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The New Butter�y Relaxation Method for Mathematical

Programs with Complementarity Constraints

Migot, T∗ Haddou, M† Dussault, J.-P.‡

2016

Abstract

We propose a new family of relaxation schemes for mathematical programs with complementarity

constraints that extends the relaxations of Kadrani, Dussault, Bechakroun from 2009 and the one of

Kanzow & Schwartz from 2011. We discuss the properties of the sequence of relaxed non-linear program

as well as stationarity properties of limiting points. A sub-family of our relaxation schemes has the

desired property of converging to an M-stationary point. We introduce a new constraint quali�cation,

MPCC-CRSC, to prove convergence of our method, which is the weakest known constraint quali�cation

that ensures boundedness of the sequence generated by the method. A comprehensive numerical com-

parison between existing relaxations methods is performed on the library of test problems MacMPEC

and shows promising results for our new method. Numerical perspectives shows an enhanced version of

the butter�y relaxation to mathematical program with vanishing constraints.

Keywords : nonlinear programming - MPCC - MPEC - relaxation methods - stationarity - con-

straint quali�cation - MPVC - CRSC

AMS Subject Classi�cation : 90C30, 90C33, 49M37, 65K05

1 Introduction

We consider the Mathematical Program with Complementarity Constraint

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

0 ≤ G(x) ⊥ H(x) ≥ 0,

(MPCC)

with f : Rn → R, h : Rn → Rm, g : Rn → Rp and G,H : Rn → Rq that are assumed continuously
di�erentiable. The notation 0 ≤ u ⊥ v ≥ 0 for two vectors u and v in Rq is a shortcut for ui ≥ 0, vi ≥ 0
and uivi = 0 for all i ∈ {1, . . . , q}.

This problem has become an active subject in the literature in the last two decades and has been the
subject of several monographs [56, 60] and PhD thesis [19, 45, 36, 69, 67, 15]. The wide variety of applica-
tions that can be cast as an MPCC is one of the reasons for this popularity. Among other we can cite truss
topology optimization [36], discrete optimization [2], image restoration [12], optimal control [6, 35]. Other-
wise, another source of problem are bilevel programming problems [17, 18], where the lower-level problem is
replaced by its optimality conditions. This may lead to a more general kind of problem called Mathematical
Program with Equilibrium Constraint [60] or Optimization Problem with Variational Inequality Constraint
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[43]. The MPCC formulation has been the most popular in the literature motivated by more accessible
numerical approaches.

(MPCC) is clearly a non-linear programming problem and in general most of the functions involved in
the formulation are non-convex. In this context solving the problem means �nding a local minimum. Even
so, this goal apparently modest is hard to achieve in general due to the degenerate nature of the MPCC.
Therefore, numerical methods that consider only �rst order informations may expect to compute a stationary
point.

The wide variety of approaches with this aim computes the KKT conditions, which require that some
constraint quali�cation holds at the solution to be an optimality condition. However, it is well-known that
these constraint quali�cations never hold in general for (MPCC). For instance, the classical Mangasarian-
Fromowitz constraint quali�cation that is very often used to guarantee convergence of algorithms is violated
at any feasible point. This is partly due to the geometry of the complementarity constraint that always has
an empty relative interior.

These issues have motivated the de�nition of enhanced constraint quali�cations and optimality conditions
for (MPCC) as in [43, 42, 65, 21] to cite some of the earliest research. In 2005, Flegel & Kanzow provide an
essential result that de�nes the right necessary optimality condition to (MPCC). This optimality condition
is called M(Mordukhovich)-stationary condition. The name comes from the fact that those conditions are
derived by using Mordukhovich normal cone in the usual optimality conditions of (MPCC).

A wide range of numerical methods have been proposed to solve this problem such as relaxation methods,
interior-point methods [55, 62, 52], penalty methods [56, 40, 58], SQP methods [26], elastic mode [10, 15],
dc methods [57], �lter methods [53] and Levenberg-Marquardt methods [33] to cite only a few of them. This
�rst family of method called relaxation or regularization method is developped in detail in this paper. In
the literature, the numerical performances of those methods are very often compared on a collection of test
problem called MacMPEC, [51], that contains various (MPCC) from the literature and some applications.
Despite the di�culties explained above, the methods reformulating (MPCC) as a non-linear programming
have shown to be successful in practice in [24, 25]. However, the theoretical guarantee that they o�er con-
sidering realistic methods is often far from the desired goal to compute M-stationary points.

In view of the constraint quali�cations issues that pledge the (MPCC) the relaxation methods provide
an intuitive answer. The complementarity constraint is relaxed using a parameter so that the new feasible
domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 and h(x) = 0 are not
more di�cult to handle than the complementarity constraint. Finally, as the relaxing parameter is reduced,
convergence to the feasible set of (MPCC) is obtained similarly to an homotopy technique. The interest for
such methods has already been the subject of some PhD thesis in [67, 69] and is an active subject in the
literature.

These methods have been suggested in the literature back to 2000 by Scheel & Scholtes in [65] replacing
the complementarity by

Gi(x)Hi(x)− t ≤ 0, ∀i ∈ {1, . . . , q}.

