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Dussault, J.-P.∗ Haddou, M.† Migot, T.‡

2016

Abstract

We propose a new family of relaxation schemes for mathematical programs with complementarity
constraints that extend the relaxation of Kadrani, Dussault, Bechakroun from 2009 and the one of Kanzow
and Schwartz from 2011. We discuss the properties of the sequence of relaxed non-linear programs as
well as stationary properties of limiting points. A sub-family of our relaxation schemes has the desired
property of converging to a M-stationary point. We introduce new constraint qualifications, MPCC-
CRSC and MPCC-GCRSC, to prove convergence of our method. In particular, the latter is the weakest
known constraint qualifications that ensure boundedness of the sequence generated by the method. A
comprehensive numerical comparison between existing relaxations methods is performed on the library
of test problems MacMPEC and shows promising results for our new method.

Keywords: non-linear programming - MPCC - MPEC - relaxation methods - stationary point -
constraint qualification - CRSC

AMS Subject Classification: 90C30, 90C33, 49M37, 65K05

1 Introduction

We consider the Mathematical Program with Complementarity Constraints

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,
(MPCC)

with f : Rn → R, h : Rn → Rm, g : Rn → Rp and G,H : Rn → Rq that are assumed continuously
differentiable. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in Rq is a shortcut for ui ≥ 0, vi ≥ 0
and uivi = 0 for all i ∈ {1, . . . , q}.

This problem has become an active subject in the literature in the last two decades. The wide variety
of applications [1, 17, 6] to cite a few, that can be cast as a MPCC is one of the reasons for this popularity.
(MPCC) is clearly a non-linear programming problem and in general most of the functions involved in the
formulation are non-convex.

In this context solving the problem means finding a local minimum. Even so, this goal apparently modest
is hard to achieve in general due to the degenerate nature of the MPCC. Therefore, numerical methods that
consider only first order information may be expected to compute a stationary point.

The wide variety of approaches with this aim computes the KKT conditions, which require that some
constraint qualification holds at the solution to be an optimality condition. However, it is well-known that
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these constraint qualifications never hold in general for (MPCC). For instance, the classical Mangasarian-
Fromowitz constraint qualification that is very often used to guarantee convergence of algorithms is violated
at any feasible point. This is partly due to the geometry of the complementarity constraint that always has
an empty relative interior.

These issues have motivated the definition of enhanced constraint qualifications and optimality conditions
for (MPCC) as in [21, 20, 35, 10] to cite some of the earliest research. In [11], Flegel and Kanzow provide an
essential result that defines the right necessary optimality condition to (MPCC). This optimality condition
is called M(Mordukhovich)-stationary condition. The name comes from the fact that those conditions are
derived by using Mordukhovich normal cone in the usual optimality conditions of (MPCC).

In view of the constraint qualifications issues that pledge the (MPCC), the relaxation methods provide
an intuitive answer. The complementarity constraint is relaxed using a parameter so that the new feasible
domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 and h(x) = 0 are not
more difficult to handle than the complementarity constraint. Finally, as the relaxing parameter is reduced,
convergence to the feasible set of (MPCC) is obtained similarly to a homotopy technique.

These methods have been suggested in the literature back in 2000 by Scheel and Scholtes in [35, 36]
replacing the complementarity by

Gi(x)Hi(x)− t ≤ 0, ∀i ∈ {1, . . . , q}. (SS)

This natural approach was later extended by Demiguel, Friedlander, Nogales and Scholtes in [5] by also
relaxing the positivity constraints G(x) ≥ −t, H(x) ≥ −t. Although, in [5], the motivation of the authors
was not to decrease the two parameters simultaneously. In [29], Lin and Fukushima improve this relaxation
by expressing the same set with two constraints instead of three. This improvement leads to improved
constraint qualification satisfied by the relaxed sub-problem. Even so, the feasible set is not modified this
improved regularity does not come as a surprise, since constraint qualification measures the way the feasible
set is described and not necessarily the geometry of the feasible set itself. In [39], the authors consider a
relaxation of the same type but only around the corner G(x) = H(x) = 0.

In the corresponding papers it has been shown that under suitable conditions providing convergence of
the methods, converge to some spurious point, called C-stationary point, may still happen. The convergence
to M-stationary being guaranteed only under some second-order condition. It is to be noted that different
methods used in the literature such as interior-point methods, smoothing of an NCP function and elastic
net methods share a lot of common properties with the relaxation from [36] and its extension.

A new perspective for those schemes has been motivated in [22] providing an approximation scheme with
convergence to M-stationary point by considering

(Gi(x)− t)(Hi(x)− t), ∀i ∈ {1, . . . , q}. (KDB)

This is not a relaxation since the feasible domain of (MPCC) is not included in the feasible set of the
sub-problems. The method has been extended has a relaxation method in [25] through an NCP function φ:

φ(Gi(x)− t,Hi(x)− t), ∀i ∈ {1, . . . , q}, (KS)

The main aim of this paper is to continue this discussion and extend the relaxation of Kanzow and Schwartz
by introducing the new butterfly relaxation.

The key assumption necessary to guarantee convergence of the method relies very often on some MPCC
constraint qualification. In [26, 19, 24] the authors analyze the existing methods and proves convergence
under some mild constraint qualifications. The definition of a new MPCC constraint qualification allows to
pursue this discussion and convergence of (KDB) and its extension has been shown under MPCC-CCP in
[32]. Furthermore, the author proves that this is the weakest MPCC constraint qualification that assures
convergence of these methods. In this paper, we continue the discussion by providing convergence result for
the butterfly method. The MPCC-CCP condition is no longer sufficient for this purpose and so we introduce
a new MPCC constraint qualification called MPCC-GCRSC.
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In Section 2, we introduce classical definitions and results from non-linear programming and MPCC
theory. This section is completed by the definition of new constraint qualifications for MPCC called MPCC-
CRSC and MPCC-GCRSC in Definition 2.7. In Section 3, we define the relaxation scheme with the new
butterfly relaxation. In Section 4, we prove theoretical results on convergence and existence of the multiplier
of the relaxed sub-problems. We also provide an analysis on the convergence of approximate stationary
points. We prove that the butterfly method has similar properties as the best methods in the literature.
Finally, in Section 5, we provide an extensive numerical study by giving details on the implementation,
comparison with other methods as well as an example that illustrates the numerical difficulties that might
occur.

2 Preliminaries

(MPCC) is obviously a non-linear programming problem. Most of the numerical approaches used in non-
linear programming compute necessary optimality conditions that require some constraint qualifications
(CQs) defined in Sect. 2.1 to ensure existence of Lagrange multipliers at a local minimum.

Even so, (MPCC) belongs to this class of problem it is required to develop enhanced stationary conditions.
Indeed, in a systematic way, feasible points of (MPCC) may fail to satisfy even the weakest constraint
qualifications for non-linear programming. Tailored optimality conditions and constraint qualifications for
(MPCC) are presented in Sect. 2.2.

2.1 Non-Linear Programming

Let a general non-linear program be

min
x∈Rn

f(x) s.t. g(x) ≤ 0, h(x) = 0, (NLP)

with h : Rn → Rm, g : Rn → Rp and f : Rn → R. Denote F the feasible region of (NLP), the set of
active indices Ig(x) := {i ∈ {1, ..., p} | gi(x) = 0}. Let the generalized Lagrangian Lr(x, λ) be Lr(x, λ) :=
rf(x) + g(x)Tλg + h(x)Tλh, where λ = (λg, λh) is the vector of Lagrange multiplier.

We call a KKT point or a stationary point a couple (x, λ) with x ∈ F such that ∇xL1(x, λ) = 0, λg ≥ 0
and g(x)Tλg = 0. We remind that the tangent cone of a set X at x∗ ∈ X is a closed cone defined by

TX(x∗) := {d ∈ Rn | ∃τ ≥ 0 and X 3 xk → x∗ s.t. τ(xk − x∗)→ d}.

Another useful tool for our study is the linearized cone of (NLP) at x∗ ∈ F defined by

L (x∗) := {d ∈ Rn | ∇gi(x)T d ≤ 0 (i ∈ Ig(x∗)), ∇hi(x)T d = 0 (∀i = 1, . . . ,m)}.

In the context of solving non-linear programs, that is finding a local minimum of (NLP), one widely used
technique is to compute necessary conditions. The principal tool is the Karush-Kuhn-Tucker (KKT) con-
ditions. Let x∗ be a local minimum of (NLP) that satisfies a constraint qualification, then there exists
y∗ ∈ M1(x∗) such that (x∗, y∗) is a KKT point of (NLP). Constraint qualifications are used to ensure the
existence of the index-1 multiplier at x∗.

We now define some of the classical constraint qualifications. Note that there exist a wide variety of such
notions and we define here those that are essential for our purpose.

Definition 2.1. Let x∗ ∈ F .

(a) Linear Independence CQ (LICQ) holds at x∗ if the family of gradients
{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (∀i = 1, ...,m)} is linearly independent.

(b) Constant Rank CQ (CRCQ) holds at x∗ if there exists δ > 0 such that for any subsets I1 ⊆ Ig(x∗) and
I2 ⊆ {1, ...,m} the family of gradients {∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)} has a constant rank for all
x ∈ Bδ(x∗).
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(c) Mangasarian-Fromovitz CQ (MFCQ) holds at x∗ if the family of gradients {∇hi(x∗)(i = 1, . . . ,m)} is
linearly independent and there exists a d ∈ Rn such that ∇gi(x∗)T d < 0 (i ∈ Ig(x∗)) and ∇hi(x∗)T d =
0 (i = 1, . . . ,m).

(d) Constant Rank in the Subspace of Components (CRSC) holds at x∗ if there exists δ > 0 such that the
family of gradients {∇gi(x) (i ∈ J−), ∇hi(x∗) (i = 1, . . . ,m)} has the same rank for every x ∈ Bδ(x∗),
where J− := {i ∈ Ig(x∗) | − ∇gi(x∗) ∈ L (x∗)◦}.

Remark 2.1. The definition of MFCQ given here is the most classical. It can be shown using some theorem
of the alternative that this definition is equivalent to the family of active gradients being positively linearly
independent.

In the last definition, C◦ denotes the polar of a cone C, defined as C◦ := {z ∈ Rn|zT d ≤ 0 ∀d ∈ C}.
Constant rank of the subspace component, CRSC, was introduced recently in [2]. This latter definition
considers an unusual set denoted J−, that can be viewed as the set of indices of the gradients of the active
constraints whose Lagrange multiplier if they exist may be non-zero.

A local minimum is characterized by the fact that there is no feasible descent direction for the objective
function of (NLP), that is

−∇f(x∗) ∈ TF (x∗)◦,

where T ◦ denotes the polar cone of T . On the other hand, the KKT conditions build ∇f using a linearization
of the active constraints. In a classical way, we say that a point x∗ ∈ F satisfies Guignard CQ if TF (x∗)◦ =
L (x∗)◦ and Abadie CQ if TF (x∗) = L (x∗).

In practice, it is very difficult to find a point that conforms exactly to the KKT condition. Hence, an
algorithm may stop when such conditions are satisfied approximately. This has motivated the definition of
the CCP condition in [3].

Definition 2.2. We say that a point x∗ ∈ F satisfies the Cone-Continuity Property if the set-valued mapping
Rn 3 x⇒ K(x) such that

K(x) := {
∑

i∈Ig(x∗)

λi∇gi(x) +

m∑
i=1

µi∇hi(x) : λi ∈ R+, µi ∈ R}

is outer semicontinuous.

It is to be noted here that K(x) depends on x∗, since it considers only active constraints at x∗. Clearly,
K(x∗) is a closed convex cone and coincides with the polar linearized cone L (x∗)◦. Moreover, K(x) is always
inner semicontinuous due to the continuity of the gradients and the definition of K(x). For this reason, outer
semicontinuity is sufficient for the continuity of K(x) at x∗. Finally, it has been shown in [3] that CCP is
strictly stronger than ACQ and weaker than CRSC.

In the context of numerical computations, it is almost never possible to compute stationary points. Hence,
it is of interest to consider ε-stationary points.

Definition 2.3. Given a general non-linear program (NLP) and ε ≥ 0. We say that (x, y) ∈ Rn × Rp+m is
a ε-stationary point (or a ε-KKT point) if it satisfies

‖∇L(x, λ)‖∞ ≤ ε, ‖h(x)‖∞ ≤ ε,
gi(x) ≤ ε, λi ≥ 0, |λigi(x)| ≤ ε ∀i ∈ {1, . . . , p}.

2.2 Mathematical Program with Complementarity Constraints

We now specialize the general notions above to our specific case of (MPCC). Let Z be the set of feasible
points of (MPCC). Given x∗ ∈ Z, we denote

I+0 := {i ∈ {1, . . . , q} | Gi(x∗) > 0 and Hi(x
∗) = 0},

I0+ := {i ∈ {1, . . . , q} | Gi(x∗) = 0 and Hi(x
∗) > 0},

I00 := {i ∈ {1, . . . , q} | Gi(x∗) = 0 and Hi(x
∗) = 0}.
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In order to derive weaker optimality conditions, we consider an enhanced Lagrangian function. Let LrMPCC

be the generalized MPCC-Lagrangian function of (MPCC) such that

LrMPCC(x, λ) := rf(x) + g(x)Tλg + h(x)Tλh −G(x)TλG −H(x)TλH

with λ := (λg, λh, λG, λH) ∈ Rp × Rm × Rq × Rq. It is clear that we cannot expect to compute usual KKT
points since classical constraint qualifications, in general, do not hold, so we introduce weaker stationary
concepts as in [35, 20].

