact that there is no feasible descent
direction for the objective function of (5), that is −∇ 5 (G∗) ∈ TF (G∗)◦, where T ◦
denotes the polar cone of T . Given a cone  ⊆ R=, the polar of  is the cone
defined by  ◦ := {I ∈ R= |I) G ≤ 0,∀G ∈  }. On the other hand, the KKT conditions
build ∇ 5 using a linearization of the active constraints. In a classical way, we say
that a point G∗ ∈ F satisfies Guignard CQ if TF (G∗)◦ = ℒ(G∗)◦ and Abadie CQ if
TF (G∗) =ℒ(G∗).

In the context of numerical computations, it is almost never possible to compute
stationary points. Hence, it is of interest to consider n-stationary points.

Definition 2 Given a general non-linear program (5) and n ≥ 0. We say that (G, _) ∈
R= × R<+? is an n-KKT point if it satisfies

‖∇GL(G, _)‖∞ ≤ n, ‖ℎ(G)‖∞ ≤ n,
68 (G) ≤ n, _68 ≥ 0,

��_6
8
68 (G)

�� ≤ n, ∀8 ∈ {1, . . . , <}.
We say that G is an n-stationary point if there exists _ such that (G, _) is an n-KKT
point.



6 J.-P. Dussault and M. Haddou and T. Migot

2.2 Mathematical Programs with Complementarity Constraints

We now specialize the general notions above to our specific case of (1). Let Z be
the set of feasible points of (1). Given G∗ ∈ Z, we denote

I+0 := {8 ∈ {1, . . . , @} | �8 (G∗) > 0 and �8 (G∗) = 0},
I0+ := {8 ∈ {1, . . . , @} | �8 (G∗) = 0 and �8 (G∗) > 0},
I00 := {8 ∈ {1, . . . , @} | �8 (G∗) = 0 and �8 (G∗) = 0}.

In the sequel, we always consider these sets in G∗. In order to derive weaker optimal-
ity conditions, we consider an enhanced Lagrangian function. Let L"%�� be the
generalized MPCC-Lagrangian function of (1) defined as

L"%�� (G, _) := 5 (G) + 6(G)) _6 + ℎ(G)) _ℎ − � (G)) _� − � (G)) _�

with _ := (_6, _ℎ , _� , _� ) ∈ R< × R? × R@ × R@ .
We introduce more stationary concepts as in [24, 26, 27, 30, 35, 36, 37]. Those

concepts are needed for two reasons:

• unless assuming a restrictive constraint qualification, a local minimizer G∗ may
fail to be a stationary point, so that optimality conditions need to be weakened in
order to obtain a necessary condition;

• when analyzing cluster points of algorithms, other weak stationarity conditions
appear naturally.

Definition 3 A point G∗ ∈ Z is said

• W-stationary if there exists _ ∈ R< × R? × R@ × R@ such that

∇GL"%�� (G∗, _) = 0,
_6 ≥ 0, _6

8
= 0,∀8 ∉ I6,

_�
8
= 0,∀8 ∈ I+0, and, _�

8
= 0,∀8 ∈ I0+;

• C-stationary, if it is W-stationary and _�
8
_�
8
≥ 0,∀8 ∈ I00;

• A-stationary, if it is W-stationary and _�
8
≥ 0 or _�

8
≥ 0, ∀8 ∈ I00;

• M-stationary, if it is W-stationary and either _�
8
> 0, _�

8
> 0 or _�

8
_�
8
= 0,

∀8 ∈ I00;
• S-stationary, if it is W-stationary and _�

8
≥ 0, _�

8
≥ 0,∀8 ∈ I00.

Relations between these definitions are straightforward from the definitions.
As pointed out in [10], strong stationarity is equivalent to the standard KKT

conditions of an MPCC. In order to guarantee that a local minimum G∗ of (1) is a
stationary point in any of the previous senses, one needs to assume that a constraint
qualification (CQ) is satisfied in G∗. Since most standard CQs are violated at any
feasible point of (1), many MPCC-analogues of these CQs have been developed.
Here, we mention only those needed later.
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Definition 4 Let G∗ ∈ Z.

1. MPCC-LICQ holds at G∗ if the only solution of∑
8∈I6 (G∗)

_
6

8
∇68 (G∗) +

?∑
8=1

_ℎ8 ∇ℎ8 (G∗) −
∑

8∈I0+∪I00

_�8 ∇�8 (G∗) −
∑

8∈I+0∪I00

_�8 ∇�8 (G∗) = 0 (6)

is the trivial solution.
2. MPCC-MFCQ holds at G∗ if the only solution of (6) with _6

8
≥ 0,∀8 ∈ I6 (G∗), is

the trivial solution.
3. MPCC-GMFCQ holds at G∗ if the only solution of (6) with _6

8
≥ 0,∀8 ∈ I6 (G∗),

and either _�
8
_�
8
= 0 or _�

8
> 0, _�

8
> 0, ∀8 ∈ I00 is the trivial solution.

Note here that MPCC-MFCQ and MPCC-GMFCQ have been defined using the
alternative form of MFCQ mentioned in the Remark 1. Note that each of these CQs
implies that a local minimum is M-stationary, see [9, 36], but only MPCC-LICQ is
sufficient to guarantee strong stationarity of a local minimum, see [10, 24, 28]. The
MPCC-LICQ is among the first MPCC-tailored constraint qualifications and may
already be found in [24] and [30], the MPCC-MFCQ was introduced in [30] and
presented in the form above in [16].

3 The Butterfly Relaxation Method

Consider a family of continuously differentiable non-decreasing concave functions
\ : R→] −∞, 1] such that

\ (0) = 0, and, lim
G→∞

\ (G) = 1 ∀G ∈ R++.

Then, for C1 > 0, we introduce \C1 (G) := \
(
G
C1

)
if G ≥ 0, and completed in a smooth

way for negative values by considering \C1 (G) = G\ ′(0)/C1 if G < 0.
Example 2 Examples of such functions are

\1
C1 (G) := { G

G + C1
, for G ≥ 0,

G

C1
, for G < 0.},

and
\2
C1 (G) := {1 − exp−

G
C1 , for G ≥ 0,

G

C1
, for G < 0.}.

Those functions have already been used in the context of complementarity con-
straints, for instance, in [1, 2].
To simplify the notation, we denote C := (C1, C2). Using this family of functions, we
denote

�18 (G; C) := �8 (G) − C2\C1 (�8 (G)), and, �28 (G; C) := �8 (G) − C2\C1 (�8 (G)).
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We propose a new family of relaxation of the complementarity constraint with
two positive parameters (C1, C2) defined such that for all 8 ∈ {1, . . . , @}

Φ�8 (� (G), � (G); C) :=

{
�18 (G; C)�28 (G; C), if �18 (G; C) + �28 (G; C) ≥ 0,
− 1

2

(
�18 (G; C)2 + �28 (G; C)2

)
otherwise.

(7)

This new relaxation uses two parameters C1 and C2 chosen such that

C2\
′(0) < C1. (8)

This condition ensures that the intersection of the sets {G ∈ R= | �1 (G; C1, C2) = 0}
and {G ∈ R= | �2 (G; C1, C2) = 0} is reduced to the origin. In other words, the two
branches of the relaxation does not cross each other. A typical choice will be to take
C2 = >(C1) motivated by strong convergence properties as discussed in Section 4.1.

The parametric non-linear program related to the butterfly relaxation of the com-
plementarity constraints defined in (7), and augmented with a regularization of the
non-negativity constraints parametrized by C̄, is given by

min
G∈R=

5 (G) s.t G ∈ X�
C,C̄
, ('�

C,C̄
)

with

X�
C,C̄

:= {G ∈ R= : 6(G) ≤ 0, ℎ(G) = 0,

� (G) ≥ −C̄4, � (G) ≥ −C̄4,Φ� (� (G), � (G); C) ≤ 0},

where 4 denotes the vector of all ones.
This method is similar to the methods (3) from [17] and (4) from [19] in the sense

that they can also be written as a product of two functions. The main difference
is that handling two parameters allows bringing the two "wings" of the relaxation
closer. A comparison of the feasible set of these relaxations can be seen in Figure 1.

Fig. 1: The feasible set of the butterfly relaxation, the approximation from [17] and
the relaxation from [19].

The sets of indices used in the sequel are defined in the following way
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I� (G; C̄) := {8 = 1, . . . , @ | �8 (G) + C̄ = 0},
I� (G; C̄) := {8 = 1, . . . , @ | �8 (G) + C̄ = 0},
I�� (G; C) := {8 = 1, . . . , @ | Φ�8 (� (G), � (G); C) = 0},
I0+
�� (G; C) := {8 ∈ I�� (G; C) | �18 (G; C) = 0, �28 (G; C) > 0},
I+0�� (G; C) := {8 ∈ I�� (G; C) | �18 (G; C) > 0, �28 (G; C) = 0},
I00
�� (G; C) := {8 ∈ I�� (G; C) | �18 (G; C) = �28 (G; C) = 0}.