For more clarity we denote Φ(G(x), H(x); t) the map that relaxed the complementarity constraint and so in
this case

ΦSSi (G(x), H(x); t) = Gi(x)Hi(x)− t, ∀i ∈ {1, . . . , q}. (SS)

This natural approach was later extended by Demiguel, Friedlander, Nogales & Scholtes in [16] by also
relaxing the positivity constraints G(x) ≥ −t, H(x) ≥ −t. In [54], Lin & Fukushima improve this relaxation
by expressing the same set with two constraints instead of three. This improvement leads to improved
constraint quali�cation satis�ed by the relaxed sub-problem. Even so, the feasible set is not modi�ed this
improved regularity does not come as a surprise, since constraint quali�cation measures the way the feasible
set is described and not necessarily the geometry of the feasible set itself. In [68], the authors consider a
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relaxation of the same type but only around the corner G(x) = H(x) = 0 in the following way

ΦSUi (G(x), H(x); t) = Gi(x) +Hi(x)−

{
|Gi(x)−Hi(x)| if |Gi(x)−Hi(x)| ≥ t
tψ(Gi(x)−Hi(x)

t ) otherwise
, (SU)

where ψ is a suitable function as described in [68]. An example of such function being ψ(z) = 2
π sin(π2 z +

3π
2 ) + 1.

In the corresponding papers it has been shown that under suitable conditions providing convergence of the
methods, convergence to some spurious point, called C-stationary point, may still happen. The convergence
to M-stationary being guaranteed only under some second-order condition. It is to be noted that di�erent
methods used in the literature such as interior-point methods, smoothing of an NCP function and elastic
net methods share a lot of common properties with the (SS) method and its extension.

A new perspective for those schemes has been motivated in [46] providing an approximation scheme with
convergence to M-stationary point by considering

ΦKDBi (G(x), H(x); t) = (Gi(x)− t)(Hi(x)− t), ∀i ∈ {1, . . . , q}. (KDB)

This is not a relaxation since the feasible domain of (MPCC) is not included in the feasible set of the
subproblems. The method has been extended has a relaxation method through a NCP function in [48] :

ΦKSi (G(x), H(x); t) = φ(Gi(x)− t,Hi(x)− t), ∀i ∈ {1, . . . , q}. (KS)

The main aim of this paper is to continue this discussion and extend the relaxation of Kanzow and Schwartz
by introducing the new butter�y relaxation.

The key assumption necessary to guarantee convergence of the method relies very often on some MPCC-
constraint quali�cation. In [49, 67] the authors analyse the existing methods and proves convergence under
some mild constraint quali�cations. The de�nition of a new MPCC-constraint quali�cation allows to pursue
this discussion and convergence of (KDB) and (KS) has been shown under MPCC-CCP in [63]. Furthermore,
the author proves that this is the weakest MPCC-constraint quali�cation that assures convergence of these
methods. In this paper, we continue the discussion by providing convergence result for the butter�y method.
MPCC-CCP condition is no longer su�cient for this purpose and so we introduce a new MPCC-constraint
quali�cation called MPCC-CRSC.

In Section 2, we introduce classical de�nitions and results from non-linear programming and MPCC
theory. This section is completed by the de�nition of a new constraint quali�cation for MPCC called
MPCC-CRSC in De�nition 2.11. This new concept is proved to be an MPCC-CQ in Corollary 2.2.

In Section 3, we de�ne the relaxation scheme with the new butter�y relaxation. Compared to the methods
(KDB) and (KS) this new method handle two relaxing parameter instead of one.

In Section 4, we prove theoretical results on convergence and existence of the multiplier of the relaxed
sub-problems. We also provide an analysis on the convergence of approximate stationary points. We prove
that the butter�y method has similar properties as the best methods in the literature.

Finally, in Section 5, we provide an extensive numerical study by giving detailed on the implementation,
comparison with other methods as well as an example that illustrates the numerical di�culties that might
occur and the extension of this method to the very close problem of mathematical program with vanishing
constraints.

Notations : We use classical notation in optimization. Let xT denotes the transpose of a vector or a
matrix x. The gradient of a function f at a point x with respect to x is denoted ∇xf(x) and ∇f(x) when
the derivative is clear from the context. supp(x) for x ∈ Rn is the set of indices such that xi 6= 0 for
i ∈ {1, . . . , n}. e is the vector whose components are all one. R+ and R++ denotes the set of non-negative
and positive real numbers.
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2 Preliminaries

(MPCC) is obviously a non-linear programming problem. Most of numerical approaches used in non-linear
programming compute necessary optimality conditions that require some constraint quali�cations (CQs)
de�ned in Sect. 2.1 to ensure existence of the Lagrange multipliers at a local minimum. Even so, (MPCC)
belongs to this class of problem it is required to develop enhanced stationary conditions. Indeed, in a
systematic way feasible points of (MPCC) may fail to satisfy even the weakest constraint quali�cations
for non-linear programming. Tailored optimality conditions and constraint quali�cations for (MPCC) are
presented in Sect. 2.2.

2.1 Non-Linear Programming

Let a general non-linear program be

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,
(NLP)

with h : Rn → Rm, g : Rn → Rp and f : Rn → R.
Denote F the feasible region of (NLP), the set of active indices Ig(x) := {i ∈ {1, ..., p} | gi(x) = 0}. Let

the generalized Lagrangian Lr(x, y) be

Lr(x, y) := rf(x) + g(x)Tλ+ h(x)Tµ,

where y = (λ, µ) is the vector of Lagrange multiplier.
By de�nition, y is an index r multiplier for (NLP) at a feasible point x if (r, y) 6= 0 and ∇xLr(x, y) =

0, λ ≥ 0, g(x)Tλ = 0. The set of all index r multipliers of (NLP) at x is denoted Mr(x). An index 0
multiplier is also called singular multiplier, [13], or an abnormal multiplier, [14]. We call a KKT-point or a
stationary point a couple (x, y) with y an 1-index multiplier at x. A couple (x, y) with y a 0-index multiplier
at x is called Fritz-John point.