Definition 2.4. A point x∗ ∈ Z is said

• Weak (W)-stationary if there exists λ = (λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq such that

∇xL1
MPCC(x∗, λ) = 0,

λgi = 0 ∀i /∈ Ig(x∗), λGI+0 = 0, λHI0+ = 0.

• Clarke (C)-stationary if x∗ is weak-stationary and ∀i ∈ I00, λGi λ
H
i ≥ 0.

• Alternatively or Abadie (A)-stationary if x∗ is weak-stationary and ∀i ∈ I00, λGi ≥ 0 or λHi ≥ 0.

• Mordukhovich (M)-stationary if x∗ is weak-stationary and ∀i ∈ I00, either λGi > 0, λHi > 0 or λGi λ
H
i =

0.

• Strong (S)-stationary if x∗ is weak-stationary and ∀i ∈ I00, λGi ≥ 0, λHi ≥ 0.

Relations between these definitions are straightforward from the definitions. Local optimal solution is
often denoted Bouligand (B)-stationary point in the literature, but this will not be used here.

In a classical way from the literature, we extend the various constraint qualifications for (NLP) to
(MPCC). MPCC CQ denotes this extension of usual CQ.

Abadie CQ and Guignard CQ are the weakest constraint qualifications in non-linear programming. Un-
fortunately, Abadie condition is very unlikely to be satisfied with (MPCC). Indeed, the tangent cone, TZ , is
closed but in general not convex and the classical linearized cone of (MPCC) is polyhedral for (MPCC) and
therefore convex. That is why we define a specific cone for (MPCC) denoted LMPCC as in [35, 9, 31]

LMPCC(x∗) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0 ∀i ∈ Ig(x∗),∇hi(x∗)T d = 0 ∀i = 1, ...,m,

∇Gi(x∗)T d = 0 ∀i ∈ I0+,∇Hi(x
∗)T d = 0 ∀i ∈ I+0,

∇Gi(x∗)T d ≥ 0 ∀i ∈ I00,∇Hi(x
∗)T d ≥ 0 ∀i ∈ I00,

(∇Gi(x∗)T d)(∇Hi(x
∗)T d) = 0 ∀i ∈ I00}.

This cone is no longer polyhedral and is not necessarily convex. However due to [9], one always has the
following inclusions: TZ(x∗) ⊆ LMPCC(x∗) ⊆ L (x∗).

Definition 2.5. Let x∗ ∈ Z. We say that MPCC-ACQ holds at x∗ if TZ(x∗) = LMPCC(x∗) and MPCC-
GCQ holds at x∗ if T ◦Z (x∗) = LMPCC(x∗)◦.

The following theorem is a keystone to define necessary optimality conditions for (MPCC).

Theorem 2.1 ([11]). A local minimum of (MPCC) that satisfies MPCC-GCQ or any stronger MPCC CQ
is a M-stationary point.
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The polar of the MPCC-linearized cone is a key tool in the definition of constraint qualifications. It is,
however, not trivial to compute. Therefore, we introduce the following:

PM (x∗) := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq

with λGi λ
H
i = 0 or λGi > 0, λHi > 0 ∀i ∈ I00,

d =
∑

i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+∪I00

λGi ∇Gi(x∗)−
∑

i∈I+0∪I00

λHi ∇Hi(x
∗)}.

Remark 2.2. When MPCC-GCQ holds at x∗, due to [7], one gets the following inclusion: LMPCC(x∗)◦ ⊂ PM (x∗).

We now introduce some constraint qualifications that will be used in the sequel. One of the main
constraint qualifications used in the literature of (MPCC) is the MPCC-LICQ, see [37] for a discussion on
this CQ. In a similar way we may extend CRCQ as in [15]. A condition that is similar was used in [25, 19]
to prove convergence of relaxation methods for (MPCC). As pointed out in Theorem 2.1, the ”correct”
sign of the multiplier λGi , λ

H
i for i ∈ I00 in the necessary optimality conditions for (MPCC) are the sign of

M-stationary points. This motivates the definition of MPCC-GMFCQ that specializes the MPCC-MFCQ
and the MPCC-LICQ by taking into account those signs of multipliers for i ∈ I00.

Definition 2.6. Let x∗ ∈ Z.

1. MPCC-LICQ holds at x∗ if the gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . ,m), ∇GI00∪I0+(x∗), ∇HI00∪I+0(x∗)}

are linearly independent.

2. MPCC-MFCQ holds at x∗ if the only solution of

∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+∪I00

λGi ∇Gi(x∗)−
∑

i∈I+0∪I00

λHi ∇Hi(x
∗) = 0

with λgi ≥ 0 (i ∈ Ig(x∗)) is the trivial solution.

3. MPCC-GMFCQ holds at x∗ if the only solution of

∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+∪I00

λGi ∇Gi(x∗)−
∑

i∈I+0∪I00

λHi ∇Hi(x
∗) = 0

with λgi ≥ 0 (i ∈ Ig(x∗)) and either λGi λ
H
i = 0 either λGi > 0, λHi > 0 for all i ∈ I00 is the trivial

solution.

Note here that MPCC-MFCQ and MPCC-GMFCQ have been defined using the alternative form of
MFCQ mentioned in the Remark 2.1.

2.3 The New MPCC-GCRSC and MPCC-CRSC Constraint Qualifications

In a similar way as for MPCC-MFCQ and MPCC-GMFCQ, we extend the definition of CRSC constraint
qualification to introduce the MPCC-CRSC and the MPCC-GCRSC, which are new in the MPCC literature.

Definition 2.7. Let x∗ ∈ Z.
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(a) MPCC-CRSC holds at x∗ if there exists δ > 0 such that the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I0+ ∪ I00), ∇Hi(x) (i ∈ I00 ∪ I+0)}

has the same rank for every x ∈ Bδ(x∗), where I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈ LMPCC(x∗)◦}.

(b) MPCC-GCRSC holds at x∗ if for any partition I00
++ ∪ I00

0− ∪ I00
−0 = I00 such that

∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+∪I00
++

λGi ∇Gi(x∗)−
∑

i∈I+0∪I00
++

λHi ∇Hi(x
∗)

+
∑
i∈I00
−0

λGi ∇Gi(x∗) +
∑
i∈I00

0−

λHi ∇Hi(x
∗) = 0,

with λgi ≥ 0 (i ∈ Ig(x∗)),λGi and λHi ≥ 0 (i ∈ I00
++), λGi > 0 (i ∈ I00

−0), λHi (i ∈ I00
0−) > 0, there exists

δ > 0 such that the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)}

has the same rank for every x ∈ Bδ(x∗), where

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈PM (x∗)},
I3 := I0+ ∪ {i ∈ I00

++|∇Gi(x∗) ∈PM (x∗)} ∪ I00
−0,

I4 := I+0 ∪ {i ∈ I00
++|∇Hi(x

∗) ∈PM (x∗)} ∪ I00
0−.

In the special case where there is no partition of I00 that satisfies the condition of the definition above,
then obviously the gradients are linearly independent and so MPCC-GMFCQ holds at x∗.

Furthermore, MPCC-GCRSC is weaker than MPCC-CRCQ. Indeed, MPCC-CRCQ requires that every
family of linearly dependent gradients remains linearly dependent in some neighborhood, while the MPCC-
GCRSC condition considers only the family of gradients that are linearly dependent with coefficients that
have M-stationary signs.

We now state that this new notion of MPCC-GCRSC is actually a MPCC CQ by proving that it implies
MPCC-CCP.

Definition 2.8. We say that a feasible point x∗ satisfies the MPCC-CCP if the set-valued mapping Rn 3
x⇒ KMPCC(x) such that

KMPCC(x) := {
∑

i∈Ig(x∗)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈I0+∪I00

λGi ∇Gi(x)−
∑

i∈I+0∪I00

λHi ∇Hi(x) :

λgi ∈ R+ and , either λGi λ
H
i = 0 either λGi > 0, λHi > 0 for i ∈ I00}

is outer semicontinuous at x∗, that is

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

In this context, the outer limit is taken in the sense of Kuratowski-Painlevé corresponding to the Definition
5.4 given in [34].

This definition is motivated by sequential optimality conditions from [3] for non-linear programming and
extended for (MPCC) in [32], where it has been proved to be a MPCC constraint qualification.

The following results give a characterization of some sequences that satisfy MPCC-CRSC and MPCC-
GCRSC at their limit point. Note that this result is essential for the convergence proof of relaxation methods
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for (MPCC) that will be studied in the next section since it proves boundedness of approximate stationary
sequences.

During the process of an iterative algorithm, we are interested in the study of accumulation points of
sequences computed by the relaxation method. It is common to compute sequences that satisfy the following
assumptions.

Assumption 2.1. Let {xk} and 0 6= {λk} ∈ Rp+ × Rm × Rq × Rq be such that xk → x∗ and

(i) ∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0,

(ii) ∀i /∈ Ig(x∗) lim
k→∞

λg,ki
‖λk‖∞

= 0, ∀i ∈ I+0 lim
k→∞

λG,ki

‖λk‖∞
= 0 and ∀i ∈ I0+ lim

k→∞

λH,ki

‖λk‖∞
= 0,

(iii) the family of gradients of non-vanishing multipliers in (i) are linearly independent.

This condition may correspond to some kind of sequential optimality conditions. Note that assumption
(iii) is not restrictive. According to Lemma D.1, we can build a sequence of multipliers that satisfies (i)
and (ii), such that the gradients corresponding to non-vanishing multipliers in equation (i) are linearly
independent for all k ∈ N. This may change the multipliers, but previously positive ones will stay at least
non-negative and vanishing multipliers will remain zero.

The first step in our analysis is to prove that the sequences of multipliers satisfying Assumption 2.1 are
bounded.

Theorem 2.2. Given two sequences {xk},{λk} that satisfy Assumption 2.1. Suppose that xk → x∗ ∈ Z,
and MPCC-CRSC holds at x∗. Then, the sequence {λk} is bounded.

Proof. Let {wk} be a sequence defined such that

wk :=
∑

j∈Ig(x∗)

λg,kj ∇gj(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

∑
j∈I0+∪I00

λG,kj ∇Gj(x
k)−

∑
j∈I+0∪I00

λH,kj ∇Hj(x
k). (1)

We prove by contradiction that the sequence {λk} is bounded. If {λk} were not bounded, there would
exist a subsequence such that

λk

‖λk‖∞
→ λ̄ 6= 0.

Here we consider a subsequence K, where the family of linearly independent gradients of non-vanishing
multipliers is the same for all k ∈ K. Note that this can be done with no loss of generality, since there is a
finite number of such subsequences and altogether they form a partition of the sequence.

Note that conditions (i) and (ii) give that limk→∞ wk = limk→∞−∇f(xk)/‖λk‖∞ = 0. Thus, dividing
by ‖λk‖∞ and passing to the limit in (1) yields

∑
i∈Ig(x∗)

λ̄gi∇gi(x
∗) +

m∑
i=1

λ̄hi∇hi(x∗)−
∑

i∈I0+∪I00

λ̄Gi ∇Gi(x∗)−
∑

i∈I+0∪I00

λ̄Hi ∇Hi(x
∗) = 0,

with λ̄gj = 0 for j /∈ Ig(x∗), λ̄Gj = 0 for j ∈ I+0 and λ̄Hj = 0 for j ∈ I0+ by (ii).
It follows that the gradients with non-zero multipliers involved in the previous equation are linearly

dependent.
MPCC-CRSC guarantees that these gradients remain linearly dependent in a whole neighborhood. This,

however, is a contradiction to the linear independence of these gradients given by Assumption 2.1. Here, we
used that for all k sufficiently large supp(λ̄) ⊆ supp(λk). Consequently, the sequence {λk} is bounded.
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The following result is similar to Theorem 2.2 and focus on the case where the limit point is a M-stationary
point.

Theorem 2.3. Given two sequences {xk},{λk} that satisfy Assumption 2.1. Suppose that xk → x∗ ∈ Z,
and MPCC-GCRSC holds at x∗. Furthermore, assume that ∀i ∈ I00

either lim
k→∞

λG,ki

‖λk‖∞
lim
k→∞

λH,ki

‖λk‖∞
= 0 or lim

k→∞

λG,ki

‖λk‖∞
> 0, lim

k→∞

λH,ki

‖λk‖∞
> 0. (2)

Then, the sequence {λk} is bounded.

Proof. The proof is completely similar to Theorem 2.2. Assuming that {λk} is not bounded, we can extract
a subsequence such that

λk

‖λk‖∞
→ λ̄ 6= 0.

Dividing by ‖λk‖∞ and passing to the limit in the equation (1) yields

∑
i∈Ig(x∗)

λ̄gi∇gi(x
∗) +

m∑
i=1

λ̄hi∇hi(x∗)−
∑

i∈I0+∪I00

λ̄Gi ∇Gi(x∗)−
∑

i∈I+0∪I00

λ̄Hi ∇Hi(x
∗) = 0,

with λ̄gj = 0 for j /∈ Ig(x∗), λ̄Gj = 0 for j ∈ I+0, λ̄Hj = 0 for j ∈ I0+ and either λ̄Gj λ̄
H
j = 0 or λ̄Gj > 0, λ̄Hj > 0

for j ∈ I00 by (ii) and (2).
It is clear that the family of gradients considered in the definition of MPCC-GCRSC corresponds to the

gradients with non-zero multipliers in the previous equation. Indeed, by linear dependence of the gradients
at x∗ any gradient whose multiplier is non-zero may be formulated as a linear combination of the other
gradients.