Several relations between these sets follow directly from the definition of the relax-
ation. For instance, it holds that

I� ∩ I�� = I� ∩ I�� = ∅.

Additionally, by definition of the relaxation mapping, it holds

Φ�8 (� (G), � (G); C) = 0 =⇒ �18 (G; C) + �28 (G; C) ≥ 0.

The following two lemmas give more insights on the relaxation.

Lemma 1 Let G ∈ X�
C,C̄
, then it is true for the relaxation (7) that:

(a) {8 ∈ I�� (G; C) | �18 (G; C) = 0, �28 (G; C) < 0} = {8 ∈ I�� (G; C) | �18 (G; C) <
0, �28 (G; C) = 0} = ∅;

(b) 8 ∈ I�� (G; C) =⇒ �8 (G) ≥ 0, �8 (G) ≥ 0.

Proof Case (a) is direct considering that Φ�
8
(� (G), � (G); C1, C2) ≠ 0 for �18 (G; C) +

�28 (G; C) < 0.
By symmetry of the relaxation it is sufficient to assume that �18 (G; C) = �8 (G) −

C2\C1 (�8 (G)) = 0 for some 8 = 1, . . . , @. Then, by definition of �28 (G; C) it holds that

�28 (G; C) = �8 (G) − C2\C1 (�8 (G)) = �8 (G) − C2\C1 (C2\C1 (�8 (G))),

so �8 (G) ≥ 0 since in the other case, i.e. �8 (G) < 0, it would follow that

�28 (G; C) = �8 (G) (1 − (\ ′(0)C2/C1)2),

which would be negative using (8). Note that previous inequality holds true since,
by definition of the function \, it holds that C2\C1 (I) = C2\ ′(0)I/C1 for I ≤ 0. Finally,
�8 (G) ≥ 0 implies that �8 (G) ≥ 0 since �18 (G; C) = 0. �

The following lemma state two of the key features of the relaxation and follows from
the observation that Φ�

8
(� (G), � (G); C) → �8 (G)�8 (G) as ‖C‖ ↓ 0.

Lemma 2 The set X�
C,C̄

satisfy the following properties:

1. lim
‖C ,C̄ ‖→0

X�
C,C̄
= Z where the limit is assumed pointwise3;

3 lim
:→∞

�: = � pointwise means that for all sequences {G: } with G: ∈ �: for all : implies

lim
:→∞

G: ∈ � and for any G∗ ∈ � there exists a sequence G: with G: ∈ �: such that lim
:→∞

G: = G∗.
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2.
⋂
C ,C̄≥0X�C,C̄ = Z.

If the feasible set of the (1) is non-empty, then the feasible sets of the relaxed sub-
problems are also non-empty for all C ≥ 0. If for some parameter C ≥ 0 the set X�

C,C̄

is empty, then it implies thatZ is empty. Finally, if a local minimum of '�
C,C̄

already
belongs toZ, then it is a local minimum of the (1).

Finally, numerical results will be presented in Sect. 5 and will show that these
new methods are very competitive compared to existing methods.

Before moving to our main statements regarding convergence and regularity
properties of the butterfly relaxation, we provide two technical lemmas. Direct
computation gives the gradient of Φ� (� (G), � (G); C) in the following lemma.

Lemma 3 For all 8 ∈ {1, . . . , @}, the gradient of Φ�
8
(� (G), � (G); C) w.r.t. G for the

relaxation (7) is given by

∇GΦ�8 (� (G), � (G); C) =



(
�18 (G; C) − C2\ ′C1 (�8 (G))�28 (G; C)

)
∇�8 (G)

+
(
�28 (G; C) − C2\ ′C1 (�8 (G))�18 (G; C)

)
∇�8 (G),

if �18 (G; C) ≥ −�28 (G; C),(
C2\
′
C1
(�8 (G))�18 (G; C) − �28 (G; C)

)
∇�8 (G)

+
(
C2\
′
C1
(�8 (G))�28 (G; C) − �18 (G; C)

)
∇�8 (G),

if �18 (G; C) < −�28 (G; C).

The following lemma illustrates the behavior of functions \C1 and their derivatives.

Lemma 4 Given two sequences {C1,: } and {C2,: }, which converge to 0 as : goes to
infinity and ∀: ∈ N, (C1,: , C2,: ) ∈ R2

++. It holds true that

lim
:→∞

C2,:\
′
C1,: (I) = 0 ∀I ∈ R++.

Furthermore, assuming that C2,: = >(C1,: ), yields to

lim
:→∞

C2,:\
′
C1,: (I) = 0 ∀I ∈ R+.

Proof First part of the lemma follows from the definition of functions \C1,: . Indeed,
it holds for all G ∈ R+ that \C1,: (G) ∈ [0, 1]. Therefore, lim:→∞ C2,:\C1,: (G: ) = 0.

Second part of the lemma uses the fact that functions \C1,: are defined as perspec-
tive functions, that is for all I ∈ R+

\C1,: (I) = \
(
I

A:

)
,

and so, computing the derivative gives
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C2,:\
′
C1,: (I) =

C2,:

C1,:
\ ′

(
I

C1,:

)
.

So, for : sufficiently large C1,: ≤ I, and by concavity of \A , we get

0 ≤ lim
:→∞

C2,:\
′
C1,: (I) ≤ lim

:→∞
C2,:\

′
C1,: (C1,: ) = lim

:→∞

C1,:

C1,:
\ ′(1),

and the result follows. �

We focus on the sequel on the properties of these new relaxation schemes. We
prove that the method converges to an A-stationary point in Theorem 1 and to an
M-stationary point, Theorem 2, with some relation between the sequences {C2,: } and
{C1,: }. Furthermore, we prove in the affine case convergence to S-stationary point
under MPCC-LICQ (Theorem 3).

The main motivation to consider relaxation methods for (1) is to solve a sequence
of regular problems. Under classical assumptions, the butterfly relaxed non-linear
programs satisfy the Guignard CQ, as proved in Theorem 4.

4 Theoretical Properties

The study of the theoretical properties of the butterfly relaxation method is split
into three parts: convergence of the sequence of stationary points, the existence of
Lagrange multipliers for the relaxed non-linear program, and convergence of the
sequence of approximate stationary points.

4.1 Convergence

In this section, we focus on the convergence properties of the butterfly relaxation
method and the constraint qualifications guaranteeing convergence of the sequence
of stationary points generated by the method. Our aim is to compute an M-stationary
point or, at least, provide a certificate if we converge to an undesirable point.

We prove in Theorem 1 that the butterfly relaxation converges to an A-stationary
point. This result is improved to convergence toM-stationary points for some choices
on the parameters C2 and C1 in Theorem 2.

Finally, we prove convergence to S-stationary point in a specific situation in
Theorem 3. To the best of our knowledge, this kind of result without second-order
condition is new from the literature and allows the butterfly relaxation to escape
from spurious points.

Theorem 1 Given two sequences {C: } and {C̄: } of positive parameters satisfying (8)
and decreasing to zero. Let {G: , [6,: , [ℎ,: , [�,: , [�,: , [Φ,: } be a sequence of KKT
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points of ('�
C,C̄
) with G: → G∗ such that MPCC-MFCQ holds at G∗. Then, G∗ is an

A-stationary point.

Proof First, we identify the expressions of the multipliers of the complementarity
constraint in Definition 3 through the stationary points of ('�

C,C̄
).The representation

of ∇Φ� immediately gives ∇Φ�
8
(� (G: ), � (G: ); C: ) = 0, ∀8 ∈ I00

��
(G: ; C: ). Thus,

we can write

−∇ 5 (G: )=
<∑
8=1
_
6,:

8
∇68 (G: )+

?∑
8=1
_
ℎ,:
8
∇ℎ8 (G: )−

@∑
8=1
_
�,:
8
∇�8 (G: )−

@∑
8=1

_
�,:
8
∇�8 (G: ),

(9)

where _6,: = [6,: , _ℎ,: = [ℎ,: and

_
�,:
8

=


[
�,:
8

, if 8 ∈ I� (G: ; C̄: ),
[
Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�28 (G: ; C: ), if 8 ∈ I0+

��
(G: ; C: ),

−[Φ,:
8

�18 (G: ; C: ), if 8 ∈ I+0
��
(G: ; C: ),

0, otherwise,

_
�,:
8

=


[
�,:
8

, if 8 ∈ I� (G: ; C̄: ),
[
Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�18 (G: ; C: ), if 8 ∈ I+0

��
(G: ; C: ),

−[Φ,:
8

�28 (G: ; C: ), if 8 ∈ I0+
��
(G: ; C: ),

0, otherwise.

First, by (9), it holds that ∇L"%�� (G: , _: ) = 0 for all : . Thus, the first condition
of the W-stationary conditions is satisfied. Moreover, by definition of {_6,: } it holds
that I6 (G: ) ⊆ I6 (G∗) and so lim

:→∞
_
6,:

8
= 0,∀8 ∉ I6 (G∗).