We remind that the tangent cone of a set X at x∗ ∈ X is a closed cone de�ned by

TX(x∗) = {d ∈ Rn | ∃tk ≥ 0 and xk →X x∗ s.t. tk(xk − x∗)→ d}

Given a cone K ⊂ Rn, the polar of K is the cone de�ned by K◦ := {z ∈ Rn | zTx ≤ 0, ∀x ∈ K}.
Another useful tool for our study is the linearized cone of (NLP) at x∗ ∈ F de�ned by

L (x∗) = {d ∈ Rn | ∇gi(x)T d ≤ 0 (i ∈ Ig(x∗)), ∇hi(x)T d = 0 (∀i = 1, . . . ,m)}.

In the context of solving non-linear programs, that is �nding a local minimum of (NLP), one widely
used technique is to compute necessary conditions. The principal tool is the Karush-Kuhn-Tucker (KKT)
conditions. Let x∗ be a local minimum of (NLP) that satis�es a constraint quali�cation, then there exists
y∗ ∈ M1(x∗) such that (x∗, y∗) is a KKT-point of (NLP). Constraint quali�cation are used to ensure exis-
tence of the index-1 multiplier at x∗.

We now de�ne some of the classical constraint quali�cations that are organized in several families. Note
that there exists a wide variety of such notions and we de�ne here those that are essential for our purpose.
In De�nition 2.1 the Linear Independence CQ and Constant Rank CQ are presented. Both are very classical
the latter being de�ned �rst in [44].

De�nition 2.1 (LICQ and its Relaxations). Let x∗ ∈ F .

(a) LICQ holds at x∗ if the family of gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (∀i = 1, ...,m)}

is linearly independent.

4



(b) CRCQ holds at x∗ if there exists δ > 0 such that, for any subsets I1 ⊆ Ig(x∗) and I2 ⊆ {1, ...,m} the
family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)}
has the same rank for all x ∈ Bδ(x∗).

We remind the following de�nition of positive-linearly dependent vectors, which helps up building con-
straint quali�cations since it takes into account the sign of some multipliers.

De�nition 2.2 (positive-linearly dependent vectors). A �nite set of vectors {ai|i ∈ I1} ∪ {bi|i ∈ I2} is said
to be positive-linearly dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2), not all of them being zero,
with αi ≥ 0 for all i ∈ I1 and ∑

i∈I1

αia
i +

∑
i∈I2

βib
i = 0.

Otherwise, we say that these vectors are positive-linearly independent. In an usual way the unsigned vectors
may sometimes be denoted with double bracket, that is {ai|i ∈ I1} ∪ {{bi|i ∈ I2}}.

Another family of constraint quali�cations can now be derived using this notion.

De�nition 2.3 (MFCQ and its Relaxations). Let x∗ ∈ F .

(a) PLICQ holds at x∗ if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {{∇hj(x∗) | j = 1, ...,m}}

are positively linearly independent.

(b) CRSC holds at x∗ if there exists δ > 0 such that the family of gradients

{∇gi(x) (i ∈ J−), ∇hi(x∗) (i = 1, . . . ,m)}

has the same rank for every x ∈ Bδ(x∗). Assuming J− := {i ∈ Ig(x∗) | − ∇gi(x∗) ∈ L (x∗)◦}.

The positive linear independence constraint quali�cation, PLICQ, is equivalent to MFCQ and has also
been called NNAMCQ (no nonzero abnormal multiplier) or BCQ (basic constraint quali�cation). Constant
rank of the subspace component, CRSC, was introduced recently in [8]. This latter de�nition consider an
unusual set denoted J−, that can be view as the set of indices of the gradients of the active constraints whose
Lagrange multiplier if there exists may be nonzero.

A local minimum is characterized by the fact that there is no feasible descent direction for the objective
function of (NLP), that is

−∇f(x∗) ∈ T ◦F (x∗).

From the other side the KKT conditions build ∇f using a linearization of the active constraints. This
motivates the following CQs de�ned as early as 1969 in [31] for GCQ and in [1] for ACQ.

De�nition 2.4. (a) A point x∗ ∈ F is said to satisfy Guignard CQ if T ◦F (x∗) = L ◦(x∗).

(b) A point x∗ ∈ F is said to satisfy Abadie CQ if TF (x∗) = L (x∗).

As proved in [30], Guignard CQ is the weakest constraint quali�cation that ensures that a local minimum
satis�es the KKT conditions. It is easy to see that for all x TF (x) ⊆ L (x) and so L ◦(x) ⊆ T ◦F (x). The fact
that Abadie CQ holds at x∗ implies that Guignard CQ also holds at x∗ is classical from variational analysis.

In practice, it is very di�cult to �nd a point that conforms exactly to the KKT condition. Hence, an
algorithm may stop when such conditions are satis�ed approximately. Another way to deal with this problem
is to gives necessary optimality conditions of the point and its neighbourhood in the form of sequential opti-
mality conditions. The most popular among those conditions is the Approximate KKT (AKKT) conditions
introduced in [7]. This has motivated the de�nition of the CCP condition in [9] that is known to be the
weakest constraint quali�cation that ensures that AKKT is actually a �rst order optimality condition.
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De�nition 2.5. We say that a point x∗ ∈ F satis�es the Cone-Continuity Property if the set-valued mapping
Rn 3 x⇒ K(x) such that

K(x) = {
∑

i∈Ig(x∗)

λi∇gi(x) +

m∑
i=1

µi∇hi(x) : λi ∈ R+, µi ∈ R}

is outer semicontinuous (de�nition 5.4 [64]) at x∗, that is

lim sup
x→x∗

K(x) ⊂ K(x∗).