Therefore, those gradients with non-vanishing multipliers belong to the polar of the M-linearized cone.
MPCC-GCRSC guarantees that these gradients remain linearly dependent in a whole neighborhood, which
contradicts (iii) in Assumption 2.1. Thus, the sequence {λk} is bounded.

We conclude this section by a consequence of Theorem 2.3 that states an essential result for this section,
namely MPCC-GCRSC is a MPCC constraint qualification.

Corollary 2.1 (Corollary 2.2,[7]). MPCC-GCRSC implies MPCC-CCP.

We sum up this section in Figure 1 by giving the relationship between the various MPCC CQ defined
here. Note that MPCC-CRSC does not necessarily implies MPCC-GCRSC due to Remark 2.2 (page 6).

MPCC-LICQ =⇒MPCC-MFCQ
=⇒

MPCC-CRSC

=⇒
MPCC-GMFCQ =⇒ MPCC-GCRSC =⇒MPCC-CCP

Figure 1: Relations between the MPCC constraint qualifications.

3 The Butterfly Relaxation Methods

The focus of this paper is on relaxation methods to solve (MPCC). The sketch of such a method behaves as
follows: we consider a non-linear parametric program Rtk , where the complementarity constraints have been
relaxed using a parameter tk > 0. A sequence {xk+1} of stationary points of Rtk is then computed for each
value of tk > 0. Such stationary points are computed using iterative methods that require an initial point.
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We use the previous stationary point as an initial point. For {tk} converging to zero the sequence {xk+1}
should converge to a stationary point of (MPCC).

According to Section 2.2, our aim is to compute a M-stationary point of (MPCC). A motivation to
consider such methods is that the sequence of relaxed non-linear program may satisfy some constraint qual-
ification and then are more tractable for classical non-linear methods.

We consider a family of continuously differentiable non-decreasing concave functions θ : R →] − ∞, 1]
such that

θ(0) = 0, θt1(x) := θ

(
x

t1

)
∀t1 > 0 and lim

t1→0
θt1(x) = 1 ∀x ∈ R++,

completed in a smooth way for negative values by considering θt1(z < 0) = zθ′(0)/t1. Examples of such

functions are θ1
t1(x) = x

x+t1
and θ2

t1(x) = 1− exp−
x
t1 . Those functions have already been used in the context

of complementarity constraints in [16]. Using this family of functions, we denote

F1i(x; t1, t2) := Hi(x)− t2θt1(Gi(x)) and F2i(x; t1, t2) := Gi(x)− t2θt1(Hi(x)).

We propose a new family of relaxations with two positive parameters (t1, t2) defined such that for all
i ∈ {1, . . . , q}

ΦBi (G(x), H(x); t1, t2) = 0 =⇒ ΦBi (G(x), H(x); t1, t2) = F1i(x; t1, t2)F2i(x; t1, t2),

and ΦBi (G(x), H(x); t1, t2) is extended in a continuously differentiable as a function with negative values for
min(F1i(x; t1, t2), F2i(x; t1, t2)) < 0 and as a function with positive values otherwise. This new relaxation
uses two parameters t1 and t2 such that

t2θ
′(0) ≤ t1. (3)

This condition ensures that the intersection point between the sets {x ∈ Rn | F1(x; t1, t2) = 0} and {x ∈
Rn | F2(x; t1, t2) = 0} is reduced to the origin. In other words, the two branches of the relaxation does not
cross each other. A typical choice will be to take t2 = o(t1) motivated by strong convergence properties as
discussed in Section 4.1.

One way to write (Bu.) for t2 < θ′(0)t1 uses the NCP function from [25] by considering

ΦBi (G(x), H(x); t1, t2) :=

{
F1i(x; t1, t2)F2i(x; t1, t2), if F1i(x; t1, t2) + F2i(x; t1, t2) ≥ 0,

− 1
2

(
F1i(x; t1, t2)

2
+ F2i(x; t1, t2)

2
)

otherwise.
(Bu.)

This formulation will be used in the numerical part in Section 5 and in the study of convergence of approx-
imate points in Section 4.3. Most of the results presented in this article are only sensitive to the description
of the constraint at its boundary.

Our motivation is to consider regularization of the complementarity constraint, so we can also add a
regularization of the positivity constraints parametrized by t̄.

Figure 2 illustrates the feasible set of the relaxed complementarity constraint for t2 = 2t1 as well as the
influence of the parameters on the relaxation.

This method is similar to the methods (KDB) from [22] and (KS) from [25] in the sense that they can
also be written as a product of two functions. The main difference is that handling two parameters allows
bringing the two ”wings” of the relaxation closer. This observation motivated to consider algorithmic prop-
erties of a class of relaxation methods in a recent working paper [8]. A comparison of the feasible set of these
methods can be seen in Figure 3.

We now introduce some notations that will be extensively used in the sequel. Since the butterfly relaxation
uses two parameters we denote t := (t1, t2) to simplify the notation and by extension tk := (t1,k, t2,k).
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Figure 2: Feasible set of the butterfly relaxation for θt1(z) = z
z+t1

with t2 = 2t1 and influence of the
parameters.

Figure 3: The feasible set of the butterfly relaxation, the approximation from [22] and the relaxation from
[25].
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Let XBt,t̄ be the feasible set of RBt,t̄, which corresponds to the non-linear program related to the butterfly

relaxation of the complementarity constraints defined in (Bu.), that is

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄e, H(x) ≥ −t̄e,
ΦB(G(x), H(x); t) ≤ 0,

(RBt,t̄)

where e denotes the vector of all ones, and

XBt,t̄ := {x ∈ Rn | g(x) ≤ 0, h(x) = 0, G(x) ≥ −t̄e,H(x) ≥ −t̄e,ΦB(G(x), H(x); t) ≤ 0}.

The sets of indices used in the sequel are defined in the following way

IG(x; t) := {i = 1, . . . , q | Gi(x) + t̄ = 0},
IH(x; t) := {i = 1, . . . , q | Hi(x) + t̄ = 0},
IGH(x; t) := {i = 1, . . . , q | ΦBi (G(x), H(x); t) = 0},
I0+
GH(x; t) := {i ∈ IGH(x; t) | F1i(x; t) = 0, F2i(x; t) > 0},
I+0
GH(x; t) := {i ∈ IGH(x; t) | F1i(x; t) > 0, F2i(x; t) = 0},
I++
GH(x; t) := {i ∈ IGH(x; t) | F1i(x; t) > 0, F2i(x; t) > 0},
I00
GH(x; t) := {i ∈ IGH(x; t) | F1i(x; t) = F2i(x; t) = 0}.

Several relations between these sets follow directly from the definition of the relaxation. For instance, it
holds that IG ∩ IGH = IH ∩ IGH = ∅. The following two lemmas give more insights on the relaxation.

Lemma 3.1. Let x ∈ XBt,t̄, then it is true for the relaxation (Bu.) that:

(a) {i ∈ IGH(x; t) | F1i(x; t) = 0, F2i(x; t) < 0} = {i ∈ IGH(x; t) | F1i(x; t) < 0, F2i(x; t) = 0} = ∅;

(b) i ∈ IGH(x; t) =⇒ Gi(x) ≥ 0, Hi(x) ≥ 0.

Proof. Case (a) is direct considering that ΦBi (G(x), H(x); t1, t2) 6= 0 for F1i(x; t) + F2i(x; t) < 0.
By symmetry of the relaxation it is sufficient to assume that F1i(x; t) = Hi(x) − t2θt1(Gi(x)) = 0 for

some i = 1, . . . , q. Then, by definition of F2i(x; t) it holds that

F2i(x; t) = Gi(x)− t2θt1(Hi(x)) = Gi(x)− t2θt1(t2θt1(Gi(x))),

so Gi(x) ≥ 0 since in the other case by definition of the function θ it would follow that

F2i(x; t) = Gi(x)(1− (θ′(0)t2/t1)2),

which would be negative if Gi(x) < 0. Finally, Gi(x) ≥ 0 implies that Hi(x) ≥ 0 since F1i(x; t) = 0.

The following lemma sum up some of the key features of the relaxation.

Lemma 3.2. XBt,t̄ satisfy the following properties:

1. XB0,0 = Z;

2. XBta,t̄a ⊂ X
B
tb,t̄b

for all 0 <
ta,2

ta,1
<

tb,2
tb,1

and 0 < t̄a < t̄b;

3. ∩t,t̄≥0XBt,t̄ = Z.
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If the feasible set of the (MPCC) is non-empty, then the feasible set of the relaxed sub-problems are also
non-empty for all t ≥ 0. If for some parameter t ≥ 0 the set XBt,t̄ is empty, then it implies that Z is empty.

Finally, if a local minimum of RBt,t̄ already belongs to Z, then it is a local minimum of the (MPCC).
We focus in the sequel on the properties of these new relaxation schemes. We prove that the method

converges to an A-stationary point in Theorem 4.1 and to a M-stationary point, Theorem 4.2, with some
relation between the sequences {t2,k} and {t1,k}.

The main motivation to consider relaxation methods for (MPCC) is to solve a sequence of regular
problems. Under classical assumptions, the butterfly relaxed non-linear programs satisfy the Guignard
CQ, Theorem 4.3.

Finally, numerical results will be presented in Sect. 5 and show that these new methods are very com-
petitive compared to existing methods.

Before moving to our main results regarding convergence and regularity properties of the butterfly re-
laxation, we provide some useful results on the asymptotic behavior of functions θt1 and ΦB(G(x), H(x); t).
Direct computation gives the gradient of ΦB(G(x), H(x); t) in the following lemma.

Lemma 3.3. For all i ∈ {1, . . . , q}, the gradient of ΦBi (G(x), H(x); t) w.r.t. x for the relaxation (Bu.) is
given by

∇xΦBi (G(x), H(x); t) =


(
F1i(x; t)− t2θ′t1(Gi(x))F2i(x; t)

)
∇Gi(x)

+
(
F2i(x; t)− t2θ′t1(Hi(x))F1i(x; t)

)
∇Hi(x) if F1i(x; t) ≥ −F2i(x; t),(

t2θ
′
t1(Gi(x))F1i(x; t)− F2i(x; t)

)
∇Gi(x)

+
(
t2θ
′
t1(Hi(x))F2i(x; t)− F1i(x; t)

)
∇Hi(x) if F1i(x; t) < −F2i(x; t).

The following result illustrates the behavior of functions θt1 and their derivatives. The proof of this result
is given in Appendix C.

Lemma 3.4. Given two sequences {t1,k} and {t2,k}, which converge to 0 as k goes to infinity and ∀k ∈
N, (t1,k, t2,k) ∈ R2

++. We have for any z ∈ R+

lim
k→∞

t2,kθt1,k(z) = 0.

Furthermore, let {zk} be such that limk→∞ zk = 0. Then, either zk = O(t1,k) and so there exists a constant
Cθ ∈ [0, θ′(0)] such that

lim
k→∞

t2,kθ
′
t1,k

(zk) = Cθ lim
k→∞

t2,k
t1,k

,

otherwise, i.e zk = ω(t1,k), then

lim
k→∞

t2,kθ
′
t1,k

(zk) ≤ θ′(1) lim
k→∞

t2,k
t1,k

.

We conclude this section by an example that shows that the butterfly relaxation may improve relaxations
from [22] and [25]. Indeed, it illustrates an example where there are no sequence of stationary points that
converge to some undesirable point.

Example 3.1.
min
x∈R2

−x1 s.t x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

In this example, there are two stationary points: an S-stationary point (1, 0) that is the global minimum and
a M-stationary point (0, 0), which is not a local minimum. Unlike the relaxations (KDB) and (KS) where
for tk = 1

k a sequence xk = (tk 2tk)T , with λΦ,k = k, may converge to (0, 0) as k goes to infinity, there is no
sequences of stationary point that converges to this undesirable point with the butterfly relaxation.
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4 Theoretical Properties

The study of theoretical properties of the butterfly relaxation method is split into three parts: convergence
of the sequence of stationary points, existence of Lagrange multipliers for the relaxed non-linear program
and convergence of the sequence of approximate stationary points.

4.1 Convergence

In this section, we focus on the convergence properties of the butterfly relaxation method and the constraint
qualifications guaranteeing convergence of the sequence of stationary points generated by the method. Our
aim is to compute a M-stationary point or at least to provide a certificate if we converge to an undesirable
point.

Relaxation methods that converge to M-stationary points are introduced in [22] and [25]. C-stationary
points are also frequently encountered in these relaxations methods as in [36] and [29].

We prove in Theorem 4.1 that the butterfly relaxation converges to an A-stationary point and provide a
certificate independent of the multipliers in the case it converges to undesirable points. This result is improved
to a convergence to M-stationary points for some choices on the parameters t2 and t1 in Theorem 4.2.

Another main concern in the literature is to find the weakest constraint qualification, which ensures
convergence of the method. This has been extensively studied in the thesis [38] and related papers mentioned
herein, where they prove convergence of most of the existing relaxation methods in the literature under a
hypothesis close to MPCC-CRCQ. More recently in [32] the author proves convergence of the relaxation
from [22] and [25] under MPCC-CCP.

Convergence of the butterfly relaxation under MPCC-CRSC is proved in Proposition 4.1. An improved
result for some choices of the parameter t2 and t1 is given in Proposition 4.2 that uses our new constraint
qualification denoted MPCC-GCRSC. Example 4.2 shows that our methods may not converge under MPCC-
CCP since it requires boundedness of some multipliers.