Denote ‖_: ‖∞ := ‖_6,: , _ℎ,: , _�,: , _�,: ‖∞. Using the definition of _�,: and
_�,: in (9) and since by (8) it holds that C:\ ′C1,: (�8 (G

: )) ≤ C:\ ′C1,: (0) < 1 for all
8 ∈ I�� (G: ; C: ), it can be observed that 4

‖_: ‖∞ = ‖[6,: , [ℎ,: , [�,: , [�,: , [Φ,: ◦ �2 (G: ; C: ), [Φ,: ◦ �1 (G: ; C: ))‖∞, (10)

where ◦ denotes the componentwise product of two vectors.
We now verify that: _�,:

8
/‖_: ‖∞ → 0 for indices 8 ∈ I+0. By symmetry, it would

follow that _�,:
8
/‖_: ‖∞ → 0 for indices 8 ∈ I0+.

Let 8 ∈ I+0. Clearly 8 ∈ I0+
��
(G: ; C: ) as otherwise �8 (G: ) = C̄: for 8 ∈ I� (G: ; C: )

or �8 (G: ) = C2,:\C1,: (�8 (G: )) for 8 ∈ I+0�� (G
: ; C: ) which in both cases, for :

sufficiently large, contradicts the fact �8 (G: ) → �8 (G∗) > 0. Now, 8 ∈ I0+
��
(G: ; C: )

4 For indices 8 ∈ I0+
��
(G: ; C: ) (symmetry for indices 8 ∈ I+0

��
(G: ; C: )), then _�,:

8
=

[
Φ,:
8
C2,: \

′
C1,:
(�8 (G: ))�28 (G: ; C: ) and _�,:8

= [
Φ,:
8
�28 (G: ; C: ) . Therefore, considering that

C: \
′
C1,:
(�8 (G: )) < 1, we get _�,:

8
< _

�,:
8

. All in all the infinite norm is not obtained at these
components.
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yields
_
�,:
8

= [
Φ,:
8
C2,:\

′
C1,: (�8 (G

: ))�28 (G: ; C: ).

Moreover, ‖_: ‖∞ ≥ |[Φ,:8
�28 (G: ; C: ) | by (10), thus

_
�,:
8

‖_: ‖∞
≤
[
Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�28 (G: ; C: )

|[Φ,:
8

�28 (G: ; C: ) |
= C2,:\

′
C1,: (�8 (G

: )) → 0

since �8 (G: ) → � (G∗) > 0 and using Lemma 4.
Now, let us prove that the sequence {_: } is bounded. Assume by contradiction

that is not bounded, then the sequence {_:/‖_: ‖∞} is bounded and converges, up to
a subsequence to a non-trivial limit _̂. Therefore, dividing (9) by ‖_: ‖∞ and passing
to the limit gives∑
8∈I6 (G∗)

_̂68∇68 (G∗) +
?∑
8=1

_̂ℎ8∇ℎ8 (G∗) −
∑

8∈I0+∪I00

ˆ_�8∇�8 (G∗) −
∑

8∈I+0∪I00

ˆ_� 8∇�8 (G∗) = 0,

which leads to a contradiction since G∗ satisfies MPCC-MFCQ.
So, the sequence {_: } is bounded, hence _�,:

8
→ 0,∀8 ∈ I+0 and _�,:

8
→ 0,∀8 ∈

I0+. Therefore, G∗ is a W-stationary point of the MPCC.
Finally, let us now verify that G∗ is an A-stationary point. Denote _∗ the limit, up to

a subsequence, of the sequence {_: }. Let 8 ∈ I00. Assume without loss of generality
that _�,∗

8
< 0 (the other case will be similar by symmetry) and we show that

_
�,∗
8
≥ 0. _�,∗

8
< 0 implies that 8 ∈ I+0

��
(G: ; C: ) for : sufficiently large by definition

of _�,:
8

. So, _�,:
8

= [
Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�18 (G: ; C: ), which is non-negative. So G∗

is an A-stationary point. �

The following example shows that the result of Theorem 1 is sharp since con-
vergence cannot be ensured, assuming only that MPCC-GMFCQ holds at the limit
point.

Example 3 Consider the following two-dimensional example

min
G∈R2

G2 s.t. 0 ≤ G1 + G2
2 ⊥ G1 ≥ 0.

MPCC-GMFCQ holds at (0, 0)) . The point (0, 0)) is even not a W-stationary point.
In this case, there exists a sequence of stationary points of the relaxation such that

{G: } converges to the origin. Given a sequence {G: }, with {1} ∈ I�� (G: ; C: ), such
that G: → (0, 0)) then [�,: = [�,: = 0 and we can choose [Φ,: that satisfies

_�,: = −_�,: = 1
2G:2

.

The sequence {G: } converges to an undesirable point.
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The result of the Theorem 1 can be tightened if we consider a particular choice
of parameter. It is an essential result since it shows that a subfamily of the butterfly
relaxation has the desired property to converge to an M-stationary point.

Theorem 2 Given two sequences {C: } and {C̄: } of positive parameters satisfying (8)
and decreasing to zero. Let {G: , [6,: , [ℎ,: , [�,: , [�,: , [Φ,: } be a sequence of KKT
points of ('�

C,C̄
)with G: → G∗ such that MPCC-GMFCQ holds at G∗. If C2,: = >(C1,: ),

then, G∗ is an M-stationary point.

Proof In the proof of Theorem 1 we already showed that: ∇L"%�� (G: , _: ) =
0 for all : , lim

:→∞
_
6,:

8
= 0,∀8 ∉ I6 (G∗), lim

:→∞
_
�,:
8
/‖_: ‖∞ = 0,∀8 ∈ I+0, and

lim
:→∞

_
�,:
8
/‖_: ‖∞ = 0,∀8 ∈ I0+.

Let us now check that either lim
:→∞

_
�,:
8

_
�,:
8
/‖_: ‖2∞ = 0 or lim

:→∞
_
�,:
8
/‖_: ‖∞ >

0, lim
:→∞

_
�,:
8
/‖_: ‖∞ > 0 using the contrapositive, i.e.

lim
:→∞

_
�,:
8
/‖_: ‖∞ < 0 =⇒ lim

:→∞
_
�,:
8
/‖_: ‖∞ = 0,

and the other case will be similar by symmetry.
Let 8 ∈ I00. lim

:→∞
_
�,:
8
/‖_: ‖∞ < 0 implies that 8 ∈ I+0

��
(G: ; C: ) for : suf-

ficiently large by definition of _�,:
8

as the function \ is non-decreasing. So,
_
�,:
8

= [
Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�18 (G: ; C: ). Moreover, lim:→∞ C2,:\ ′C1,: (�8 (G

: )) = 0
by Lemma 4 with C2,: = >(C1,: ) and

lim
:→∞

[
Φ,:
8

�18 (G: ; C: )/‖_: ‖∞ = lim
:→∞
−_�,:

8
/‖_: ‖∞ < ∞.

Thus, lim:→∞ _
�,:
8
/‖_: ‖∞ = 0.

Finally, following the same reasoning as in the proof of Theorem 1, using MPCC-
GMFCQ, the sequence {_: } is bounded, and G∗ is an M-stationary point. �

The following example shows that this result is sharp, since it illustrates a situation
where MPCC-GMFCQ does not hold and the method converges to an undesirable
W-stationary point. This phenomenon only happens if the sequence of multipliers
defined in (9) is unbounded.

Example 4 Consider the problem

min
G∈R2

G2
2 s.t. 0 ≤ G2

1 ⊥ G1 + G2
2 ≥ 0.

The feasible set is Z = {(G1, G2)) ∈ R2 | G1 = 0} ∪ {(G1, G2)) ∈ R2 | G1 = −G2
2}.

(0, 0)) is the unique M-stationary, with (_� , _� = 0).
MPCC-GMFCQ fails to hold at any point (0, 0 ∈ R)) since the gradient of G2

1 is
non-zero for G ≠ 0.

Consider a sequence such that for (C1,: , C2,: ) sufficiently small �2 (G: ; C: ) = 0 and
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G:1 = C2,:\
′
C1,: (G

:
1 + 0

2), G:2 = 0, [
Φ,:�18 (G: ; C: ) =

1
−C2,:\ ′C1,: (G

:
1 + 02)

.

Obviously, the sequence G: goes to G∗ = (0, 0 ≠ 0)) , which is not a W-stationary
point. Indeed, we have

_�,: =
1

C2,:\
′
C1,:
(G:1 + 02)

→ ∞ and _�,: = −1 ≠ 0.

The following result motivated by Example 1 shows that the butterfly relaxation
may improve its behavior in some specific cases. Example 1 also indicates that this
cannot be expected with the other relaxations. In the sequel, we denote supp(I) :=
{8 | I8 ≠ 0} the non-zero indices of I.