Clearly, K(x∗) is a closed convex cone and coincides with the polar linearized cone L (x∗)◦. Moreover,
K(x) is always inner semicontinuous due to the continuity of the gradients and the de�nition of K(x). For
this reason, outer semicontinuity is su�cient for the continuity of K(x) at x∗. Finally it has been shown in
[9] that CCP is stricly stronger than ACQ and weaker than CRSC.

In the context of numerical computation it is almost never possible to compute stationary points. Hence,
it is of interest to consider ε-stationary points.

De�nition 2.6. Given a general non-linear program (NLP) and ε ≥ 0. We say that (x, y) ∈ Rn × Rp+m is
an ε-stationary point (or an ε-KKT point) if it satis�es∥∥∥∥∥∇f(x) +

p∑
i=1

λi∇gi(x) +

m∑
i=1

µi∇hi(x)

∥∥∥∥∥
∞

≤ ε,

with

|hi(x)| ≤ ε, ∀i ∈ {1, . . . ,m},
gi(x) ≤ ε, λi ≥ 0, |λigi(x)| ≤ ε ∀i ∈ {1, . . . , p}.

2.2 Mathematical Program with Complementarity Constraints

We now specialize the general notions above to our speci�c case of (MPCC). Let Z be the set of feasible
points of (MPCC). Given x∗ ∈ Z, we denote

I+0(x∗) := {i ∈ {1, . . . , q} | Gi(x∗) > 0 and Hi(x
∗) = 0},

I0+(x∗) := {i ∈ {1, . . . , q} | Gi(x∗) = 0 and Hi(x
∗) > 0},

I00(x∗) := {i ∈ {1, . . . , q} | Gi(x∗) = 0 and Hi(x
∗) = 0},

Ig(x∗) := {i ∈ {1, . . . , q} | gi(x∗) = 0}.

As in the previous section, we extend the de�nition of the Lagrangian. Let LrMPCC be the generalized
MPCC-Lagrangian function of (MPCC) such that

LrMPCC(x, λg, λh, λG, λH) := rf(x) + g(x)Tλg + h(x)Tλh −G(x)TλG −H(x)TλH

with λ := (λg, λh, λG, λH) ∈ Rp × Rm × Rq × Rq.

2.2.1 Stationary Point

It is clear that we can not expect to compute usual KKT-point since classical constraint quali�cations in
general does not hold, so we introduce weaker stationary concept as in [65, 42].

De�nition 2.7. x∗ ∈ Z is said
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Figure 1: Relations between the stationarity de�nitions

Figure 2: Signs of λG, λH for indices i ∈ I00. From the left to the right : weak-stationary, C-stationary,
A-stationary, M-stationary and S-stationay.

• Weak-stationary if there exists λ = (λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq such that

∇xL1
MPCC(x∗, λg, λh, λG, λH) = 0,

λgi = 0 ∀i /∈ Ig, λGI+0(x∗) = 0, λHI0+(x∗) = 0.

• Clarke (C)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi λ
H
i ≥ 0.

• Alternatively or Abadie (A)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0 or λHi ≥ 0.

• Mordukhovich (M)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), either λGi > 0, λHi > 0 or λGi λ
H
i = 0.

• Strong (S)-stationary point if x∗ is weak-stationary and

∀i ∈ I00(x∗), λGi ≥ 0, λHi ≥ 0.

Relations between these de�nitions are given in Figure 1 and follow in a straightforward way from the
de�nitions. Local optimal solution are often denoted Bouligand (B)-stationary point in the literature, but
this will not be used here.

2.2.2 First Order Constraint Quali�cation for MPCC

In a classical way from the literature, we extend the various constraint quali�cations for (NLP) to (MPCC).
MPCC-CQ denotes this extension of usual CQ.

Abadie CQ and Guignard CQ are the weakest constraint quali�cations in non-linear programming. Un-
fortunately Abadie condition is very unlikely to be satis�ed with (MPCC). Indeed, the tangent cone, TZ , is
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closed but in general not convex and the classical linearized cone of (MPCC) is polyhedral for (MPCC) and
therefore convex. That is why we de�ne a speci�c cone for (MPCC) denoted LMPCC as in [65, 20, 61]

LMPCC(x∗) := {d ∈ Rn | ∇gi(x∗)T d ≤ 0,∀i ∈ Ig(x∗),
∇hi(x∗)T d = 0 ∀i = 1, ...,m,

∇Gi(x∗)T d = 0 ∀i ∈ I0+(x∗),

∇Hi(x
∗)T d = 0 ∀i ∈ I+0(x∗),

∇Gi(x∗)T d ≥ 0,∇Hi(x
∗)T d ≥ 0 ∀i ∈ I00(x∗),

(∇Gi(x∗)T d)(∇Hi(x
∗)T d) = 0 ∀i ∈ I00(x∗)}.

This cone is no longer a polyhedral cone and is not necessarily convex. However due to [20], one always has
the following inclusions

TZ(x∗) ⊆ LMPCC(x∗) ⊆ L (x∗).