Theorem 4.1. Given two sequences {tk} and {t̄k} of positive parameters satisfying (3) and decreasing to
zero as k goes to infinity. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points from Rn×Rp×Rm×R3q

that are stationary points of RBtk,t̄k for all k ∈ N with xk → x∗. Assume that the sequence

{λg,k, λh,k, ηG,k, ηH,k} (4)

is bounded, where for all i ∈ {1, . . . , q}

ηG,ki := λG,ki + λΦ,k
i

(
t2,kθ

′
t1,k

(Gi(x
k))F2i(x

k; tk)− F1i(x
k; tk)

)
,

ηH,ki := λH,ki + λΦ,k
i

(
t2,kθ

′
t1,k

(Hi(x
k))F1i(x

k; tk)− F2i(x
k; tk)

)
.

Then, x∗ is an A-stationary point.

The boundedness assumption on the sequence (4) is a classical assumption and is guaranteed under some
constraint qualification as shown in the next Proposition 4.1.

Proof. First, we identify the expressions of the multipliers of the complementarity constraint in Definition
2.4 through the stationary points of RBtk,t̄k . Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of stationary

points of RBtk,t̄k for all k ∈ N. The representation of ∇ΦB immediately gives ∇ΦBi (G(xk), H(xk); tk) =

0, ∀i ∈ I00
GH(xk; tk) for all k ∈ N. Thus, we can write

−∇f(xk) =

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

ηG,ki ∇Gi(xk)−
q∑
i=1

ηH,ki ∇Hi(x
k), (5)
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where

ηG,ki =


λG,ki , if i ∈ IG(xk; tk),

λΦ,k
i t2,kθ

′
t1,k

(Gi(x
k))F2i(x

k; tk), if i ∈ I0+
GH(xk; tk),

−λΦ,k
i F1i(x

k; tk), if i ∈ I+0
GH(xk; tk),

0, otherwise,

ηH,ki =


λH,ki , if i ∈ IH(xk; tk),

λΦ,k
i t2,kθ

′
t1,k

(Hi(x
k))F1i(x

k; tk), if i ∈ I+0
GH(xk; tk),

−λΦ,k
i F2i(x

k; tk), if i ∈ I0+
GH(xk; tk),

0, otherwise.

Notice that i ∈ {i = 1, . . . , q | F1i(x
k; tk) = 0} implies that i ∈ I0+

GH(xk; tk) ∪ I00
GH(xk; tk) or symmetrically

i ∈ {i | F2i(x
k; tk) = 0} implies that i ∈ I+0

GH(xk; tk) ∪ I00
GH(xk; tk) by concavity and t2,kθ

′(0) ≤ t1,k for all
k ∈ N.

We assume that the sequence {λg,k, λh,k, ηG,k, ηH,k} is bounded, then it converges, up to a subsequence,
to some limit denoted by {λg,∗, λh,∗, ηG,∗, ηH,∗}.

These multipliers are well-defined since

IG(xk; tk) ∩ IGH(xk; tk) ∩
(
{1, . . . , q} \ I00

GH(xk; tk)
)

= ∅,
IH(xk; tk) ∩ IGH(xk; tk) ∩

(
{1, . . . , q} \ I00

GH(xk; tk)
)

= ∅,

and for k sufficiently large

supp(λG,k) ⊆ IG(xk; tk), supp(λH,k) ⊆ IH(xk; tk), supp(λG,k) ⊆ IGH(xk; tk),

supp(ηG,k) ⊆ IGH(xk; tk) ∩ ({1, . . . , q} \ I00
GH(xk; tk)),

supp(ηH,k) ⊆ IGH(xk; tk) ∩ ({1, . . . , q} \ I00
GH(xk; tk)).

Moreover, for k sufficiently large it holds

supp(λG,∗) ⊆ supp(λG,k), supp(λH,∗) ⊆ supp(λH,k),

supp(ηG,∗) ⊆ supp(ηG,k), supp(ηH,∗) ⊆ supp(ηH,k).

The proof that shows convergence of the sequence and W-stationary of x∗ will be given in Section 4.3 by
Lemma 4.1 on page 22 for εk = 0.
Let us now verify that x∗ is an A-stationary point by computing the multipliers for indices i ∈ I00. We
denote

I0,k
G := {i = 1, . . . , q | ηG,ki = 0} and I0,k

H := {i = 1, . . . , q | ηH,ki = 0},

and I0,∗
G , I0,∗

H the sets for ηG,∗ and ηH,∗. Consider the various possibles cases:

1. If i ∈ supp(λG,∗) ∩ supp(λH,∗), then for k sufficiently large i ∈ supp(λG,k) ∩ supp(λH,k). One has

λG,ki ≥ 0, λH,ki ≥ 0 and
Gi(x

k) = Hi(x
k) = −t̄k.

2. If i ∈ supp(λG,∗) ∩ supp(ηH,∗), then for k sufficiently large i ∈ supp(λG,k) ∩ supp(ηH,k). One has

λG,ki ≥ 0, Gi(x
k) = −t̄k and necessarily i ∈ IGH(xk; tk), which is not possible.

3. The case i ∈ supp(ηG,∗) ∩ supp(λH,∗) is completely similar.

4. If i ∈ supp(λG,∗) ∩ I0,∗
H , then ηG,∗i ≥ 0 and ηH,∗i = 0.

5. If i ∈ I0,∗
G ∩ supp(λH,∗), then ηG,∗i = 0 and ηH,∗i ≥ 0.
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6. If i ∈ I0,∗
G ∩ I0,∗

H , then ηG,∗i = ηH,∗i = 0.

7. If i ∈ I0,∗
G ∩ supp(ηH,∗), then i ∈ I0,k

G ∩ supp(ηH,k). Since ηG,k = 0 and ηH,k free, one has λΦ,k
i ≥ 0

and then i ∈ IGH(xk; tk).

ηG,ki = 0⇐⇒ F1i(x
k; tk) = t2,kθ

′
t1,k

(Gi(x
k))F2i(x

k; tk) or λΦ,k
i = 0.

Moreover t2,kθ
′
t1,k

(Gi(x
k)) > 0, so either λΦ,k

i = 0 or F1i(x
k; tk) = F2i(x

k; tk) = 0. It follows that

ηG,∗i = ηH,∗i = 0.

8. The case i ∈ supp(ηG,∗) ∩ λH0 is completely similar to the previous case and leads to ηG,∗i = ηH,∗i = 0.

9. If i ∈ supp(ηG,∗) ∩ supp(ηH,∗), then i ∈ supp(ηG,k) ∩ supp(ηH,k) for k sufficiently large and i ∈
IGH(xk; tk).

(a). i ∈ I00
GH(xk; tk) implies that F1i(x

k; tk) = F2i(x
k; tk), therefore G(xk) = H(xk) = 0 and ηG,∗i =

ηH,∗i = 0.

(b). If i ∈ I0+
GH(xk; tk), then F1i(x

k; tk) = 0

0 < Hi(x
k) = t2,kθt1,k(Gi(x

k)) <
t2,kθ

′(0)

t1,k
Gi(x

k),

therefore F2i(x
k; tk) > 0. Assume λΦ,k

i is not bounded, then going through the limit there is a
non-negative constant C such that

lim
k→∞

λΦ,k
i F2i(x

k; tk) = C ≥ 0,

and so ηH,∗i = −C. If λΦ,k
i is bounded, it corresponds to the case C = 0. Furthermore either one

has
lim
k→∞

t2,kθ
′
t1,k

(Gi(x
k)) ≥ 0

and so ηG,∗i ≥ 0 and ηH,∗i ≤ 0. Either one has

lim
k→∞

t2,kθ
′
t1,k

(Gi(x
k)) = 0

and so ηG,∗i = 0 and ηH,∗i < 0.

(c). The case i ∈ I+0
GH(xk; tk) is completely similar to the previous case.

Indices that correspond to the first eight cases and 9.a) are indices that satisfy S-stationary condition.
Furthermore, the indices in cases 9.b) and 9.c), when the constant C = 0, also have the sign of S-stationary
indices.

M- and A-stationary indices may appear only in the case 9.b) when C 6= 0 and either t2,kθ
′
t1,k

(Gi(x
k)) = 0

or t2,kθ
′
t1,k

(Gi(x
k)) > 0 for i ∈ I+0

GH(xk; tk) and symmetrically in case 9.c).

The following proposition proves the boundedness of the sequence of multipliers under MPCC-CRSC by
a direct application of Theorem 2.2. Here, we focus on the sequence of multipliers {λg,k, λh,k, ηG,k, ηH,k}
defined in (4), where we assume that the gradients associated with the non-vanishing multipliers in this
sequence are linearly independent. Following the discussion before Theorem 2.2, this can be done without
loss of generality.
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Proposition 4.1. Given two sequences {tk} and {t̄k} of positive parameters satisfying (3) and decreasing
to zero. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points that are stationary points of RBtk,t̄k for

all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗. Furthermore, assume that the family of
gradients of non-vanishing multipliers in (5) are linearly independent for all k ∈ N. Then, the sequence
{λg,k, λh,k, ηG,k, ηH,k}, defined in (4), is bounded.

Proof. In order to apply Theorem 2.2, we prove that Assumption 2.1 for {xk, λg,k, λh,k, ηG,k, ηH,k} is verified
here. Denote ‖ηk‖∞ := ‖λg,k, λh,k, ηG,k, ηH,k‖∞.

Since {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} are stationary points of RBtk,t̄k , the proof of Theorem 4.1 showed

that the equation (5) holds true. It follows from this equation that (i) is satisfied.
Let us now verify condition (ii). By definition of {λg,k} it holds that Ig(xk) ⊂ Ig(x∗) and so ∀i /∈

Ig(x∗) lim
k→∞

λg,ki = 0. Let i ∈ I+0, we verify that lim
k→∞

ηG,k
i

‖ηk‖∞ = 0. The case ∀i ∈ I0+ lim
k→∞

ηG,k
i

‖ηk‖∞ = 0 will

follow symmetrically.
Notice that λG,ki = 0, since stationary condition implies that λG,ki (Gi(x

k) + t̄k) = 0 and Gi(x
k) →

Gi(x
∗) > 0.

Assume by contradiction that limk→∞
ηG,k
i

‖ηk‖∞ 6= 0. By definition of ηG,k and since λG,ki = 0, this implies

that λΦ,k
i > 0. As a consequence i ∈ IGH and in particular i ∈ I0+

GH . Indeed, if i ∈ I+0
GH , it would follow that

F2i(x
k; tk) = Gi(x

k)− t2,kθt1,k(Hi(x
k)) = 0, which would contradict Gi(x

k) → Gi(x
∗) > 0. Besides, it also

holds that λH,ki = 0, since supp(λΦ,k
i ) ∩ supp(λH,ki ) = ∅. Here, we used that by definition of the relaxation

it always holds that IH ∩ IGH = ∅. These simplifications yields

ηG,ki = λΦ,k
i t2,kθ

′
t1,k

(Gi(x
k))F2i(x

k; tk) and ηH,ki = −λΦ,k
i F2i(x

k; tk).

However, by hypothesis on the sequences {t1,k} and {t2,k}, this gives that

0 ≤ lim
k→∞

ηG,ki

‖ηk‖∞
≤ lim
k→∞

ηG,ki

|ηH,ki |
≤ lim
k→∞

t2,kθ
′
t1,k

(Gi(x
k)) = 0,

leading to a contradiction, so ∀i ∈ I+0 lim
k→∞

ηG,k
i

‖ηk‖∞ = 0.

Finally, the linear independence assumption and (5) give condition (iii). In conclusion, {xk, λg,k, λh,k, ηG,k, ηH,k}
satisfies Assumption 2.1, and the result follows by a straightforward application of Theorem 2.2.

In [32], the author proves similar convergence results for the relaxations [22] and [25] using the very weak
constraint qualification MPCC-CCP, obtained by deriving the sequential optimality conditions from [3] in
non-linear programming to (MPCC). However, this constraint qualification does not ensure boundedness of
the sequence of multipliers (4), which is necessary for the proof of our previous theorem.

The following example shows that the result of Proposition 4.1 is sharp since convergence cannot be
ensured assuming only that MPCC-GCRSC or even MPCC-GMFCQ holds at the limit point.

Example 4.1. Consider the following two-dimensional example

min
x∈R2

x2 s.t 0 ≤ x1 + x2
2 ⊥ x1 ≥ 0.

MPCC-GMFCQ holds at (0, 0)T . However, MPCC-CRSC obviously fails to hold at this point. The point
(0, 0)T is even not a W-stationary point.

In this case, there exists a sequence of stationary points of the relaxation such that {xk} converges to the
origin. Given a sequence {xk}, with {1} ∈ IGH(xk; tk), such that xk → (0, 0)T then λG,k = λH,k = 0 and
we can choose λΦ,k that satisfies

ηG,k = −ηH,k =
1

2xk2
.

The sequence {xk} converges to an undesirable point.
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The main reason for this behaviour is that MPCC-GMFCQ does not give strong enough conditions in
the neighbourhood of a point that is not a M-stationary point.

The result of the Theorem 4.1 can be tightened if we consider a particular choice of parameter. It is
an essential result, since it shows that a subfamily of the butterfly relaxation has the desired property to
converge to a M-stationary point.

Theorem 4.2. Consider the same assumptions as in Theorem 4.1. If, in addition, we assume t2,k = o(t1,k),
then, x∗ is a M-stationary point.