Theorem 3 Assume that 5 , 6, ℎ, �, � are affine functions. Given two sequences {C: }
and {C̄: } of positive parameters satisfying (8) and decreasing to zero as : goes to
infinity. Let {G: , [6,: , [ℎ,: , [�,: , [�,: , [Φ,: } be a sequence of KKT points of ('�

C,C̄
)

with G: → G∗ such that MPCC-LICQ holds at G∗. If C2,: = >(C1,: ), and, for all :
sufficiently large

supp([Φ,: ) ∩
(
I+0 ∪ I0+

)
= ∅, (11)

then, G∗ is an S-stationary point.

Proof Theorem 2 already proves that G∗ is an M-stationary point. Assume by con-
tradiction that G∗ is not an S-stationary point. Then, it holds that this point cannot be
a stationary point of ('�

C,C̄
).

We already mention in the proof of Theorem 1 that for all : it holds

−∇ 5 =
<∑
8=1

_
6,:

8
∇68 +

?∑
8=1

_
ℎ,:
8
∇ℎ8 −

@∑
8=1

_
�,:
8
∇�8 −

@∑
8=1

_
�,:
8
∇�8 ,

where we omit the dependence in : in the expression of the gradients, since they
are constant by linear/affine assumption. Clearly, for : sufficiently large, it holds that
supp(_6,: ) ⊆ I6 (G∗), supp(_�,: ) ⊂ I0+ ∪ I00 and supp(_�,: ) ⊆ I00 ∪ I+0 by
(11).

Now, by continuity, linear independence of these gradients holds in a neighbour-
hood of G∗. So, we get finite convergence of the _: , and for : sufficiently large it
holds

_6,: = _6,∞, _ℎ,: = _ℎ,∞, _�,: = _�,∞, _�,: = _�,∞. (12)

Let 8 ∈ I00 ∩ supp([Φ,∞), where we remind that supp([Φ,∞) ⊆ supp([Φ,: ) ⊆
I�� (G: ; C: ). If no such index exists, then for all : sufficiently large [Φ,: is zero and
G∗ is S-stationary.

By stationarity assumption on G∗, we assume that _�,∞
8

< 0 (the case _�,∞
8

will
be symmetrical). It implies that 8 ∈ I+0

��
by definition of the multipliers in (9) and

so
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_
�,:
8

= −[Φ,:
8

�18 (G: ; C: ), and, _�,:8
= [

Φ,:
8
C2,:\

′
C1,: (�8 (G

: ))�18 (G: ; C: ).

We proved in Theorem 2 that _�,: and _�,: have bounded limits, so by Lemma 4
with C2,: = >(C1,: ) we have lim:→∞ _

�,:
8

= 0. By (12), we get [Φ,:
8

= 0 for all :
sufficiently large, which contradicts _�,∞

8
< 0. �

4.2 Existence of Lagrange Multipliers for the Relaxed Sub-Problems

In this section, we study some regularity properties of the relaxed non-linear pro-
grams. Indeed, to guarantee the existence of a sequence of stationary points, the
relaxed non-linear programs must satisfy some constraint qualifications in the neigh-
borhood of the limit point.

Theorem 4 Let G∗ ∈ Z, satisfying MPCC-LICQ. Then, there exists C∗ > 0 and a
neighborhood* (G∗) of G∗ such that:

∀C ∈ (0, C∗] : G ∈ * (G∗) ∩ X�
C,C̄
=⇒ standard GCQ holds at G for ('�

C,C̄
).

Proof Let G ∈ * (G∗) ∩ X�
C,C̄
. We know thatℒX�

C,C̄
(G)◦ ⊆ TX�

C,C̄
(G)◦. So, it is sufficient

to show the converse inclusion.
The linearized cone of('�

C,C̄
) is given by

ℒX�
C,C̄
(G) = {3 ∈ R= | ∇68 (G)) 3 ≤ 0,∀8 ∈ I6 (G), ∇ℎ8 (G)) 3 = 0,∀8 = 1, . . . , ?,

∇�8 (G)) 3 ≥ 0,∀8 ∈ I� (G; C̄), ∇�8 (G)) 3 ≥ 0,∀8 ∈ I� (G; C̄),

∇Φ�8 (� (G), � (G); C)
)
3 ≤ 0,∀8 ∈ I0+

�� (G; C) ∪ I+0�� (G; C)},

using that ∇Φ�
8
(� (G), � (G); C) = 0 for all 8 ∈ I00

��
(G, C).

Let us compute the polar of the tangent cone. Consider the following set of non-
linear constraints parametrized by I ∈ X�

C,C̄
and a partition (�, �2 , �−) of I00

��
(I; C)5,

defined by

S(� ,� 2 ,�−) (I) := {G ∈ R= | 6(G) ≤ 0, ℎ(G) = 0, � (G) ≥ −C̄4, � (G) ≥ −C̄4,
Φ�8 (� (G), � (G); C) ≤ 0, 8 ∉ I00

�� (I; C),
�18 (G; C) ≤ 0, �28 (G; C) ≥ 0, 8 ∈ �,
�18 (G; C) ≥ 0, �28 (G; C) ≤ 0, 8 ∈ �2 ,
�18 (G; C) ≤ 0, �28 (G; C) ≤ 0, 8 ∈ �−}.

(13)

Since I ∈ X�
C,C̄
, it is obvious that I ∈ S(� ,� 2 ,�−) (I).

5 (� , � 2 , �−) is partition of I00
��
(I; C) means that � ∪ � 2 ∪ �− = I00

��
(I; C) and � ∩ � 2 = � ∩ �− =

� 2 ∩ �− = ∅.
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By construction of* (G∗) and C∗, the gradients {∇68 (G∗) (8 ∈ I6 (G∗)),∇ℎ8 (G∗) (8 =
1, . . . , <),∇�8 (G∗) (8 ∈ I00 ∪ I0+),∇�8 (G∗) (8 ∈ I+0 ∪ I00)} remain linearly
independent for all G ∈ * (G∗) by continuity of the gradients and we have

I6 (G) ⊆ I6 (G∗), I� (G; C̄) ⊆ I00 ∪ I0+, I� (G; C̄) ⊆ I+0 ∪ I00,

I00
�� (G; C) ∪ I+0�� (G; C) ⊆ I00 ∪ I0+,

I00
�� (G; C) ∪ I0+

�� (G; C) ⊆ I+0 ∪ I00.

(14)

Therefore, by Lemma 6, LICQ holds for (13) at G. Furthermore, by [32, Lemma
8.10], and since LICQ in particular implies Abadie CQ it follows that

TX�
C,C̄
(G) =

⋃
∀(� ,� 2 ,�−)

TS(� ,�2 ,�−) (G) (G) =
⋃

∀(� ,� 2 ,�−)
ℒS(� ,�2 ,�−) (G) (G).

By [5, Theorem 3.1.9], passing to the polar, we get

TX�
C,C̄
(G)◦ =

⋂
∀(� ,� 2 ,�−)

ℒS(� ,�2 ,�−) (G) (G)
◦.

By [5, Theorem 3.2.2], we know that

ℒS(� ,�2 ,�−) (G) (G)
◦ = {

∑
8∈I6 (G)

[
6

8
∇68 (G) +

?∑
8=1

[ℎ8 ∇ℎ8 (G)

−
∑

8∈I� (G;C̄)
[�8 ∇�8 (G) −

∑
8∈I� (G;C̄)

[�8 ∇�8 (G)

+
∑

8∈I+0
��
(G;C)∪I0+

��
(G;C)

[Φ8 ∇Φ�8 (� (G), � (G); C)

−
∑
8∈�

[�8 ∇�8 (G) +
∑
8∈� 2

[�8 ∇�8 (G)

+
∑
8∈�

[�8 ∇�8 (G) −
∑
8∈� 2

[�8 ∇�8 (G)

+
∑
8∈�−

X�8 ∇�8 (G) +
∑
8∈�−

X�8 ∇�8 (G) : ([6, [� , [� , [Φ) ≥ 0}.

For E ∈ TX�
C,C̄
(G)◦, we have E ∈ ℒS(� ,�2 ,�−) (G) (G)

◦ for any partition (�, �2 , �−) of
I00
��
(G; C). If we fix � and set �− = ∅, then there exists some multipliers [ℎ and

[6, [� , [� , [Φ ≥ 0 so that



18 J.-P. Dussault and M. Haddou and T. Migot

E =
∑

8∈I6 (G)
[
6

8
∇68 (G) +

?∑
8=1

[ℎ8 ∇ℎ8 (G) −
∑

8∈I� (G;C̄)
[�8 ∇�8 (G) −

∑
8∈I� (G;C̄)

[�8 ∇�8 (G)

+
∑

8∈I+0
��
(G;C)∪I0+

��
(G;C)

[Φ8 ∇Φ�8 (� (G), � (G); C)

−
∑
8∈�

[�8 ∇�8 (G) +
∑
8∈� 2

[�8 ∇�8 (G) −
∑
8∈�

[�8 ∇�8 (G) +
∑
8∈� 2

[�8 ∇�8 (G).