De�nition 2.8. Let x∗ ∈ Z. We say that MPCC-ACQ holds at x∗ if TZ(x∗) = LMPCC(x∗) and MPCC-
GCQ holds at x∗ if T ◦Z (x∗) = L ◦MPCC(x∗).

The following theorem is a keystone to de�ne necessary optimality conditions for (MPCC).

Theorem 2.1 ([23]). A local minimum of (MPCC) that satis�es MPCC-GCQ or any stronger MPCC-CQ
is an M-stationary point.

The polar of the cone LMPCC is a key tool in the de�nition of constraint quali�cation. It is however not
trivial to compute. Therefore, we introduce the following polar cone:

PM (x∗) := {d ∈ Rn | ∃(λg, λh, λG, λH) ∈ Rp+ × Rm × Rq × Rq

with λGi λ
H
i = 0 or λGi > 0, λHi > 0 ∀i ∈ I00(x∗),

d =
∑

i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)

−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗)}.

(1)

As a consequence of the previous theorem we can deduce the following result.

Lemma 2.1. Let x∗ ∈ Z such that MPCC-GCQ holds at x∗. Then, the following inclusion holds true

L ◦MPCC(x∗) ⊂PM .

Proof. First, it is easy to notice the following characterization of M-stationary point with the PM . x∗ is an
M-stationary point if and only if

−∇f(x∗) ∈PM . (2)

Theorem 2.1 proved that given x∗ ∈ Z such that MPCC-GCQ holds true at x∗, then for any continuously
di�erentiable function f it follows

x∗ is a local minimum ⇐⇒ −∇f(x∗) ∈ T ◦Z (x∗) ⇐⇒ −∇f(x∗) ∈ L ◦MPCC(x∗)

=⇒ x∗ is an M-stationary point

⇐⇒ −∇f(x∗) ∈PM .

The last equation comes from the characterization of M-stationary point given in (2).
Since f is taken in a completely general way, this proves the result.
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One of the most principal constraint quali�cation used in the literature of (MPCC) is the MPCC-LICQ,
see [66] for a discussion on this CQ. In a similar way we extend CRCQ as in [32]. A condition that is similar
was used in [48, 39] to prove convergence of relaxation methods for (MPCC).

De�nition 2.9. Let x∗ ∈ Z.

1. MPCC-LICQ holds at x∗ if the gradients

{∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . ,m), ∇GI00(x∗)∪I0+(x∗)(x
∗), ∇HI00(x∗)∪I+0(x∗)(x

∗)}

are linearly independent.

2. MPCC-CRCQ holds at x∗ if there exists δ > 0 such that, for any subsets I1 ⊆ Ig(x∗), I2 ⊆ {1, . . . ,m},
I3 ⊆ I0+(x∗) ∪ I00(x∗), and I4 ⊆ I+0(x∗) ∪ I00(x∗), the family of gradients

{∇gi(x∗) (i ∈ I1), ∇hi(x∗) (i ∈ I2), ∇Gi(x∗) (i ∈ I3), ∇Hi(x
∗) (i ∈ I4)}

has the same rank for each x ∈ Bδ(x∗).

The linear independance CQ in the context has a very speci�c behaviour since in this case KKT conditions
holds as stated in the following result from [22] (Theorem 4.5).

Theorem 2.2. If a point x∗ ∈ Z satis�es MPCC-LICQ it also satis�es classical GCQ.

In [22], they also provide examples to show than GCQ does not hold with weaker MPCC-CQs. So,
under MPCC-LICQ the correct stationary concept is S-stationary and therefore M-stationary points may be
undesirables.

However, as pointed out in Theorem 2.1, in the general case the correct sign of the multiplier λGi , λ
H
i for

i ∈ I00(x∗) in the necessary optimality conditions for (MPCC) are the sign of M-stationary points. This
motivates the following de�nition of MPCC-MFCQ that specialize the MPCC-LICQ by taking into account
those signs of multipliers for i ∈ I00(x∗).

De�nition 2.10. Let x∗ ∈ Z. MPCC-MFCQ holds at x∗ if the only solution of∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗) = 0

with λgi ≥ 0 (i ∈ Ig(x∗)) and either λGi λ
H
i = 0 either λGi > 0, λHi > 0 for all i ∈ I00(x∗) is the trivial

solution.

2.3 A New MPCC-Constraint Quali�cation

In a similar way as for MPCC-MFCQ, we extend the de�nition of CRSC constraint quali�cation to introduce
the MPCC-CRSC, which is new in the MPCC literature.

De�nition 2.11. Let x∗ ∈ Z. MPCC-CRSC holds at x∗ if for any partition I00
++ ∪ I00

0− ∪ I00
−0 = I00(x∗)

such that ∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00++

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00++

λHi ∇Hi(x
∗)

+
∑
i∈I00−0

λGi ∇Gi(x∗) +
∑
i∈I000−

λHi ∇Hi(x
∗) = 0,

with λgi ≥ 0 (i ∈ Ig(x∗)),λGi and λHi ≥ 0 (i ∈ I00
++), λGi > 0 (i ∈ I00

−0), λHi (i ∈ I00
0−) > 0, there exists δ > 0

such that the family of gradients

{∇gi(x) (i ∈ I1), ∇hi(x) (i = 1, . . . ,m), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)}
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has the same rank for every x ∈ Bδ(x∗), where

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈PM (x∗)},
I3 := I0+(x∗) ∪ {i ∈ I00

++|∇Gi(x∗) ∈PM (x∗)} ∪ I00
−0,

I4 := I+0(x∗) ∪ {i ∈ I00
++|∇Hi(x

∗) ∈PM (x∗)} ∪ I00
0−.