Proof. Theorem 4.1 proves that x∗ is an A-stationary point. Thus, it remains to verify that there is no index
i ∈ I00 such that ηG,∗i ηH,∗i < 0.

In the proof of the Theorem 4.1 we considered all the possible cases, and it follows that the case ηG,∗i ηH,∗i <
0 may only occur in the case (9).(b) (and by symmetry (9).(c)). In particular, in (9).(b) the sequences
{t2,k}, {t1,k} and {xk} satisfy

lim
k→∞

t2,kθ
′
t1,k

(Gi(x
k)) > 0.

However, by Lemma 3.4 this is impossible when t2,k = o(t1,k).

In Theorem 4.2, we assumed that the sequence (4) is bounded. The following result gives an equivalent
result to Proposition 4.1 in the case t2,k = o(t1,k) with a weaker constraint qualification. The proof of this
result, similar to the one of Proposition 4.1, follows by a straightforward application of Theorem 2.3.

Proposition 4.2. Given two sequences {tk} and {t̄k} of positive parameters satisfying (3), t2,k = o(t1,k),
and decreasing to zero as k goes to infinity. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points that
are stationary points of RBtk,t̄k for all k ∈ N with xk → x∗ such that MPCC-GCRSC holds at x∗. Furthermore,

assume that the family of gradients of non-vanishing multipliers in (5) are linearly independent for all k ∈ N.
Then, the sequence (4) is bounded.

To conclude, any sequence {xk} with t2,k = o(t1,k) that satisfies MPCC-GCRSC at its limit point
converges to a M-stationary point.

The following example shows that this result is sharp, since it illustrates a situation where MPCC-
GCRSC does not hold and the method converges to an undesirable W-stationary point. This phenomenon
only happens if the sequence of multipliers (4) is unbounded.

Example 4.2. Consider the problem

min
x∈R2

x2
2 s.t 0 ≤ x2

1 ⊥ x1 + x2
2 ≥ 0.

The feasible set is Z = {(x1, x2)T ∈ R2 | x1 = 0} ∪ {(x1, x2)T ∈ R2 | x1 = −x2
2}. (0, 0)T is the unique

M-stationary, with (λG, λH = 0).
It is easy to verify that MPCC-CCP holds at this point. However, MPCC-GCRSC fails to hold at any

point (0, a ∈ R)T since the gradient of x2
1 is non-zero for x 6= 0.

Consider a sequence such that for (t1,k, t2,k) sufficiently small F2(xk; tk) = 0 and

xk1 = t2,kθ
′
t1,k

(xk1 + a2), xk2 = a, λΦ,kF1i(x
k; tk) =

1

−t2,kθ′t1,k(xk1 + a2)
.

Obviously, the sequence xk goes to x∗ = (0, a 6= 0)T , which is not a W-stationary point. Indeed, we have

ηG,k =
1

t2,kθ′t1,k(xk1 + a2)
→∞ and ηH,k = −1 6= 0.
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4.2 Existence of Lagrange Multipliers for the Relaxed Sub-Problems

In this part, we study some regularity properties of the relaxed non-linear programs. Indeed, in order to
guarantee the existence of a sequence of stationary points, the relaxed non-linear programs must satisfy some
constraint qualifications in the neighborhood of the limit point. The butterfly relaxation satisfies Guignard
CQ as stated in Theorem 4.3, which is equivalent in terms of regularity to the relaxation (KS).

Theorem 4.3. Let x∗ ∈ Z, satisfying MPCC-LICQ. Then, there exists t∗ > 0 and a neighborhood U(x∗) of
x∗ such that:

∀t ∈ (0, t∗] : x ∈ U(x∗) ∩ XBt,t̄ =⇒ standard GCQ holds at x for RBt,t̄.

Proof. Let x ∈ U(x∗) ∩ XBt,t̄. We know that LXB
t,t̄

(x)◦ ⊆ TXB
t,t̄

(x)◦. So, it is sufficient to show the converse

inclusion.
The linearized cone of RBt,t̄ is given by

LXB
t,t̄

(x) = {d ∈ Rn | ∇gi(x)T d ≤ 0, i ∈ Ig(x), ∇hi(x)T d = 0, i = 1, . . . ,m,

∇Gi(x)T d ≥ 0, i ∈ IG(x; t̄), ∇Hi(x)T d ≥ 0, i ∈ IH(x; t̄),

∇ΦBi (G(x), H(x); t)
T
d ≤ 0, i ∈ I0+

GH(x; t) ∪ I+0
GH(x; t)},

using that ∇ΦBi (G(x), H(x); t) = 0 for all i ∈ I00
GH(x, t).

Let us compute the polar of the tangent cone. Consider the following set of non-linear constraints
parametrized by z ∈ XBt,t̄ and I ⊂ I00

GH(z; t), defined by

SI(z) := {x ∈ Rn | g(x) ≤ 0, h(x) = 0, G(x) ≥ −t̄e, H(x) ≥ −t̄e,
ΦBi (G(x), H(x); t) ≤ 0, i /∈ I00

GH(z; t),

F1i(x; t) ≤ 0, F2i(x; t) ≥ 0, i ∈ I,
F1i(x; t) ≥ 0, F2i(x; t) ≤ 0, i ∈ Ic},

(6)

where Ic ∪ I = I00
GH(z; t) and I ∩ Ic = ∅. Since z ∈ XBt,t̄, it is obvious that z ∈ SI(z).

By construction of U(x∗) and t∗, the gradients {∇gi(x∗) (i ∈ Ig(x∗)),∇hi(x∗) (i = 1, . . . ,m),∇Gi(x∗) (i ∈
I00 ∪ I0+),∇Hi(x

∗) (i ∈ I+0 ∪ I00)} remain linearly independent for all x ∈ U(x∗) by continuity of the
gradients and we have

Ig(x) ⊆ Ig(x∗), IG(x; t̄) ⊆ I00 ∪ I0+, IH(x; t̄) ⊆ I+0 ∪ I00,

I00
GH(x; t) ∪ I+0

GH(x; t) ⊆ I00 ∪ I0+,

I00
GH(x; t) ∪ I0+

GH(x; t) ⊆ I+0 ∪ I00.

Therefore, by Lemma A.1, MFCQ holds for (6) at x. Furthermore, by Lemma D.2 and since MFCQ in
particular implies Abadie CQ it follows that

TXB
t,t̄

(x) = ∪I⊆I00
GH(x;t)TSI(x)(x) = ∪I⊆I00

GH(x;t)LSI(x)(x).

By [4, Theorem 3.1.9], passing to the polar, we get

TXB
t,t̄

(x)◦ = ∩I⊆I00
GH(x;t)LSI(x)(x)◦.

By [4, Theorem 3.2.2], we know that

LSI(x)(x)◦ = {v ∈ Rn | v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x;t̄)

λGi ∇Gi(x)−
∑

i∈IH(x;t̄)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t)∪I0+

GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)−

∑
i∈I

λGi ∇Gi(x) +
∑
i∈Ic

λGi ∇Gi(x)

−
∑
i∈I

λHi ∇Hi(x) +
∑
i∈Ic

λHi ∇Hi(x) : λg, λG, λH , λΦ ≥ 0}.
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For v ∈ TXB
t,t̄

(x)◦, we have v ∈ LSI(x)(x)◦ for all I ⊆ I00
GH(x; t). If we fix such I, then there exists some

multipliers λh and λg, λG, λH , λΦ ≥ 0 so that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x;t̄)

λGi ∇Gi(x)−
∑

i∈IH(x;t̄)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t)∪I0+

GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)

−
∑
i∈I

λGi ∇Gi(x) +
∑
i∈Ic

λGi ∇Gi(x)−
∑
i∈I

λHi ∇Hi(x) +
∑
i∈Ic

λHi ∇Hi(x).

Now, it also holds that v ∈ LSIc (x)(x)◦ and so there exists some multipliers λh and λg, λG, λH , λΦ ≥ 0 such

that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x;t̄)

λGi ∇Gi(x)−
∑

i∈IH(x;t̄)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t)∪I0+

GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)

+
∑
i∈I

λGi ∇Gi(x)−
∑
i∈Ic

λGi ∇Gi(x) +
∑
i∈I

λHi ∇Hi(x)−
∑
i∈Ic

λHi ∇Hi(x).

By the construction of t∗ and U(x∗), the gradients involved here are linearly independent and so the multi-
pliers in both previous equations must be equal. Thus, the multipliers λGi and λHi with indices i in I ∪ Ic
vanish.
Therefore, v ∈ LXB

t,t̄
(x)◦ and as v has been chosen arbitrarily then TXB

t,t̄
(x)◦ ⊆ LXB

t,t̄
(x)◦, which concludes

the proof.

This result is sharp as shown by the following example, since Abadie CQ does not hold except for the
special case where t2θ

′(0) = t1. In this case, a stronger result than Theorem 4.3 can be found in [7].

Example 4.3. Consider the problem

min
x∈R2

f(x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

At x∗ = (0, 0)T it holds that ∇ΦB(G(x), H(x); t) = (0, 0)T and so LXB
t,t̄

(x∗) = R2, which is obviously

different from the tangent cone at x∗ for t2θ
′(0) < t1 and t̄ > 0.

However, when t2θ
′(0) = t1 the tangent cone is the whole space and thus Abadie CQ holds at x∗ in this

case.

The following example shows that we cannot have a similar result using MPCC-GMFCQ.

Example 4.4. Consider the set
0 ≤ x1 + x2

2 ⊥ x1 ≥ 0.

MPCC-GMFCQ holds at x∗ = (0, 0)T , since the gradients are linearly dependent but only with coefficients
λG = −λH that does not satisfy the condition given in Definition 2.6.

Now, we can choose a sequence of points such that xk → x∗ and

F2(xk; tk) = 0,−t2,kθ′t1,k(H(xk))→ −1.

Since ∇G(x∗) = ∇H(x∗) it holds that ∇F2(x∗; 0) = (0 0)T and so MFCQ does not hold for (6).
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It is disappointing to require MPCC-LICQ to obtain only GCQ, but when I00 is empty we obtain the
stronger LICQ.

Theorem 4.4. Let x∗ ∈ Z, satisfying MPCC-LICQ. Then, there exists t∗ > 0 and a neighborhood U(x∗) of
x∗ such that

∀t ∈ (0, t∗] : x ∈ U(x∗) ∩ XBt,t̄ and I00
GH(x; t) = ∅ =⇒ standard LICQ holds at x for RBt,t̄.

Proof. Let x ∈ U(x∗)∩XBt,t̄ and t sufficiently small. We prove that the gradients of the constraints involved

in RBt,t̄ are linearly independent, by verifying that the trivial solution is the only solution to the following
equation

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x) +
∑

i∈IG(x;t̄)

∇Gi(x)λGi +
∑

i∈IH(x;t̄)

∇Hi(x)λHi

+
∑

i∈I+0
GH(x;t)

∇Gi(x)
(
λΦ
i (F1i(x; t)− F2i(x; t)t2θ

′
t1(Gi(x)))

)
+
∑

i∈I0+
GH(x;t)

∇Hi(x)
(
λΦ
i (F2i(x; t)− F1i(x; t)t2θ

′
t1(Hi(x)))

)
.

MPCC-LICQ and the following inclusions

Ig(x) ⊆ Ig(x∗),
IG(x; t̄) ⊆ I00 ∪ I0+, IH(x; t̄) ⊆ I+0 ∪ I00,

I+0
GH(x; t) ⊆ I00 ∪ I0+, I0+

GH(x; t) ⊆ I+0 ∪ I00,

prove that the solution of the equation above satisfies

λg = 0, λh = 0, λG = 0, λH = 0,

− λΦ
i F2i(x; t)t2θ

′
t1(Gi(x)) = 0 and λΦ

i F2i(x; t) = 0 ∀i ∈ I0+
GH(x; t),

λΦ
i F1i(x; t) = 0 and − λΦ

i F1i(x; t)t2θ
′
t1(Hi(x)) = 0 ∀i ∈ I+0

GH(x; t).

It follows that λΦ
i = 0, so, the only solution is the trivial one.

4.3 Convergence of the epsilon-stationary points

Non-linear programming algorithms usually compute sequences of approximate stationary points or ε-
stationary points. This approach, that has become an active subject recently, can alter significantly the
convergence analysis of relaxation methods as shown in [22, 26, 27] and [32].

Previous results in [27] prove convergence to C-stationary point for the relaxation (SS) and the one
from Lin and Fukushima, [29], under some hypotheses on the sequence εk, respectively εk = O(tk) and
εk = o(t2k). Furthermore, the authors in [27] also provide a counter-example with a sequence converging to a
W-stationary point if these conditions do not hold. Additionally, the authors in [27], prove that relaxations
(KDB) and (KS) converge only to a W-stationary point and they require more hypotheses on the sequences
εk and xk to prove the convergence to a C- or a M-stationary point.