Now, it also holds that E ∈ ℒS(�2 ,� ,�−) (G) (G)
◦ and so there exists some multipliers [ℎ

and [6, [� , [� , [Φ ≥ 0 such that

E =
∑

8∈I6 (G)
[
6

8
∇68 (G) +

?∑
8=1

[ℎ8 ∇ℎ8 (G) −
∑

8∈I� (G;C̄)
[�8 ∇�8 (G) −

∑
8∈I� (G;C̄)

[�8 ∇�8 (G)

+
∑

8∈I+0
��
(G;C)∪I0+

��
(G;C)

[Φ8 ∇Φ�8 (� (G), � (G); C)

+
∑
8∈�

[�8 ∇�8 (G) −
∑
8∈� 2

[�8 ∇�8 (G) +
∑
8∈�

[�8 ∇�8 (G) −
∑
8∈� 2

[�8 ∇�8 (G).

By the construction of C∗ and * (G∗), the gradients involved here are linearly inde-
pendent and so the multipliers in both previous equations must be equal. Thus, the
multipliers [�

8
and [�

8
with indices 8 in � ∪ �2 vanish.

Therefore, E ∈ ℒX�
C,C̄
(G)◦ and as E has been chosen arbitrarily then TX�

C,C̄
(G)◦ ⊆

ℒX�
C,C̄
(G)◦, which concludes the proof. �

This result is sharp, as shown by the following example since Abadie CQ does
not hold.

Example 5 Consider the problem

min
G∈R2

5 (G) s.t. 0 ≤ G1 ⊥ G2 ≥ 0.

At G∗ = (0, 0)) it holds that ∇Φ� (� (G), � (G); C) = (0, 0)) and so ℒX�
C,C̄
(G∗) = R2,

which is obviously different from the tangent cone at G∗ for C2\ ′(0) < C1 and C̄ > 0.

The following example shows that we cannot have a similar result using MPCC-
GMFCQ.

Example 6 Consider the set

� := {(G1, G2)) | 0 ≤ G1 + G2
2 ⊥ G1 ≥ 0}.

MPCC-GMFCQ holds at G∗ = (0, 0)) , since the gradients are linearly dependent
but only with coefficients _� = −_� that does not satisfy the condition given in
Definition 4.

Now, we can choose a sequence of points such that G: → G∗ and
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�2 (G: ; C: ) = 0,−C2,:\ ′C1,: (� (G
: )) → −1.

Since ∇� (G∗) = ∇� (G∗) it holds that ∇�2 (G∗; 0) = (0 0)) and so MFCQ does not
hold for (13).

It is disappointing to require MPCC-LICQ to obtain the only GCQ, but when
I00
��

is empty, we get the stronger LICQ.

Theorem 5 Let G∗ ∈ Z, satisfying MPCC-LICQ. Then, there exists C∗ > 0 and a
neighborhood* (G∗) of G∗ such that

∀C ∈ (0, C∗] : G ∈ * (G∗) ∩ X�
C,C̄

and I00
�� (G; C) = ∅ =⇒ LICQ holds at G for ('�

C,C̄
).

Proof Let G ∈ * (G∗) ∩ X�
C,C̄

and C sufficiently small. We prove that the gradients
of the constraints involved in ('�

C,C̄
) are linearly independent, by verifying that the

trivial solution is the only solution to the following equation

0 =
∑

8∈I6 (G)
[
6

8
∇68 (G) +

?∑
8=1

[ℎ8 ∇ℎ8 (G) +
∑

8∈I� (G;C̄)
∇�8 (G)[�8 +

∑
8∈I� (G;C̄)

∇�8 (G)[�8

+
∑

8∈I+0
��
(G;C)

∇�8 (G)
(
[Φ8 (�18 (G; C) − �28 (G; C)C2\ ′C1 (�8 (G)))

)
+

∑
8∈I0+

��
(G;C)

∇�8 (G)
(
[Φ8 (�28 (G; C) − �18 (G; C)C2\ ′C1 (�8 (G)))

)
.

MPCC-LICQ and the inclusions (14) give that the only solution is the trivial one. �

4.3 Convergence of the epsilon-stationary points

Non-linear programming algorithms usually compute sequences of approximate
stationary points or n-stationary points (see Definition 2). We present below in
relations (16)-(21) our specific definition and hypothesis of n-stationary points. This
approach, which has become an active subject recently, can significantly alter the
convergence analysis of relaxation methods, as shown in [17, 20, 21] and [29].

Previous results in [21] prove convergence to C-stationary point for the relaxation
from Scheel and Scholtes [31] and the one from Lin and Fukushima [23], under
some hypotheses on the sequence n: , respectively n: = $ (C: ) and n: = >(C2

:
).

Furthermore, the authors in [21] also provide a counter-example with a sequence
converging to a W-stationary point if these conditions do not hold. Additionally, the
authors in [21], prove that relaxations (3) and (4) converge only to a W-stationary
point and they require more hypotheses on the sequences n: and G: to prove the
convergence to a C- or an M-stationary point.

In the same way as in Theorem 1, we consider through this section a sequence
of multipliers that should verify the stationary conditions. We denote for all 8 ∈
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{1, . . . , @}

_
�,:
8

:=


[
�,:
8
+[Φ,:

8

(
C2,:\

′
C1,:
(�8 (G: ))�28 (G: ; C: )−�18 (G: ; C: )

)
,

if �18 (G: ; C: ) ≥−�28 (G: ; C: )
[
�,:
8
+[Φ,:

8

(
�28 (G: ; C: )−C2,:\ ′C1,: (�8 (G

: ))�18 (G: ; C: )
)
,

if �18 (G: ; C: )<−�28 (G: ; C: ),

_
�,:
8

:=


[
�,:
8
+[Φ,:

8

(
C2,:\

′
C1,:
(�8 (G: ))�18 (G: ; C: )−�28 (G: ; C: )

)
,

if �18 (G: ; C: ) ≥−�28 (G: ; C: )
[
�,:
8
+[Φ,:

8

(
�18 (G: ; C: )−C2,:\ ′C1,: (�8 (G

: ))�28 (G: ; C: )
)
,

if �18 (G: ; C: )<−�28 (G: ; C: ).

(15)

The representation of ∇Φ�
8
(� (G: ), � (G: ); C: ) immediately gives for all 8 ∈

I00
��
(G: ; C: ) and all : that ∇Φ�8 (� (G: ), � (G: ); C: ) = 0. Thus, G: being a n: station-

ary point for ('�
C,C̄
) satisfies L"%�� (G: , _: )∞ ≤ n: ,

with (_6,: , _ℎ,: ) = ([6,: , [ℎ,: ) and _�,: , _�,: defined in (15), and

|ℎ8 (G: ) | ≤ n: ,∀8 = 1, . . . , ?, (16)

68 (G: ) ≤ n: , [6,:8 ≥ 0,
���[6,:8 68 (G: )

��� ≤ n: ,∀8 = 1, . . . , <, (17)

�8 (G: ) + C̄: ≥ −n: , [�,:8
≥ 0,

���[�,:8
(�8 (G: ) + C̄: )

��� ≤ n: ,∀8=1, . . . , @, (18)

�8 (G: ) + C̄: ≥ −n: , [�,:8
≥ 0,

���[�,:8
(�8 (G: ) + C̄: )

��� ≤ n: ,∀8=1, . . . , @, (19)

Φ�8 (� (G: ), � (G: ); C: ) ≤ n: , [
Φ,:
8
≥ 0, (20)���[Φ,:8

Φ�8 (� (G: ), � (G: ); C: )
��� ≤ n: ,∀8 = 1, . . . , @. (21)

In order to prove our main convergence theorem, we first prove a technical lemma.
Lemma 5 Consider the same assumptions as Theorem 6 below. Additionally, assume
that for 8 ∈ I+0 ∪ I00, lim

:→∞
[
�,:
8

= lim
:→∞

[
Φ,:
8

�18 (G: ; C: ) = 0 and for : sufficiently

large �18 (G: ; C: ) ≥−�28 (G: ; C: ). Then,

lim
:→∞

|[Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�28 (G: ; C: ) |
‖_: ‖∞

= 0.

As a consequence, lim
:→∞

_
�,:
8

‖_: ‖ = 0.

Proof Without loss of generality, let us assume that lim:→∞ [
Φ,:
8

�28 (G: ; C: ) ≠ 0,
otherwisewe are done. Since ‖_: ‖∞ ≥ |_�,:8

|, by (15) and lim:→∞ [
Φ,:
8

�18 (G: ; C: ) =
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0, it is sufficient to show that

lim
:→∞

|[Φ,:
8
C2,:\

′
C1,:
(�8 (G: ))�28 (G: ; C: ) |

|[�,:
8
− [Φ,:

8
�28 (G: ; C: ) |

= 0. (22)

We now consider two cases: either lim:→∞ [
�,:
8

= 0 or lim:→∞ [
�,:
8

≠ 0.