It is not necessary to add that the gradients −∇Gi(x∗) and −∇Hi(x
∗) belong to PM (x∗). Indeed, we

already require that λGi and λHi must be non-zero respectively for the indices i ∈ I00
−0 and i ∈ I00

0− and so it
implies that these gradients belong to this set.

In the special case where there is no partition of I00(x∗) that satis�es the condition of the de�nition
above, then obviously the gradients are linearly independant and so MPCC-MFCQ holds at x∗.

Furthermore, MPCC-CRSC is weaker than MPCC-CRCQ. Indeed, MPCC-CRCQ requires that every
family of linearly dependant gradients remains linearly dependant in some neighbourhood, while the MPCC-
CRSC condition consider only the family of gradients that are linearly dependant with coe�cients that have
M-stationary signs.

We now state that this new notion of MPCC-CRSC is actually an MPCC-CQ by proving that it implies
MPCC-CCP.

De�nition 2.12. We say that a feasible point x∗ satis�es the MPCC-CCP if the set-valued mapping Rn 3
x⇒ KMPCC(x) such that

KMPCC(x) := {
∑

i∈Ig(x∗)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x)

: λgi ∈ R+ and , either λGi λ
H
i = 0 either λGi > 0, λHi > 0 for i ∈ I00(x∗)}

is outer semicontinuous (De�nition 5.4 [64]) at x∗, that is

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

This de�nition is motivated by sequential optimality conditions from [9] for non-linear programming and
extended for (MPCC) in [63], where it has been proved to be an MPCC-constraint quali�cation.

A useful lemma that we extensively use in the following results is reminded here. This result is a
Caratheodory kind lemma.

Lemma 2.2. [Lemma 7.1, [67]] Let {ai | i = 1, . . . , p}, {bi | i = 1, . . . ,m} and c be vectors in Rn and
α ∈ Rp+, β ∈ Rm multipliers such that

p∑
i=1

αia
i +

m∑
i=1

βib
i = c.

Then there exist multipliers α∗ ∈ Rp+ and β∗ with supp(α∗) ⊆ supp(α), supp(β∗) ⊆ supp(β) and

p∑
i=1

α∗i a
i +

m∑
i=1

β∗i b
i = c

such that the vectors
{ai | i ∈ supp(α∗)} ∪ {bi | i ∈ supp(β∗)}

are linearly independent.

The following results give a characterization of some sequences that satisfy MPCC-CRCQ and MPCC-
CRSC at their limit point. Note that this result is essential for the convergence proof of relaxation methods
for (MPCC) that will be studied in the next section, since it proves boundedness of approximate stationary
sequences.
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Theorem 2.3. Let x∗ be in Z such that MPCC-CRCQ holds at x∗. Given two sequences {xk},{λk} so that
up to a subsequence xk → x∗ and λk goes to some limit λ ∈ Rp+ × Rm × Rq × Rq (possibly in�nite) that
satis�es

∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0, (3)

and

λgi = 0 ∀i /∈ Ig(x∗), ∀i ∈ I+0(x∗) lim
k→∞

λG,ki

‖λk‖∞
= 0 and ∀i ∈ I0+(x∗) lim

k→∞

λH,ki

‖λk‖∞
= 0.

Then the sequence {λk} is bounded.

Proof. Let {wk} be a sequence de�ned such that

wk :=

m∑
i=1

λh,ki ∇hi(x
k)+

∑
j∈Ig(x∗)

λg,kj ∇gj(x
k)−

∑
j∈I0+(x∗)∪I00(x∗)

λG,kj ∇Gj(x
k)−

∑
j∈I+0(x∗)∪I00(x∗)

λH,kj ∇Hj(x
k).

We can safely assume that for k su�ciently large wk 6= 0. Indeed, if up to some indice k̄ it holds that wk = 0
for all k ≥ k̄ then assumption (3) implies that ∇f(xk)→ ∇f(x∗) = 0. So, in this case the constraints of the
problem are not playing any role and for k ≥ k̄, λk = 0 is a valid sequence of Lagrange multiplier.

According to Lemma 2.2 we may assume without loss of generality that the gradients corresponding to
non-vanishing multipliers in the de�nition of wk are linearly independent for all k ∈ N. (note that this may
change the multipliers, but a previously positive multiplier will stay at least non-negative and a vanishing
multiplier will remain zero).

We prove by contradiction that the sequence {λk} is bounded. Assuming that for some indices λk is not
bounded, therefore there exists a subsequence such that

λk

‖λk‖∞
→ λ 6= 0.

Dividing by ‖λk‖∞ and passing to the limit in the equation above yields

w∗ =
∑

i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗) = 0,

with λGj = 0 for j ∈ I+0, λHj = 0 for j ∈ I0+ by assumption (3).
It follows that the gradients with non-zero multipliers involved in the previous equation are linearly

dependent. MPCC-CRCQ guarantees that these gradients remain linearly dependent in a whole neighbour-
hood. This, however, is a contradiction to the linear independence of these gradients in xk since wk 6= 0 for
k su�ciently large. Here, we used that for all k su�ciently large supp(λ) ⊆ supp(λk).

Consequently, our assumption was wrong and thus the sequence {λk} is bounded.

The following result is a consequence of Theorem 2.3 in the case where the limit point is an M-stationary
point.