In the same way as in Theorem 4.1, we consider through this section a sequence of multipliers that should
verify the stationary conditions. We denote for all i ∈ {1, . . . , q}

ηG,ki :=

λ
G,k
i +λΦ,k

i

(
t2,kθ

′
t1,k

(Gi(x
k))F2i(x

k; tk)−F1i(x
k; tk)

)
, if F1i(x

k; tk)≥−F2i(x
k; tk)

λG,ki +λΦ,k
i

(
F2i(x

k; tk)−t2,kθ′t1,k(Gi(x
k))F1i(x

k; tk)
)
, if F1i(x

k; tk)<−F2i(x
k; tk),

ηH,ki :=

λ
H,k
i +λΦ,k

i

(
t2,kθ

′
t1,k

(Hi(x
k))F1i(x

k; tk)−F2i(x
k; tk)

)
, if F1i(x

k; tk)≥−F2i(x
k; tk)

λH,ki +λΦ,k
i

(
F1i(x

k; tk)−t2,kθ′t1,k(Hi(x
k))F2i(x

k; tk)
)
, if F1i(x

k; tk)<−F2i(x
k; tk).

(7)
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In the following lemma, we prove that the situation is similar with the butterfly relaxation method. For
this study, we need more than just the description of the boundary of the constraints set. Therefore, we
consider the butterfly relaxation defined in equation (Bu.).

Lemma 4.1. Given {tk}, {t̄k} sequences of parameters decreasing to zero, satisfying (3) and {εk} with εk =
o(t̄k). Let {xk, λk} be a sequence of εk-stationary points of RBtk,t̄k for all k with xk → x∗. Let {ηG,k}, {ηH,k} be

the two sequences defined in (7). Assume that the sequence of multipliers {λh,k, λg,k, ηG,k, ηH,k} is bounded.
Then, x∗ is a W-stationary point of (MPCC).

Proof. By definition, for all k ∈ N, when xk is a εk stationary point for RBtk,t̄k it holds∥∥∥∥∥∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)

−
q∑
i=1

λH,ki ∇Hi(x
k) +

q∑
i=1

λΦ,k
i ∇ΦBi (G(xk), H(xk); tk)

∥∥∥∥∥
∞

≤ εk,

and

|hi(xk)| ≤ εk, ∀i ∈ {1, . . . ,m},

gi(x
k) ≤ εk, λg,ki ≥ 0,

∣∣∣λg,ki gi(x
k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , p},

Gi(x
k) + t̄k ≥ −εk, λG,ki ≥ 0,

∣∣∣λG,ki (Gi(x
k) + t̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄k ≥ −εk, λH,ki ≥ 0,
∣∣∣λH,ki (Hi(x

k) + t̄k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},

ΦBi (G(xk), H(xk); tk) ≤ εk, λΦ,k
i ≥ 0,

∣∣∣λΦ,k
i ΦBi (G(xk), H(xk); tk)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}.
The representation of∇ΦBi (G(xk), H(xk); tk) immediately gives∇ΦBi (G(xk), H(xk); tk) = 0, ∀i ∈ I00

GH(xk; tk)
for all k ∈ N. Thus, we can rewrite the inequality above as∥∥∥∥∥∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

ηG,ki ∇Gi(xk)−
q∑
i=1

ηH,ki ∇Hi(x
k)

∥∥∥∥∥
∞

≤ εk.

Besides, the sequence of multipliers {λh,k, λg,k, ηG,k, ηH,k} is assumed bounded. Therefore, it follows that
the sequence of multipliers converges up to some subsequence to some limit point

{λh,k, λg,k, ηG,k, ηH,k} → (λh, λg, ηG, ηH).

It is to be noted that for k sufficiently large, it holds that

supp(λg,k) ⊂ supp(λg), supp(ηG,k) ⊂ supp(ηG), supp(ηH,k) ⊂ supp(ηH).

Obviously, since εk ↓ 0 it follows that x∗ ∈ Z, ∇xL1
MPCC(x∗, λh, λg, ηG, ηH) = 0 by εk-stationary conditions

and that λgi = 0 for i /∈ Ig(x∗). It remains to show that for indices i ∈ I+0, ηGi = 0. The opposite case for
indices i ∈ I0+ would follow in a completely similar way. So, let i be in I+0.
By definition of εk-stationarity it holds for all k that

|λG,ki (Gi(x
k) + t̄k)| ≤ εk.

Therefore, λG,ki → 0 since εk ↓ 0 and Gi(x
k) + t̄k → Gi(x

∗) > 0.
Now, there are two possible cases: either F1i(x

k; tk) +F2i(x
k; tk) ≥ 0 either F1i(x

k; tk) +F2i(x
k; tk) < 0.

Consider the case F1i(x
k; tk) + F2i(x

k; tk) ≥ 0 and denote

αHi (xk; tk) := −t2,kθ′t1,k(Gi(x
k))F2i(x

k; tk) + F1i(x
k; tk),

αGi (xk; tk) := −t2,kθ′t1,k(Hi(x
k))F1i(x

k; tk) + F2i(x
k; tk).
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We remind that F1i(x
k; tk) = Hi(x) − t2,kθt1,k(Gi(x)) and F2i(x

k; tk) = Gi(x) − t2,kθt1,k(Hi(x)). Thus,

limk→∞(F2i(x
k; tk), F1i(x

k; tk)) = (Gi(x
∗), 0) and Gi(x

∗) > 0. Furthermore, using that F1i(x
k; tk) +

F2i(x
k; tk) ≥ 0 yields to

αHi (xk; tk) ≤ −t2,kθ′t1,k(Gi(x
k))F2i(x

k; tk)− F2i(x
k; tk) ≤ 0,

for k sufficiently large, since F2i(x
k; tk)→ G(x∗). As a consequence it holds that

lim
k→∞

αHi (xk; t2,k)λΦ,k
i ≤ 0,

which is necessarily a finite value since the sequence {ηG,k} is bounded. It remains to prove that limk→∞ αHi (xk; t2,k)λΦ,k
i =

0. If this is not true, then the sequence {λΦ,k} must be unbounded. Assume by contradiction that the se-
quence {λΦ,k} is unbounded.

Now, limk→∞ F1i(x
k; tk)λΦ,k

i = 0 since
∣∣∣λΦ,k
i ΦBi (G(xk), H(xk); tk)

∣∣∣ ≤ εk and limk→∞ F2i(x
k; tk) >

0. So, by (Bu.) we have that lim
k→∞

αGi (xk; t2,k) = Gi(x
∗) > 0 and therefore lim

k→∞
αGi (xk; t2,k)λΦ,k

i =

lim
k→∞

Gi(x
k)λΦ,k

i =∞. Boundedness assumption in the statement of the lemma implies that ηHi is bounded

and so
lim
k→∞

|ηHi | = lim
k→∞

|λH,ki − αGi (xk; t2,k)λΦ,k
i | <∞.

The complementarity condition on Hi(x
k) ≥ −t̄k necessarily gives that limk→∞−Hi(x

k)/t̄k = 1 otherwise

λH,ki would be bounded. However, this leads to a contradiction with λΦ,k → ∞, since λΦ,k
i F1i(x

k; tk) → 0

gives that λΦ,k
i t̄k ≤ εk and εk = o(t̄k) by assumption. So, in the case F1i(x

k; tk) + F2i(x
k; tk) ≥ 0 it holds

that ηG,∗i = 0.
Consider the case F1i(x

k; tk) +F2i(x
k; tk) < 0. As pointed out above, for i ∈ I+0, it is true by (Bu.) that

F1i(x
k; tk) → Hi(x

∗) = 0 and F2i(x
k; tk) → Gi(x

∗) > 0. Therefore, for k sufficiently large this case never

happen. This concludes the proof that ηG,∗i = 0.

The case i ∈ I0+ is completely similar by symmetry and gives that ηH,∗i = 0. So, x∗ is a W-stationary
point.

In order to attain the goal of computing a M-stationary, additional assumptions are required as illustrated
by the following result.

Lemma 4.2. Under the hypothesis of Lemma 4.1, if in addition, the sequence {εk} satisfies εk = o(max(|G(xk)|, |H(xk)|)),
then, x∗ is a M-stationary point of (MPCC).

The notation εk = o(max(|G(xk)|, |H(xk)|)) means here that for all i = 1, . . . , q, εk = o(max(|Gi(xk)|, |Hi(x
k)|)).

Proof. By Lemma 4.1, we already known that x∗ is a W-stationary point.
We now consider indices i ∈ I00. Our aim here is to prove that x∗ is a M-stationary point, i.e. whenever

ηG,ki ηH,ki → ηG,∗i ηH,∗i it holds that either ηG,∗i ηH,∗i = 0 or ηG,∗i > 0, ηH,∗i > 0 .
Without loss of generality suppose that max(|Gi(xk)|, |Hi(x

k)|) = |Gi(xk)| 6= 0, and so limk→∞
εk

|Gi(xk)| =

0. If Gi(x
k) = 0, then it follows that Hi(x

k) = 0 and we are done. Let α be such that

lim
k→∞

|Gi(xk)|
|t2,kθt1,k(Hi(xk))|

= α.

It should be noticed that α > 1, otherwise |Gi(xk)| ∼ |t2,kθt1,k(Hi(x
k))|, which is a contradiction with

|Gi(xk)| ≥ |Hi(x
k)| and t2,k = o(t1,k).

If the sequence {λΦ,k} is bounded, then ηG,∗i ≥ 0, ηH,∗i ≥ 0 and we are done by non-negativity of λG,k

and λH,k. So, we focus on an unbounded sequence {λΦ,k}.
We consider separately the two cases F1i(x

k; tk) + F2i(x
k; tk) ≥ 0 and F1i(x

k; tk) + F2i(x
k; tk) < 0.
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a) When F1i(x
k; tk) + F2i(x

k; tk) ≥ 0, we have∣∣∣∣λΦ,k
i F1i(x

k; tk)
F2i(x

k; tk)

Gi(xk)

∣∣∣∣ =

∣∣∣∣∣λΦ,k
i F1i(x

k; tk)

(
1−

t2,kθt1,k(Hi(x
k))

Gi(xk)

)∣∣∣∣∣ ≤ εk
|Gi(xk)|

,

so λΦ,k
i F1i(x

k; tk)→ 0 and F2i(x
k; tk) > 0, since α > 1.

By the complementarity condition |λG,k(Gi(x
k) + t̄k)| ≤ εk, we obtain∣∣∣∣λG,ki

(
1 +

t̄k
Gi(xk)

)∣∣∣∣ ≤ εk
|Gi(xk)|

.

If limk→∞ λG,ki = 0, then by boundedness assumption limk→∞ ηG,ki = 0 and we are done. So, we

consider limk→∞ λG,ki 6= 0, which implies that limk→∞Gi(x
k)/t̄k = −1.

In a similar way, if limk→∞ λH,ki = 0, then limk→∞ ηH,ki = 0 by boundedness assumption. So, we

consider limk→∞ λH,ki 6= 0, which implies that limk→∞Hi(x
k)/t̄k = − 1.

Using that Gi(x
k) < 0 and F2i(x

k; tk) > 0, we have

0 ≥ Gi(x
k)

t̄k
≥
t2,kθt1,k(Hi(x

k))

t̄k
∼ t2,kθ

′(0)Hi(x
k)

t1,k t̄k
∼ t2,kθ

′(0)

t1,k
,

where the first equivalence comes from Taylor formula of order 1 of functions θs at 0. So, limk→∞Gi(x
k)/t̄k =

0. However, this contradicts limk→∞Gi(x
k)/t̄k = −1, which completes the proof in this case.

b) When F1i(x
k; tk) + F2i(x

k; tk) < 0, since
∣∣∣λΦ,k
i ΦBi (G(xk), H(xk); tk)

∣∣∣ ≤ εk we have

∣∣∣λΦ,k
i F2i(x

k; tk)
2
∣∣∣ ≤ 2εk ⇐⇒

∣∣∣∣∣λΦ,k
i F2i(x

k; tk)

(
1−

t2,kθt1,k(Hi(x
k))

Gi(xk)

)∣∣∣∣∣ ≤ 2εk
|Gi(xk)|

.

This implies that limk→∞ λΦ,k
i F2i(x

k; tk) = 0, by assumption on εk and α > 1. Now, by definition of
functions θs and their first order Taylor formula at 0 we obtain

F1i(x
k; tk) + F2i(x

k; tk) = Gi(x
k) +Hi(x

k)− t2,k
(
θt1,k(Gi(x

k)) + θt1,k(Hi(x
k))
)
,

∼ (Gi(x
k) +Hi(x

k))(1− t2,kθ
′(0)

t1,k
),

≤ 2|Gi(xk)|(1− t2,kθ
′(0)

t1,k
),

and so limk→∞ λΦ,k
i (F1i(x

k; tk)+F2i(x
k; tk)) = 0. As a consequence, it holds that ηG,∗i = limk→∞ λG,k ≥

0, ηH,∗i = limk→∞ λH,k ≥ 0.

So, x∗ is a M-stationary point.

Theorem 4.5. Given the three sequences {tk}, {t̄k}, {εk} decreasing to zero and satisfying (3). Assume
that εk = o(max(|G(xk)|, |H(xk)|)), εk = o(t̄k) and t2,k = o(t1,k). Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a
sequence of points that are εk-stationary points of RBtk,t̄k for all k ∈ N with xk → x∗ such that MPCC-GCRSC
holds at x∗. Then, x∗ is a M-stationary point.

Proof. Following the discussion before Theorem 2.3, we can consider without loss of generality a sequence
{λ̄g,k, λ̄h,k, λ̄G,k, λ̄H,k, λ̄Φ,k} where the gradients of non-vanishing multipliers in this sequence are linearly
independent for each k. Now, Theorem 2.3 ensures boundedness of the sequence {λ̄g,k, λ̄h,k, η̄G,k, η̄H,k}
defined in (7) under MPCC-GCRSC. The rest of the proof is direct by Lemma 4.2.
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This result is not entirely satisfactory, since the sequence of parameter εk depends on the iterates.
However, this is in the same vein than the existing results in [27]. Further research may try to exploit this
weak point to propose more adequate conditions.