• If lim
:→∞

[
�,:
8

= 0. Then, the left-hand side in (22) is equal to lim
:→∞

C2,:\
′
C1,:
(�8 (G: )),

which goes to zero by Lemma 4 as C2,: = >(C1,: ).
• Consider the case, lim

:→∞
[
�,:
8

≠ 0. Dividing by C̄: in the compelmentarity con-

dition in (19) implies �8 (G: ) ∼ −C̄: as n: = >(C̄: ). Thus, �8 (G: ) < 0 for :
sufficiently large.
We prove that lim

:→∞
[
Φ,:
8

�28 (G: ; C: ) = 0. Dividing by �8 (G: ) in the complemen-

tarity condition in (20) gives for �8 (G: ) ∼ −C̄: that�����[Φ,:8
�28 (G: ; C: )

(
1 −

C2,:\C1,: (�8 (G: ))
�8 (G: )

)����� ≤ n:

|�8 (G: ) |
→ 0, (23)

as n: = >(C̄: ). However, lim
:→∞

C2,: \C1,: (�8 (G
: ))

�8 (G: )
≠ 1, otherwise �8 (G: ) ≤ 0 and

|�8 (G: ) | ≥ |�8 (G: ) | would yield lim
:→∞

C2,: \C1,: (�8 (G
: ))

�8 (G: )
≤ lim
:→∞

C2,: \C1,: (�8 (G
: ))

�8 (G: )
= 0

as \ is non-decreasing and C2,: = >(C1,: ). Therefore, (22) follows as (23) implies
lim
:→∞

[
Φ,:
8

�28 (G: ; C: ) = 0. �

The following result proves convergence of the butterfly relaxation in this context.

Theorem 6 Given the three sequences {C: }, {C̄: }, {n: } decreasing to zero and satisfy-
ing (8). Assume that n: = >(max( |� (G: ) |, |� (G: ) |)), n: = >(C̄: ) and C2,: = >(C1,: ).
Let {G: , [6,: , [ℎ,: , [�,: , [�,: , [Φ,: } be a sequence of n: -KKT points of ('�

C,C̄
) with

G: → G∗ such that MPCC-GMFCQ holds at G∗. Then, G∗ is an M-stationary point.

The notation n: = >(max( |� (G: ) |, |� (G: ) |)) means here that for all 8 = 1, . . . , @,
n: = >(max( |�8 (G: ) |, |�8 (G: ) |)). For two sequences {6: }, {ℎ: }with the same signs
for : sufficiently large, we also denote 6: ∼ ℎ: whenever lim:→∞ 6:/ℎ: = 1.

Proof Proceeding in the same way as Theorem 2, we verify that:

(i) G∗ ∈ Z, lim
:→∞
∇L"%�� (G: , _: ) = 0, lim

:→∞
_
6,:

8
= 0,∀8 ∉ I6 (G∗),

(ii) lim
:→∞

_
�,:
8
/‖_: ‖∞ = 0,∀8 ∈ I+0, lim

:→∞
_
�,:
8
/‖_: ‖∞ = 0,∀8 ∈ I0+,

(iii) lim
:→∞

_
�,:
8

_
�,:
8
/‖_: ‖2∞ = 0 or lim

:→∞
_
�,:
8
/‖_: ‖∞ > 0, lim

:→∞
_
�,:
8
/‖_: ‖∞ > 0,∀8 ∈

I00.
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Clearly (i) follows from the stationarity of G: as n: ↓ 0.
Let us now show that for indices 8 ∈ I+0, lim

:→∞
_
�,:
8
/‖_: ‖∞ = 0. The opposite

case for indices 8 ∈ I0+ would follow in a completely similar way. So, let 8 be in I+0.
The complementarity condition in (18) gives that lim

:→∞
[
�,:
8

= 0, since n: ↓ 0 and

�8 (G: ) + C̄: → �8 (G∗) > 0.
Note that we are necessarily in the case �18 (G: ; C: ) + �28 (G: ; C: ) ≥ 0, as

�18 (G: ; C: )+�28 (G: ; C: ) → �8 (G∗) > 06. In this caseweget lim
:→∞

�18 (G: ; C: )[Φ,:8
= 0

since
���[Φ,:8

Φ�
8
(� (G: ), � (G: ); C: )

��� ≤ n: by (20) and lim
:→∞

�28 (G: ; C: ) > 0.

Since lim
:→∞

�18 (G: ; C: )[Φ,:8
= lim
:→∞

[
�,:
8

= 0, applying Lemma 5, we obtain that

lim
:→∞

_
�,:
8
/‖_: ‖∞ = 0 for 8 ∈ I+0.

We now consider indices 8 ∈ I00. Without loss of generality suppose that
max( |�8 (G: ) |, |�8 (G: ) |) = |�8 (G: ) |, and so lim

:→∞
n:

|�8 (G: ) |
= 0. Let U (possibly

infinite) be such that

U := lim
:→∞

|�8 (G: ) |
|C2,:\C1,: (�8 (G: )) |

. (24)

It should be noticed that U > 1, otherwise for : sufficiently large there would exist a
constant � such that |�8 (G: ) | ≤ � |C2,:\C1,: (�8 (G: )) |, which is a contradiction with
|�8 (G: ) | ≥ |�8 (G: ) | and C2,: = >(C1,: ).

Another consequence is that �28 (G: ; C: ) ∼ �8 (G: ), since �28 (G: ; C: ) ≤ �8 (G: ) +
C2,:\C1,: ( |�8 (G: ) |) and by definition of functions \s.

We consider separately the two cases: a) �18 (G: ; C: ) + �28 (G: ; C: ) ≥ 0, and, b)
�18 (G: ; C: ) + �28 (G: ; C: ) < 0.

a) When �18 (G: ; C: ) + �28 (G: ; C: ) ≥ 0, dividing by |�8 (G: ) | in the complementarity
condition in (20) yields to

n:

|�8 (G: ) |
≥

�����[Φ,:8
�18 (G: ; C: )

(
1 −

C2,:\C1,: (�8 (G: ))
�8 (G: )

)����� ,
so, [Φ,:

8
�18 (G: ; C: ) → 0 since U > 1.

Now, consider two cases either {[�,:
8
} tends to zero or not. In the former case,

the conclusion of case a) would follow by applying Lemma 5.
So, let lim

:→∞
_
�,:
8

≠ 0. Dividing by �8 (G: ) in the complementarity condition in

(18) gives |[�,:
8
(1 + C̄:/�8 (G: )) | ≤ n:/|�8 (G: ) | and so �8 (G: ) ∼ −C̄: .

Besides, it can be noted that for : sufficiently large there is no constant � > 0
such that �8 (G: ) ≤ �n: as this would lead to a contradiction with �18 (G: ; C: ) +
�28 (G: ; C: ) ≥ 0. Indeed, as �8 (G: ) ≥ �8 (G: ), we would obtain

6 We remind that �18 (G: ; C: ) = �8 (G) − C2,: \C1,: (�8 (G)) and �28 (G: ; C: ) = �8 (G) −
C2,: \C1,: (�8 (G)) . Thus, lim:→∞ (�28 (G: ; C: ) , �18 (G: ; C: )) = (�8 (G∗) , 0) and �8 (G∗) > 0.
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�18 (G: ; C: ) + �28 (G: ; C: ) ≤ �8 (G: ) + �n: − 2C2,:\C1,: (�8 (G: )),

which is negative for : sufficiently large by definition of \ and n: = >(�8 (G: )).
So, n: = >(�8 (G: )) and �8 (G: ) > 0. Thus, dividing by �8 (G: ) in the comple-
mentarity condition (20), we obtain lim

:→∞
[
Φ,:
8

�28 (G: ; C: ) = 0. This concludes

the case a), since lim
:→∞

[
Φ,:
8

�28 (G: ; C: ) = lim
:→∞

[
Φ,:
8

�18 (G: ; C: ) = 0 gives that

(_�,∗
8
, _
�,∗
8
) = lim

:→∞
([�,: , [�,: ) ≥ 0.

b) When �18 (G: ; C: ) + �28 (G: ; C: ) < 0, the complementarity condition in (20) gives���[Φ,:8
�28 (G: ; C: )

2
��� ≤ 2n: , and dividing by |�8 (G: ) | yields to�����[Φ,:8
�28 (G: ; C: )

(
1 −

C2,:\C1,: (�8 (G: ))
�8 (G: )

)����� ≤ 2n:
|�8 (G: ) |

.

This implies that lim
:→∞

[
Φ,:
8

�28 (G: ; C: ) = 0, by assumption on n: and U > 1. Now,
by definition of functions \s and the triangle inequality, we get���18 (G: ; C: ) + �28 (G: ; C: )

�� ≤ 2|�8 (G: ) | + 2C2,:\C1,: ( |�8 (G: ) |) ∼ 2|�8 (G: ) |. (25)

Using that �28 (G: ; C: ) ∼ �8 (G: ) as noticed in the beginning of case (iii), we obtain
that lim

:→∞
[
Φ,:
8

�28 (G: ; C: ) = lim
:→∞

[
Φ,:
8
�8 (G: ) = 0. So, multiplying by [Φ,:

8
and

going to the limit in (25) yields to lim
:→∞

[
Φ,:
8

(
�18 (G: ; C: ) + �28 (G: ; C: )

)
= 0. As

a consequence, it holds that lim
:→∞
(_�,:
8

, _
�,:
8
)/‖_: ‖∞ = lim

:→∞
([�,: , [�,: ) ≥ 0.