Corollary 2.1. Let x∗ be in Z such that MPCC-CRSC holds at x∗. Given two sequences {xk},{λk} so that
up to a subsequence xk → x∗ and λk goes to some limit λ ∈ Rp+ × Rm × Rq × Rq (possibly in�nite) that
satis�es

∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)−

q∑
i=1

λH,ki ∇Hi(x
k)→ 0, (4)
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λgi = 0 ∀i /∈ Ig(x∗), ∀i ∈ I+0(x∗) lim
k→∞

λG,ki

‖λk‖∞
= 0 and ∀i ∈ I0+(x∗) lim

k→∞

λH,ki

‖λk‖∞
= 0,

and
either λGi λ

H
i = 0 either λGi > 0, λHi > 0 for i ∈ I00(x∗).

Then the sequence {λk} is bounded.

Proof. The proof is completely similar to Theorem 2.3. It remains to verify that under the assumption
MPCC-CRSC the gradients of non-vanishing multipliers involved in the following equation

∑
i∈Ig(x∗)

λgi∇gi(x
∗) +

m∑
i=1

λhi∇hi(x∗)−
∑

i∈I0+(x∗)∪I00(x∗)

λGi ∇Gi(x∗)−
∑

i∈I+0(x∗)∪I00(x∗)

λHi ∇Hi(x
∗) = 0

are linearly dependent in whole neighbourhood of x∗.
However, it is clear that the family of gradients considered in the de�nition of MPCC-CRSC corresponds

to the gradients with non-zero multipliers in the previous equation. Since by linear dependence of the
gradients at x∗ any gradient whose multiplier is non-zero may be formulated as a linear combination of
the others gradients. Therefore, those gradients with non-vanishing multipliers belong to the polar of the
M-linearized cone. MPCC-CRSC guarantees that these gradients remain linearly dependent in a whole
neighbourhood.

Applying Theorem 2.3 the sequence {λk} is bounded.

We conclude this section by a consequence of Corollary 2.1 that states an essential result for this section,
namely MPCC-CRSC is an MPCC-constraint quali�cation.

Corollary 2.2. MPCC-CRSC implies MPCC-CCP.

Proof. We prove that a point x∗ that satis�es MPCC-CRSC satis�es the following relation

lim sup
x→x∗

KMPCC(x) ⊂ KMPCC(x∗).

Let w∗ be in the lim supx→x∗ KMPCC(x). By de�nition of the lim sup there are sequences {wk}, {xk}, {λk}
with xk → x∗ and wk → w∗ such that for k su�ciently large

wk =

m∑
i=1

λh,ki ∇hi(x
k)+

∑
j∈Ig(x∗)

λg,kj ∇gj(x
k)−

∑
j∈I0+(x∗)∪I00(x∗)

λG,kj ∇Gj(x
k)−

∑
j∈I+0(x∗)∪I00(x∗)

λH,kj ∇Hj(x
k),

with λg,ki ∈ R+, either λ
G,k
i λH,ki = 0 either λG,ki > 0, λH,ki > 0 for i ∈ I00(x∗). Moreover, for k su�ciently

large it holds that supp(λg,k) ⊆ Ig(x∗), supp(λG,k) ⊆ I0+(x∗)∪I00(x∗) and supp(λH,k) ⊆ I00(x∗)∪I+0(x∗).
The sequence {λk} clearly satis�es the assumption (4) of Corollary 2.1. It follows that this sequence is

bounded and up to a subsequence we can extract a limit point λ∗. Consequently, by de�nition of λk it holds
that λG,∗j = 0 for j ∈ I+0, λH,∗j = 0 for j ∈ I0+ and either λG,∗j λH,∗j = 0 either λG,∗j > 0, λH,∗j > 0 for

j ∈ I00(x∗).
So, we can conclude that w∗ belongs to KMPCC(x∗) and therefore MPCC-CCP is satis�ed at x∗.

An alternative proof could used Theorem 3.5 of [63] that state that any sequence {xk} that converges
to an M-stationary point x∗ is equivalent to satisfying MPCC-CCP at x∗. Note that this is conceptually
equivalent to the one presented here.

We sum up this section in Figure 3 by giving the relationship between the various MPCC-CQ de�ned
here.
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MPCC-LICQ
=⇒

MPCC-CRCQ =⇒
=⇒

MPCC-MFCQ =⇒
MPCC-CRSC =⇒MPCC-CCP

Figure 3: Relation between the MPCC-constraint quali�cations

3 The Butter�y Relaxation Methods

3.1 Relaxation Methods

The principal aim of this paper focuses on relaxation methods to solve (MPCC). The sketch of such a
method is described in Algorithm 1 and behaves as follows: we consider a non-linear parametric program
Rtk , where the complementarity constraints have been relaxed using a parameter tk > 0. A sequence {xk+1}
of stationary points of Rtk is then computed for each value of tk > 0. Such stationary points are computed
using iterative methods that require an initial point. We use the previous stationary point as an initial point.
For tk converging to zero the sequence {xk+1} converge under some mild assumption to a stationary point
of (MPCC).

The relaxed problems Rtk with a parameter tk are written in a general form as

min
x∈Rn

f(x)

g(x) ≤ 0, h(x) = 0,

G(x) ≥ 0, H(x) ≥ 0,

Φi(G(x), H(x); tk) ≤ 0, i = 1, . . . , q .

(Rt)

We may skip the indices k in the notation of the parameter tk, when it is clear from the context that we
look at the step k.