The following example, from [25], shows that the butterfly relaxation with t2,k = o(t1,k) may converge
to an undesirable A-stationary point without the hypothesis that εk = o(max(|G(xk)|, |H(xk)|).
Example 4.5. Consider the problem

min
x∈R2

x2 − x1 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

Let t2,k = t1,k
2 and choose any positive sequences {t1,k} and {εk} such that t1,k, εk → 0. Consider the

following ε-stationary sequence

xk = (εk,
εk
2

)T , λG,k = 0, λH,k = 1− λΦ,k(t1,k
2θt1,k

(εk
2

)
F1(xk; tk)− F2(xk; tk)

and

λΦ,k =
1

t1,k
2θt1,k (εk)F2(xk; tk)− F1(xk; tk)

.

This sequence converges to x∗ = (0, 0), which is an A-stationary point.

The ε-feasible set of the butterfly relaxation is similar to the relaxation (SS). Therefore, it is not surprising
that we can only expect to converge to a C-stationary point without strong hypothesis. Those issues clearly
deserve a specific study that is left here for further research.

5 Numerical Results

In this section, we focus on the numerical implementation of the butterfly relaxation method. Our aim is
to compare the new method with the existing ones in the literature and to show some of its features. This
comparison uses the collection of test problems MacMPEC [28]. This collection has been widely used in the
literature to compare relaxation methods as in [22, 39, 19]. The test problems included in MacMPEC are
extracted from the literature and real-world applications.

We also present an example of an (MPCC) that illustrates the difficulties that may occur by dealing with
ε-stationary points.

5.1 On the Implementation of the Butterfly Relaxation

As pointed out through this paper, the butterfly relaxation uses two parameters t1 and t2. It can be practical
to choose a relation between both parameters. Among the infinite possibilities of relationship between t1
and t2, at least two are specific:

(i) t2 = t1, since as seen in Example 4.3 this relaxation is more regular, but may converge to undesirable
A-stationary points, Theorem 4.1;

(ii) t2 = o(t1), for instance t2 = t1
3/2, which ensures convergence to M-stationary points as stated in

Theorem 4.2.

Practical implementation could consider a slightly different model, by skipping the relaxation of the
positivity constraint and adding a new parameter t3 in order to shift the intersection of both wings to the
point (G(x), H(x)) = (t3, t3). This can be done by redefining F1(x; t1, t2, t3) and F2(x; t1, t2, t3) such that

F1i(x; t1, t2, t3) = Hi(x)− t3 − t2θt1(Gi(x)− t3),

F2i(x; t1, t2, t3) = Gi(x)− t3 − t2θt1(Hi(x)− t3).

Even if we did not give any theoretical proof regarding this modified system, this modification does not alter
the behavior of the butterfly relaxation. This formulation is clearly an extension of the relaxation (KS).

The numerical comparison of the butterfly relaxation with other existing methods considers three schemes:
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1. B(t2=t1): t3 = 0, t2 = t1;

2. B(t2=t13/2): t3 = 0, t2 = t1
3/2;

3. B(t3=t2,2t2=t1): t3 = t2, 2t2 = t1.

In all these tests, we fixed t̄ = 0. Even so, this seems to contradict Theorem 4.5, it appears to be more
efficient in our preliminary results.

5.2 Comparison of the Relaxation Methods

We provide in this section and in Algorithm 1 some more details on the implementation and the comparison
between relaxation methods. It is to be noted that our aim is to compare the methods and so no attempt to
optimize any method has been carried out. We use 101 test problems from MacMPEC, where are omitted
the problems that exceed the limit of 300 variables or constraints and some problems with the evaluation
error of the objective function or the constraints.

Algorithm 1 is coded in Matlab and uses the AMPL API. Rtk denotes the relaxed non-linear program
associated with a generic relaxation, where except the butterfly methods the parameter t1,k does not play
any role. At each step we compute xk+1 as a solution of Rtk starting from xk. Therefore, at each step the
initial point is more likely to be infeasible for Rtk . The iterative process stops when t2,k and t1,k are smaller
than some tolerance, denoted pmin which is set as 10−15 here, or when the solution xk+1 of Rtk is considered
an ε-solution of (MPCC). To consider xk+1 as a ε-solution, with ε set as 10−7, we check three criteria:

(a) Feasibility of the last relaxed non-linear program:

νf (x) := max(−g(x), |h(x)|,−Φ(x));

(b) Feasibility of the complementarity constraint: νcomp(x) := min(G(x), H(x))2;

(c) The complementarity between the Lagrange multipliers and the constraints of the last relaxed non-
linear program:

νc(x) := max
(
‖g(x) ◦ λg‖∞, ‖h(x) ◦ λh‖∞, ‖G(x) ◦ λG‖∞, ‖H(x) ◦ λH‖∞, ‖ΦB(x) ◦ λΦ‖∞

)
.

Obviously, it is hard to ask a tighter condition on the complementarity constraint since the feasibility
only guarantees that the product component-wise is less than ε. Using these criteria, we define a measure of
optimality

min local(x) := max (νf (x), νcomp(x), νc(x)) .

A fourth criterion could be the dual feasibility, that is the norm of the Lagrangian. However, solvers like
SNOPT or MINOS do not use this criterion as a stopping criterion. One reason among other to discard such
a criterion could be numerical issues implied by the degeneracy in the KKT conditions. In the case of an
infeasible or unbounded sub-problem Rtk , the algorithm stops and returns a certificate.

Data:
starting vector x0; initial relaxation parameter t0; update parameter (σt1 , σt2) ∈ (0, 1)2 and pmin the
minimum parameter value, ε the precision tolerance ;

1 Begin ;
2 Set k := 0 ;
3 while max(t2,k, t1,k) > pmin and min local(x) > ε do
4 xk+1 solution of Rt1,k,t2,k with xk initial point;
5 (t1k+1, t2k+1) := (t1,kσt1 , t2,kσt2) ;

6 return: fopt the optimal value at the solution xopt or a decision of infeasibility or unboundedness.

Algorithm 1: Basic Relaxation methods for (MPCC), with a relaxed non-linear program Rtk .
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Step 4 in Algorithm 1 is performed using three different solvers accessible through AMPL [13], that are
SNOPT 7.2-8 [14], MINOS 5.51 [30] and IPOPT 3.12.4 [40] with their default parameters. A previous similar
comparison in the literature in [19] only considered SNOPT to solve the sub-problems. We compare the
butterfly schemes with the most popular relaxations (SS) and (KS). Moreover, we also take into account
results of the non-linear programming solver without specific MPCC tuning denoted by NL.

In order to compare the various relaxation methods, we need to have a coherent use of the parameters.
In a similar way as in [38] we consider the value of the ”intersection between G and H”, which is (t, t) for
(KS) and (Bu.), (

√
t,
√
t) for SS. Then, we run a sensitivity analysis on several values of the parameters

T ∈ {100, 25, 10, 5, 1, 0.5, 0.05} and S ∈ {0.1, 0.075, 0.05, 0.025, 0.01}, which corresponds to t0 and σt as de-
scribed in Table 1.

Relaxation NL SS KS Butterfly
t0 none T 2 T T
σt none S2 S S

Table 1: Parameter links among the methods

In [19], the authors consider as a stopping criterion the feasibility of the last non-linear parametric
program in particular by considering the complementarity constraint by the minimum component-wise.
Table 2 provides our result with this criterion. We report elementary statistics by considering the percentage
of success for each set of parameters. A problem is considered solved in this case if criteria (a) and (b) are
satisfied.

Solver SNOPT NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 97.03 97.03 98.02 97.03 97.03 98.02
average 97.03 95.02 94.71 95.39 93.89 94.88
worst 97.03 91.09 91.09 92.08 91.09 91.09
std 0 1.64 2.09 1.50 1.97 2.42

Solver MINOS NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 89.11 94.06 93.07 90.10 95.05 89.11
average 89.11 91.20 90.89 83.54 91.06 81.92
worst 89.11 87.13 87.13 77.23 86.14 76.24
std 0 1.50 1.44 2.81 2.15 2.89

Solver IPOPT NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 98.02 99.01 98.02 99.01 98.02 100
average 98.02 98.16 96.38 94.03 93.89 94.79
worst 98.02 95.05 93.07 89.11 88.12 88.12
std 0 0.97 1.99 2.62 2.80 3.60

Table 2: Sensitivity analysis for MacMPEC test problems considering the feasibility of (MPCC). Results
are a percentage of success. best: percentage of success with the best set of parameters, worst: percentage
of success with the worst set of parameters, average: average percentage of success among the distribution
of (T, s), std: standard deviation

First, we see that the method NL is giving decent results. It is not a surprise as was pointed out in
[12]. Practical implementation of relaxation methods would select the best choice of parameters so that we
focus most of our attention to the line ’best’. In all cases, the relaxations manage to improve or at least
equal the number of problems solved by NL. By using SNOPT, KS and butterfly with t2 = t1

3/2 methods
get 1% of improvement and with IPOPT the method butterfly with t2 = t1

3/2 is the only one that attains
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100%. The relaxation methods seem to make a significant improvement over NL with MINOS. In this case,
it is clear that the butterfly methods benefit from the introduction of the parameter s and the method with
t3 = t2, 2t2 = t1 is very competitive.

Our goal by solving (MPCC) is to compute a local minimum. The results using the local minimum
criterion defined above as a measure of success are given in Table 3. Once again we provide percentages of
success.

Solver SNOPT NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 92.08 94.06 96.04 96.04 97.03 96.04
average 92.08 90.78 91.17 92.08 90.04 92.33
worst 92.08 83.17 86.14 87.13 82.18 87.13
std 0 3.15 2.59 2.45 2.86 2.77

Solver MINOS NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 85.15 94.06 93.07 88.11 94.06 87.13
average 85.15 90.94 90.18 81.92 90.04 80.11
worst 85.15 87.13 86.14 76.23 85.15 74.26
std 0 1.50 1.62 2.65 2.31 2.95

Solver IPOPT NL SS KS B(t2=t1) B(t3=t2,2t2=t1) B(t2=t13/2)

best 91.09 93.07 93.07 94.06 93.07 94.06
average 91.09 91.82 89.84 89.05 88.80 89.02
worst 91.09 90.10 86.14 84.16 84.16 81.19
std 0 1.14 2.19 3.09 2.72 3.86

Table 3: Sensitivity analysis for MacMPEC test problems considering the optimality of (MPCC). Results
are percentages of success. best: percentage of success with the best set of parameters, worst: percentage of
success with the worst set of parameters, average: average percentage of success among the distribution of
(T, s), std: standard deviation

In comparison with Table 2, this new criterion appears to be more selective. Independently of the solver,
the relaxation methods with some correct choices of parameters provide improved results. Using SNOPT
as a solver, the methods KS and butterfly gives the highest number of results. The method butterfly with
t2 = t1

3/2 even improved the number of problems solved by SNOPT alone in average. In a similar way as
in the previous experiment the butterfly method benefit of the introduction of the parameter s when using
MINOS as a solver.

5.3 An Example of Numerical Difficulties

In this section, we illustrate the possible numerical difficulties that can arise by solving a (MPCC) with
relaxation methods.

Example 5.1. Consider the problem

min
x∈R4

exp(−x2
1 − x2

2) + exp(−x3)

s.t. x2
3 ≤ (x2

1 + x2
2 − 1)(x2

1 + x2
2 − 10) + x4,

x2
1 + x2

2 − 10 ≤ 0, x2
4 ≤ 0,

0 ≤ x2
1 + x2

2 − 1 ⊥ x3(−x2
1 − x2

2 + 10) ≥ 0.

The feasible set is the union of two circles, {x ∈ R4 | x3 = x4 = 0, x2
1 + x2

2 = 1} and {x ∈ R4 | x3 = x4 =
0, x2

1 + x2
2 = 10}. In this example, all the feasible points are local minima.
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x0
1\x0

2 0 1 2 3
0 o C C M
1 C C C M
2 C C M M
3 M M M M

Table 4: Sensitivity analysis depending on the initial point (x0
1, x

0
2, 0, 0) on Example 5.1 by using the butterfly

relaxation method t2 = t1
3/2 with T = 0.5, s = 0.01 and SNOPT as a non-linear solver. Legend: o: error,

C: circle x2 + y2 = 1, M: circle x2 + y2 = 10.

Let us now compute the stationary points of the problem. The gradient of MPCC-Lagrangian function
equal to zero yields

−2 exp(−x2
1 − x2

2)x1 − 2λg1x1((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x1 − 2λGx1 + 2λHx1x3 = 0,

−2 exp(−x2
1 − x2

2)x2 − 2λg1x2((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x2 − 2λGx2 + 2λHx2x3 = 0,

− exp(−x3) + 2λg1x3 − λH(−x2
1 − x2

2 + 10) = 0,

−λg1 + 2λg3x4 = 0.

It is clear that necessarily x3 = x4 = 0, thus λg1 = 0 and

− exp(−x2
1 − x2

2)x1 + λg2x1 − λGx1 = 0,

− exp(−x2
1 − x2

2)x2 + λg2x2 − λGx2 = 0,

−1 = λH(−x2
1 − x2

2 + 10).

The third equality gives that x2
1 + x2

2 6= 10, thus λg2 = 0. Furthermore, by the inequality constraints it is
necessary that x2

1 + x2
2 = 1 and so either x1 or x2 is non-zero. It follows that λH < 0 and

− exp(−1) = λG < 0.