All in all, we completed cases a) and b), so (iii) is satisfied.
Finally, since (i)-(ii)-(iii) are satisfied, we conclude as in Theorem 2, so that under

MPCC-GMFCQ the sequence {_: } is bounded and G∗ is an M-stationary point. �

The assumption in Theorem 6 is not entirely satisfactory since the sequence of
parameter n: depends on the iterates. However, this is in the same vein as the existing
results in [7, 21]. Further research may try to exploit this weak point to propose more
adequate conditions.

Another benefit of considering approximate stationary points is that they may
exist even so the assumptions presented in previous section are not satisfied, see
[3, 4].

The following example, from [19], shows that the butterfly relaxation with C2,: =
>(C1,: ) may converge to an undesirable A-stationary point without the hypothesis
that n: = >(max( |� (G: ) |, |� (G: ) |).

Example 7 Consider the problem

min
G∈R2

G2 − G1 s.t. 0 ≤ G1 ⊥ G2 ≥ 0.
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Let C2,: = C1,:
2 and choose any positive sequences {C1,: } and {n: } such that

C1,: , n: → 0. Consider the following n-stationary sequence

G: = (n: , n:/2)) , [�,: = 0, [�,: = 1−[Φ,: (C1,:2\C1,:

( n:
2

)
�1 (G: ; C: )−�2 (G: ; C: ))

and
[Φ,: =

1
C1,:2\C1,: (n: ) �2 (G: ; C: ) − �1 (G: ; C: )

.

This sequence converges to G∗ = (0, 0), which is an A-stationary point.

The n-feasible set of the butterfly relaxation is similar to the relaxation from [31].
Therefore, it is not surprising that we can only expect to converge to a C-stationary
point without strong hypotheses. Those issues clearly deserve a specific study that is
left for further research.

5 Numerical Results

In this section, we focus on the numerical implementation of the butterfly relaxation.
Our aim is to compare the new method with the existing ones in the literature and
to show some of its features. This comparison uses the collection of test problems
MacMPEC [22]. This collection has been widely used in the literature to compare
relaxation methods as in [16, 17, 33]. The test problems included in MacMPEC are
extracted from the literature and real-world applications.

5.1 On the Implementation of the Butterfly Relaxation

Practical implementation could consider a slightly different model, by skipping the
relaxation of the positivity constraint and adding a new parameter C3 in order to shift
the intersection of both wings to the point (� (G), � (G)) = (C3, C3). This can be done
by redefining �1 (G; C1, C2, C3) and �2 (G; C1, C2, C3) such that

�18 (G; C1, C2, C3) = �8 (G) − C3 − C2\C1 (�8 (G) − C3),
�28 (G; C1, C2, C3) = �8 (G) − C3 − C2\C1 (�8 (G) − C3).

Even if we did not give any theoretical proof regarding this modified system, this
modification does not alter the behavior of the butterfly relaxation. This formulation
is clearly an extension of the relaxation (4).

The numerical comparison of the butterfly relaxation with other existing methods
considers three schemes:

1. � (C2=C1) : C3 = 0, C2 = C1;
2. � (C2=C13/2) : C3 = 0, C2 = C13/2;
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3. � (C3=C2 ,2C2=C1) : C3 = C2, 2C2 = C1.

In all these tests, we fixed C̄ = 0. Our tests concern many variants, not all of which
covered by our analysis, but they give a broader insight of the new relaxations.

5.2 Comparison of the Relaxation Methods

We provide in this section and Algorithm 1 somemore details on the implementation
and the comparison between relaxation methods. It is to be noted that we aim to
compare the methods and so no attempt to optimize anymethod has been carried out.
We use 101 test problems fromMacMPEC, which omit the problems that exceed the
limit of 300 variables or constraints and some problems with the evaluation error of
the objective function or the constraints.

Algorithm 1 is coded in Matlab and uses the AMPL API. 'C: denotes the relaxed
non-linear program associated with a generic relaxation, where except the butterfly
methods, the parameter C1,: does not play any role. At each step we compute G:+1
as a solution of 'C: starting from G: . Therefore, at each step, the initial point is
more likely to be infeasible for 'C: . The iterative process stops when C2,: and C1,:
are smaller than some tolerance, denoted ?min which is set as 10−15 here, or when
the solution G:+1 of 'C: is considered an n-solution of (1). To consider G:+1 as a
n-solution, with n set as 10−7, we check three criteria:

(a) Feasibility of the last relaxed non-linear program:

a 5 (G) := max(−6(G), |ℎ(G) |,−Φ(G));

(b) Feasibility of the complementarity constraint: a2><? (G) := min(� (G), � (G))2;
(c) The complementarity between the Lagrange multipliers and the constraints of the

last relaxed non-linear program:

a2 (G) :=
6(G) ◦ [6, ℎ(G) ◦ [ℎ , � (G) ◦ [� , � (G) ◦ [� ,Φ� (G) ◦ [Φ

∞ .

Obviously, it is hard to ask a tighter condition on the complementarity constraint
since the feasibility only guarantees that the product component-wise is less than n .
Using these criteria, we define a measure of optimality

>?C8<0; (G) := max
(
a 5 (G), a2><? (G), a2 (G)

)
.

A fourth criterion could be the dual feasibility, which is the norm of the gradient of
the Lagrangian. However, solvers like SNOPT or MINOS do not use this criterion
as a stopping criterion, but use the gradient of the Lagrangian scaled by the norm of
the Lagrange multiplier. One reason among others to discard such a criterion could
be numerical issues implied by the degeneracy in the KKT conditions. In the case
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of an infeasible or unbounded sub-problem 'C: , the algorithm stops and returns a
certificate.

Data:
starting vector G0; initial relaxation parameter C0; update parameter
(fC1 , fC2 ) ∈ (0, 1)2; ?<8= the minimum parameter value; n the precision
tolerance ;

1 Begin ;
2 Set : := 0 ;
3 while max(C2,: , C1,: ) > ?min and >?C8<0; (G: ) > n do
4 G:+1 solution of 'C1,: ,C2,: with G: initial point;
5 (C1:+1, C2:+1) := (C1,:fC1 , C2,:fC2 ) ;
6 return: 5>?C the optimal value at the solution G>?C or a decision of

infeasibility or unboundedness.
Algorithm 1: Basic Relaxation methods for (1), with a relaxed non-linear
program 'C: .
Step 4 inAlgorithm 1 is performed using three different solvers accessible through

AMPL [13], that are SNOPT 7.2-8 [14], MINOS 5.51 [25] and IPOPT 3.12.4 [34]
with their default parameters. A previous similar comparison in the literature in
[16] only considered SNOPT to solve the sub-problems. We compare the butterfly
schemes with the most popular relaxations SS from [30] and (4). We also take into
account the results of the non-linear programming solver without specific MPCC
tuning denoted by NL.

In order to compare the various relaxationmethods, we need to have a coherent use
of the parameters. In a similar way as in [16]we consider the value of the "intersection
between G and H", which is (C, C) for (4) and (7), (

√
C,
√
C) for SS. Then, we run a sen-

sitivity analysis on several values of the parameters ) ∈ {100, 25, 10, 5, 1, 0.5, 0.05}
and ( ∈ {0.1, 0.075, 0.05, 0.025, 0.01}, which corresponds to C0 and fC as described
in Table 1. In [16], the authors consider as a stopping criterion the feasibility of the

Relaxation NL SS KS Butterfly
C0 none ) 2 ) )

fC none (2 ( (

Table 1: Parameter links among the methods

last non-linear parametric program in particular by considering the complementarity
constraint by the minimum component-wise. Table 2 provides our result with this
criterion. We report elementary statistics by considering the percentage of success
for each set of parameters. A problem is considered solved if criteria (a) and (b) are
satisfied.

First, we see that themethodNL is giving decent results. It is not a surprise, as was
pointed out in [12]. Practical implementation of relaxation methods would select the
best choice of parameters so that we focus most of our attention on the line ’best’. In
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Solver SNOPT NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 97.03 97.03 98.02 97.03 97.03 98.02

average 97.03 95.02 94.71 95.39 93.89 94.88
worst 97.03 91.09 91.09 92.08 91.09 91.09
std 0 1.64 2.09 1.50 1.97 2.42

Solver MINOS NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 89.11 94.06 93.07 90.10 95.05 89.11

average 89.11 91.20 90.89 83.54 91.06 81.92
worst 89.11 87.13 87.13 77.23 86.14 76.24
std 0 1.50 1.44 2.81 2.15 2.89

Solver IPOPT NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 98.02 99.01 98.02 99.01 98.02 100

average 98.02 98.16 96.38 94.03 93.89 94.79
worst 98.02 95.05 93.07 89.11 88.12 88.12
std 0 0.97 1.99 2.62 2.80 3.60

Table 2: Sensitivity analysis for MacMPEC test problems considering the feasibility
of (1). Results are a percentage of success. Best: percentage of success with the
best set of parameters (independent of the problem), worst: percentage of success
with the worst set of parameters, average: average percentage of success among the
distribution of (), B), std: standard deviation.

all cases, the relaxations manage to improve or at least equal the number of problems
solved by NL. By using SNOPT, KS and butterfly with C2 = C13/2 methods get 1% of
improvement, and with IPOPT, the method butterfly with C2 = C13/2 is the only one
that attains 100%. The relaxation methods seem to make a significant improvement
over NL with MINOS. In this case, it is clear that the butterfly methods benefit from
the introduction of the parameter B, and the method with C3 = C2, 2C2 = C1 is very
competitive.