To sum up, any point that satisfies x2
1 + x2

2 = 1 is C-stationary and is a local minimum, while any point
that satisfies x2

1 + x2
2 = 10 is not stationary, despite the fact that it is a global minimum.

Up to this point, we may notice that the points that belong to the circle of centre 0 and radius
√

10 that
are the global minima of the problem are sequentially M-stationary. Indeed, let (xk1 , x

k
2 , x

k
3 , x

k
4) = (0,

√
10 −

1
k , 0, 1/k), λH,k = − 1

10−xk,2
2

< 0, λG,k = 0, λg,k1 =
− exp(−xk,2

1 −x
k,2
2 )

2λg,k
1 (−xk,2

2 + 11
2 )

, λg,k2 = 0 and 2λg,k3 = kλg,k1 .

We run Algorithm 1 with T = 0, 5 and s = 0, 01. Table 4 shows that the butterfly relaxation with
t2 = t1

3/2 may converge to both circles depending on the initial point. Note that for (x0
1, x

0
2) = (0, 0) the

algorithm declares the problem infeasible. We do not give the results for other methods and other solvers
here, but it has a similar behavior.

Those results may be surprising since it is proved that this method should converge to a M-stationary
point and not less. So, in theory the algorithm should have some difficulties to compute Lagrange multiplier
at this point. We run Algorithm 1 with methods NL, SS, KS and butterfly t2 = t1

3/2 on this example.
Results are presented in Table 5.

We see that independently of the solver all of the methods converge to a C-stationary point. In the cases
of IPOPT and MINOS, the solvers exit with a success output and even more, they satisfy our local minimum
criterion.

Those disturbing results are explained by Theorem 4.5 and related results in the literature that illustrate
the fact that computing ε-stationary point may perturb the convergence properties of these methods. We
also point out here that local minima of the problem are not M-stationary and so by Theorem 2.1 MPCC-
GCQ does not hold at these points. Moreover, this example does not contradict the Theorem 4.5 since in
particular MPCC-GCRSC is not verified at any feasible point of the problem.
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Solver SNOPT NL SS KS B(t2=t13/2)

output 401 401 401 401
last parameter . 2.5e-13 5.0e-15 5.0e-15

x1 0.1929 0.1929 0.1930 0.1927
x2 0.9812 0.9812 0.9812 0.9812
x3 0.0117 0.0112 0.0112 0.0116
x4 0.0001 0.0001 0.0001 0.0001

Solver MINOS NL SS KS B(t2=t13/2)

output 0 0 0 0
last parameter . 2.5e-9 5.0e-5 5.0e-5

x1 0.7266 0.7266 0.7265 0.7266
x2 0.6870 0.6870 0.6870 0.6869
x3 0.0005 0.0007 0.0005 0.0005
x4 2.8389e-7 5.3595e-7 3.1903e-7 3.5130e-7

Solver IPOPT NL SS KS B(t2=t13/2)

output 0 0 0 0
last parameter . 0.25 0.5 0.5

x1 0.1819 0.1961 0.1961 0.1961
x2 0.9833 0.9805 0.9805 0.9805
x3 0.0100 0.0100 0.0100 0.0100
x4 9.9999e-5 9.9999e-5 9.9999e-5 9.9999e-5

Table 5: Example 5.1 with initial point (0.1, 0.5). output 0 is a success and output 401 is iteration limit
message.

6 Concluding Remarks

This paper proposes a new family of relaxation schemes for the mathematical program with complementarity
constraints. We prove that the new method has the strongest convergence property known in the literature
and extend existing methods such as [22] and [25].

We introduce the new and weak MPCC-GCRSC condition. We prove under this condition that some
sequences of approximate stationary points are bounded. In particular, this enables us to recover the
strongest convergence property known for regularization methods with weaker assumptions than previous
results in the literature.

We provide a complete numerical study with remarks regarding the implementation as well as a numerical
comparison with existing methods in the literature. These numerical experiments show that the new butterfly
schemes are very competitive. We also provide an example that illustrates some of the pitfalls that solvers
may encounter while solving those degenerate non-linear programs.

Future research will focus on the two main difficulties regarding relaxation schemes that are the conver-
gence of approximate stationary sequences and the existence of Lagrange multipliers. A discussion regarding
the former problem has been initiated in [27] and appeal further discussion.
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A Proof of a Technical Lemma

In the of proof Theorem 4.3 and Theorem 4.4 we use the following lemma that links the gradients of G and
H with the gradients of F1(x; t) and F2(x; t).

Lemma A.1. Let I ∈ P(I00
GH(x; t)). Assume that the gradients

{∇gi(x) (i ∈ Ig(x)), ∇hi(x) (i = 1, . . . ,m),

∇Gi(x) (i ∈ I00
GH(x; t) ∪ I+0

GH(x; t)), ∇Hi(x) (i ∈ I00
GH(x; t) ∪ I0+

GH(x; t))}

are linearly independent. Then, MFCQ holds at x for (6).

Proof. We show that the gradients of the constraints of (6) are positively linearly independent. For this
purpose, we prove that the trivial solution is the only solution to the equation

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x) +
∑

i∈IG(x;t)

λGi ∇Gi(x) +
∑

i∈IH(x;t)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t)∪I0+

GH(x;t)

λΦ
i ∇ΦBi (G(x), H(x); t)

+
∑
i∈I

ν
F1(x;t)
i ∇F1i(x; t)−

∑
i∈I

ν
F2(x;t)
i ∇F2i(x; t)

−
∑
i∈Ic

µ
F1(x;t)
i ∇F1i(x; t) +

∑
i∈Ic

µ
F2(x;t)
i ∇F2i(x; t),

with λg, λG, λH , λΦ, νF1(x;t), νF2(x;t), µF1(x;t), µF2(x;t) ≥ 0. By definition of F1(x; t) and F2(x; t) it holds that

∇F1i(x; t) = ∇Hi(x)− t2θ′t1(Gi(x))∇Gi(x),

∇F2i(x; t) = ∇Gi(x)− t2θ′t1(Hi(x))∇Hi(x).

The gradient of ΦB(G(x), H(x); t) is given by Lemma 3.3.
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We now replace those gradients in the equation above

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)

+

q∑
i=1

∇Gi(x)
(
λGi + λΦ

i (F1i(x; t)− F2i(x; t)t2θ
′
t1(Gi(x)))

)
+

q∑
i=1

∇Gi(x)
(
−νF1(x;t)

i t2θ
′
t1(Gi(x))− νF2(x;t)

i + µ
F1(x;t)
i t2θ

′
t1(Gi(x)) + µ

F2(x;t)
i

)
+

q∑
i=1

∇Hi(x)
(
λHi + λΦ

i (F2i(x; t)− F1i(x; t)t2θ
′
t1(Hi(x)))

)
+

q∑
i=1

∇Hi(x)
(
−νF2(x;t)

i t2θ
′
t1(Hi(x))− νF1(x;t)

i + µ
F2(x;t)
i t2θ

′
t1(Hi(x)) + µ

F1(x;t)
i

)
,

with supp(λg) ⊂ Ig(x), supp(λG) ⊂ IG(x; t), supp(λH) ⊂ IH(x; t), supp(λΦ) ⊂ I+0
GH(x; t) ∪ I0+

GH(x; t),
supp(νF1(x;t)) ⊂ I, supp(νF2(x;t)) ⊂ I and supp(µF1(x;t)) ⊂ Ic, supp(µF2(x;t)) ⊂ Ic where I ∪ Ic = I00

GH(x; t)
and I ∩ Ic = ∅.

By linear independence assumption, we obtain

λg = 0, λh = 0, λG = 0, λH = 0,

− λΦ
i F2i(x; t)t2θ

′
t1(Gi(x)) = 0 and λΦ

i F2i(x; t) = 0 ∀i ∈ I0+
GH(x; t),

λΦ
i F1i(x; t) = 0 and − λΦ

i F1i(x; t)t2θ
′
t1(Hi(x)) = 0 ∀i ∈ I+0

GH(x; t),

− νF1(x;t)
i t2θ

′
t1(Gi(x))− νF2(x;t)

i = 0 and − νF2(x;t)
i t2θ

′
t1(Hi(x))− νF1(x;t)

i = 0 ∀i ∈ I,

µ
F1(x;t)
i t2θ

′
t1(Gi(x)) + µ

F2(x;t)
i = 0 and µ

F2(x;t)
i t2θ

′
t1(Hi(x)) + µ

F1(x;t)
i = 0 ∀i ∈ Ic.

So, it follows that λΦ
i = 0 for all i ∈ ... and we obtain for i ∈ I

ν
F2(x;t)
i = −νF1(x;t)

i t2θ
′
t1(Gi(x)).

This implies that ν
F1(x;t)
i = ν

F2(x;t)
i = 0 by non-decreasing hypothesis on θ and non-negativity of ν

F1(x;t)
i

and ν
F2(x;t)
i . Similarly, we get µ

F1(x;t)
i = µ

F2(x;t)
i = 0.

B Proof of Corollary 2.1

The proof that MPCC-GCRSC implies and therefore that it is a MPCC constraint qualification can be found
in Corollary 2.2 of [7].

Corollary B.1. MPCC-GCRSC implies MPCC-CCP.

Proof. We prove that a point x∗ that satisfies MPCC-GCRSC satisfies the following relation

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

Let w∗ be in the lim supx→x∗ KMPCC(x). By definition of the lim sup there are sequences {wk}, {xk}, {λk}
with xk → x∗ and wk → w∗ such that for k sufficiently large

wk =

m∑
i=1

λh,ki ∇hi(x
k) +

∑
j∈Ig(x∗)

λg,kj ∇gj(x
k)−

∑
j∈I0+∪I00

λG,kj ∇Gj(x
k)−

∑
j∈I+0∪I00

λH,kj ∇Hj(x
k),
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with λg,ki ∈ R+, either λG,ki λH,ki = 0 either λG,ki > 0, λH,ki > 0 for i ∈ I00. Moreover, for k sufficiently large
it holds that supp(λg,k) ⊆ Ig(x∗), supp(λG,k) ⊆ I0+ ∪ I00 and supp(λH,k) ⊆ I00(x∗) ∪ I+0(x∗).

The sequence {λk} clearly satisfies the assumptions of Theorem 2.3. It follows that this sequence is
bounded and up to a subsequence we can extract a limit point λ∗. Consequently, by definition of λk it holds
that λG,∗j = 0 for j ∈ I+0, λH,∗j = 0 for j ∈ I0+ and either λG,∗j λH,∗j = 0 either λG,∗j > 0, λH,∗j > 0 for

j ∈ I00.
So, we can conclude that w∗ belongs to KMPCC(x∗) and therefore MPCC-CCP is satisfied at x∗.

An alternative proof could used Theorem 3.5 of [32] that state that any sequence {xk} that converges
to a M-stationary point x∗ is equivalent to satisfying MPCC-CCP at x∗. Note that this is conceptually
equivalent to the one presented here.

C Proof of Lemma 3.4

First part of the lemma follows from the definition of functions θt1 . Indeed, it holds for all z ∈ R+ that
θt1(z) ∈ [0, 1]. Therefore, limk→∞ t2,kθt1,k(zk) = 0.

Second part of the lemma uses the fact that functions θr are defined as perspective functions, that is for
all zk ∈ R+

θt1,k(zk) = θ

(
zk

t1,k

)
,

and so, computing the derivative gives

t2,kθ
′t1,k(zk) =

t2,k
t1,k

θ′
(
zk

t1,k

)
.

So, either zk = o(t1,k) and by 0 < θ′(0) <∞

lim
k→∞

t2,kθ
′
t1,k

(zk) = lim
k→∞

t2,k
t1,k

θ′
(
zk

t1,k

)
= lim
k→∞

t2,k
t1,k

θ′(0).

Either there exists a constant C > 0 such that zk = Ct1,k and so

lim
k→∞

t2,kθ
′
t1,k

(zk) = lim
k→∞

t2,k
t1,k

θ′
(
Crk

t1,k

)
= lim
k→∞

t2,k
t1,k

θ′(C).

Otherwise for k sufficiently large t1,k ≤ zk and by concavity of θt1

0 ≤ lim
k→∞

t2,kθ
′
t1,k

(zk) ≤ lim
k→∞

t2,kθ
′
t1,k

(t1,k) = lim
k→∞

t2,k
t1,k

θ′(1).

D Useful Lemmas

Lemma D.1. [Lemma 7.1, [38]] Let {ai | i = 1, . . . , p}, {bi | i = 1, . . . ,m} and c be vectors in Rn and
α ∈ Rp+, β ∈ Rm multipliers such that

p∑
i=1

αia
i +

m∑
i=1

βib
i = c.

Then there exist multipliers α∗ ∈ Rp+ and β∗ with supp(α∗) ⊆ supp(α), supp(β∗) ⊆ supp(β) and

p∑
i=1

α∗i a
i +

m∑
i=1

β∗i b
i = c
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such that the vectors
{ai | i ∈ supp(α∗)} ∪ {bi | i ∈ supp(β∗)}

are linearly independent.

In our proofs we use the following results from [38] to compute the tangent cone of XBt,t̄ and its polar.

Lemma D.2. [Lemma 8.10, [38]] For all t > 0 and all x feasible for RBt,t̄,

TXB
t,t̄

(x) = ∪I⊆I00
GH(x;t)TSI(x)(x),

where SI(x) is defined in equation 6.
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