Our goal by solving (1) is to compute a local minimum. The results using the
local minimum criterion defined above as a measure of success are given in Table 3.
Once again, we provide percentages of success.

In comparison with Table 2, this new criterion appears to be more selective.
Independently of the solver, the relaxation methods with some correct choices of
parameters provide improved results. Using SNOPT as a solver, the methods KS and
butterfly give the highest number of results. Themethod butterflywith C2 = C13/2 even
improved the number of problems that SNOPT alone solved on average. Similarly,
as in the previous experiment, the butterfly method benefits from the introduction of
the parameter B when using MINOS as a solver.
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Solver SNOPT NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 92.08 94.06 96.04 96.04 97.03 96.04

average 92.08 90.78 91.17 92.08 90.04 92.33
worst 92.08 83.17 86.14 87.13 82.18 87.13
std 0 3.15 2.59 2.45 2.86 2.77

Solver MINOS NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 85.15 94.06 93.07 88.11 94.06 87.13

average 85.15 90.94 90.18 81.92 90.04 80.11
worst 85.15 87.13 86.14 76.23 85.15 74.26
std 0 1.50 1.62 2.65 2.31 2.95

Solver IPOPT NL SS KS �(C2=C1 ) �(C3=C2 ,2C2=C1 ) �(C2=C13/2 )
best 91.09 93.07 93.07 94.06 93.07 94.06

average 91.09 91.82 89.84 89.05 88.80 89.02
worst 91.09 90.10 86.14 84.16 84.16 81.19
std 0 1.14 2.19 3.09 2.72 3.86

Table 3: Sensitivity analysis for MacMPEC test problems considering the optimality
of (1). The results are percentages of success. Best: percentage of success with the
best set of parameters, worst: percentage of success with the worst set of parameters,
average: average percentage of success among the distribution of (), B), std: standard
deviation.

6 Concluding Remarks

This paper proposes a new family of relaxation schemes for the mathematical pro-
gram with complementarity constraints. We prove convergence of the method in the
general case and show that a specific relation between the parameters allows the
method to converge to the desired M-stationary point. Additionally, in the particular
case where MPCC-LICQ holds, S-stationary conditions can be expected to hold at
a local minimum. We prove that in the affine case, the butterfly relaxation method
converges to such a point without assuming any second-order conditions or strict
complementarity-type conditions, which is an improvement over other methods.

We provide a complete numerical study with remarks regarding the implementa-
tion as well as a comparison with existing methods in the literature. These numerical
experiments show that the butterfly schemes are very competitive.

Future research will focus on themain difficulty regarding relaxation schemes that
are the convergence of approximate stationary sequences. A discussion regarding the
above problem has been initiated in [7, 21] and appeal for further study.
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Appendix

7 Proof of a Technical Lemma

In the of proof Theorem 4 and Theorem 5 we use the following lemma that links the
gradients of � and � with the gradients of �1 (G; C) and �2 (G; C).

Lemma 6 Let (�, �2 , �−) be any partition of I00
��
(G; C). Assume that the gradients

{∇68 (G) (8 ∈ I6 (G)), ∇ℎ8 (G) (8 = 1, . . . , ?),
∇�8 (G) (8 ∈ I� (G; C̄) ∪ I00

�� (G; C) ∪ I+0�� (G; C)),
∇�8 (G) (8 ∈ I� (G; C̄) ∪ I00

�� (G; C) ∪ I0+
�� (G; C))}

are linearly independent. Then, LICQ holds at G for (13).

Proof We show that the gradients of the constraints of (13) are positively linearly
independent. For this purpose, we prove that the trivial solution is the only solution
to the equation

0 =
∑

8∈I6 (G)
[
6

8
∇68 (G) +

?∑
8=1

[ℎ8 ∇ℎ8 (G) −
∑

8∈I� (G;C̄)
[�8 ∇�8 (G) −

∑
8∈I� (G;C̄)

[�8 ∇�8 (G)

+
∑

8∈I+0
��
(G;C)∪I0+

��
(G;C)

[Φ8 ∇Φ�8 (� (G), � (G); C)

+
∑

8∈I00
��
(G;C)

(
a
�1 (G;C)
8

− `�1 (G;C)
8

+ X�1 (G;C)
8

)
∇�18 (G; C)

+
(
−a�2 (G;C)

8
+ `�2 (G;C)

8
+ X�2 (G;C)

8

)
∇�28 (G; C),

where supp([6) ⊆ I6 (G), supp([�) ⊆ I� (G; C̄), supp([� ) ⊆ I� (G; C̄), supp([Φ) ⊆
I+0
��
(G; C) ∪ I0+

��
(G; C), supp(a�1 (G;C) ) ⊆ �, supp(a�2 (G;C) ) ⊆ �, supp(`�1 (G;C) ) ⊆ �2 ,

supp(`�2 (G;C) ) ⊆ �2 , supp(X�1 (G;C) ) ⊆ �−, supp(X�2 (G;C) ) ⊆ �− where � ∪ �2 ∪ �− =
I00
��
(G; C) and �, �2 , �− have two by two empty intersection.

By definition of �1 (G; C) and �2 (G; C) it holds that

∇�18 (G; C) = ∇�8 (G) − C2\ ′C1 (�8 (G))∇�8 (G),
∇�28 (G; C) = ∇�8 (G) − C2\ ′C1 (�8 (G))∇�8 (G).

The gradient of Φ� (� (G), � (G); C) is given by Lemma 3.
We now replace those gradients in the equation above

0 =
∑

8∈I6 (G)
_
6

8
∇68 (G) +

?∑
8=1

_ℎ8 ∇ℎ8 (G) +
@∑
8=1

_�8 ∇�8 (G) +
@∑
8=1

_�8 ∇�8 (G),
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with

_�8 = −[�8 + [Φ8 �18 (G; C) −
(
[Φ8 �28 (G; C)+a�1 (G;C)

8
−`�1 (G;C)

8
+X�1 (G;C)

8

)
C2\
′
C1 (�8 (G))

− a�2 (G;C)
8

+ `�2 (G;C)
8

+ X�2 (G;C)
8

,

_�8 = −[�8 + [Φ8 �28 (G; C) −
(
[Φ8 �18 (G; C)−a�2 (G;C)

8
+`�2 (G;C)

8
+X�2 (G;C)

8

)
C2\
′
C1 (�8 (G))

+ a�1 (G;C)
8

− `�1 (G;C)
8

+ X�1 (G;C)
8

.

By linear independence assumption, we obtain

[6 = 0, [ℎ = 0, [� = 0, [� = 0, [Φ8 = 0 ∀8 ∈ I0+
�� (G; C) ∪ I+0�� (G; C),

− a�1 (G;C)
8

C2\
′
C1 (�8 (G)) − a

�2 (G;C)
8

= 0 and a�2 (G;C)
8

C2\
′
C1 (�8 (G)) + a

�1 (G;C)
8

= 0,∀8 ∈ �,

`
�1 (G;C)
8

C2\
′
C1 (�8 (G))+`

�2 (G;C)
8

= 0 and −`�2 (G;C)
8

C2\
′
C1 (�8 (G)) − `

�1 (G;C)
8

= 0,∀8 ∈ �2 ,

−X�1 (G;C)
8

C2\
′
C1 (�8 (G))+X

�2 (G;C)
8

= 0 and −X�2 (G;C)
8

C2\
′
C1 (�8 (G))+X

�1 (G;C)
8

= 0,∀8 ∈ �−.

So, it follows for 8 ∈ �− that

X
�2 (G;C)
8

= X
�1 (G;C)
8

C2\
′
C1 (�8 (G)) and X

�1 (G;C)
8

= X
�2 (G;C)
8

C2\
′
C1 (�8 (G)).

So X�1 (G;C)
8

= X
�2 (G;C)
8

= 0, since 8 ∈ I00
��
(G; C) gives

C2\
′
C1 (�8 (G))C2\

′
C1 (�8 (G)) = C2\

′
C1 (0)C2\

′
C1 (0) < 1

by properties of \ and (8). Similarly, we get `�1 (G;C)
8

= `
�2 (G;C)
8

= a
�2 (G;C)
8

= a
�1 (G;C)
8

=

0. �
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