Data:
starting vector x0; sequence of relaxation parameters {tk};

1 Begin ;
2 Set k := 0 ;

3 while xk /∈ Z do

4 xk+1:= stationary point of R(tk) with xk as an initial point;

Algorithm 1: Generic relaxation method for (MPCC), with a corresponding relaxed non-linear pro-
gram Rt.

According to Section 2.2, our aim is to compute an M-stationary point of (MPCC). A motivation
to consider such method is that the sequence of relaxed non-linear program may satisfy some constraint
quali�cation and then are more tractable for classical non-linear methods.

The following section introduces our new relaxation schemes called butter�y relaxations.

3.2 Butterfy Relaxations

We propose a new family of relaxations with two positive parameters (t, r) de�ned such that for all i ∈
{1, . . . , q}

ΦBi (G(x), H(x); t, r) :=

{
F1i(x; r, t)F2i(x; t, r), if F1i(x; r, t)F2i(x; t, r) ≥ 0

< 0, otherwise
(5)

with

F1i(x; r, t) := (Hi(x)− tθr(Gi(x)))

F2i(x; t, r) := (Gi(x)− tθr(Hi(x)))
,

13



where θr : R→]−∞, 1] are continuously di�erentiable non-decreasing concave functions with θ(0) = 0, and

lim
r→0

θr(x) = 1 ∀x ∈ R++ completed in a smooth way for negative values by considering θr(z < 0) = zθ′(0)
r .

Examples of such functions are

θ1
r(x) =

x

x+ r
or θ2

r(x) = 1− exp−
x
r .

Those functions have already been used in the context of complementarity constraints in [34]. These new
relaxations handle two parameters r and t instead of one and chosen such that

tθ′(0) ≤ r and t = ω(r2). (6)

One way to write (5) for t < θ′(0)r uses the NCP function from [67] by considering

ΦBi (G(x), H(x); t, r) :=

{
F1i(x; r, t)F2i(x; t, r), if F1i(x; r, t) + F2i(x; t, r) ≥ 0

− 1
2 (F1i(x; r, t)

2
+ F2i(x; t, r)

2
), if F1i(x; r, t) + F2i(x; t, r) < 0.

(7)

Since these relaxations are an union of two convex sets connected on a single point we may also consider
a relaxation of the positivity constraints. The feasible set of the relaxed complementarity constraints is
presented in Figure 4 for some examples. This method is an extension of the work of [46, 47] and [38, 48]
since handling two parameters allows bringing the two "wings" of the relaxation closer.

We now introduce some notations that will be extensively used in the sequel. Since the butter�y relax-
ations handle two parameters we denote t̂ := (t, r) to simplify the notation and by extension t̂k := (tk, rk).
Let XB

t̂
be the feasible set of RB

t̂
, which corresponds to the non-linear program related to the butter�y

relaxation of the complementarity constraints de�ned in (5), that is

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

G(x) ≥ −r̄e, H(x) ≥ −r̄e,
ΦBi (G(x), H(x); t̂)(x) ≤ 0, i = 1, . . . , q .

(RB
t̂
)

The parameter r̄ depends on t and r and is chosen such that

{x ∈ Rn | − r̄e ≤ G(x), H(x) ≤ 0} ⊂ {x ∈ Rn | F1i(x; r, t) + F2i(x; t, r) ≤ 0, i = 1, . . . , q}.

As an example, one can choose r̄ := − 2r2(1−θ′(0)t/r)
tθ′′(0) . It is to be noted that r̄ is positive by (6). Later,

we discuss the asymptotic behaviour of this parameter and it is of interest to note that when t = o(r) then
r̄ goes to 0 in the same order than r2/t, we denote r̄ ∼K r2/t. Figure 4 shows the feasible set of the relaxed
complementarity constraint for some relations between t and r.

The sets of indices used in the sequel are de�ned in the following way

IG(x; t̂) := {i = 1, . . . , q | Gi(x) + r̄ = 0}
IH(x; t̂) := {i = 1, . . . , q | Hi(x) + r̄ = 0}
IGH(x; t̂) := {i = 1, . . . , q | ΦBi (G(x), H(x); t̂)(x) = 0}
I0+
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) = 0, F2i(x; t̂) > 0}
I+0
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) > 0, F2i(x; t̂) = 0}
I++
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) > 0, F2i(x; t̂) > 0}
I00
GH(x; t̂) := {i ∈ IGH(x; t̂) | F1i(x; t̂) = F2i(x; t̂) = 0}.

We also use classical asymptotic Landau notations :
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Figure 4: Feasible set of the butter�y relaxation for θr(z) = z
z+r with from the left to the right : t = r,

t = 2r and t = r3/2.

f(x) = O(g(x)) as x→ a if and only if there exists positive numbers δ andM such that |f(x)| ≤M |g(x)|
for all |x− a| ≤ δ.

f(x) = Ω(g(x)) as x→ a if and only if there exists positive numbers δ and M such that |f(x)| ≥M |g(x)|
for all |x− a| ≤ δ.

f(x) = o(g(x)) as x→ a if and only if for all positive constant M there exists a positive number δ such

that |f(x)| ≤M |g(x)| for all |x− a| ≤ δ, in other words limx→a
f(x)
g(x) = 0.

f(x) = ω(g(x)) as x→ a if and only if for all positive constant M there exists a positive number δ such
that |f(x)| ≥M |g(x)| for all |x− a| ≤ δ.

f(x) ∼K (g(x)) as x→ a if and only limx→a
f(x)
g(x) = K with K a positive �nite constant and in a classical

way f(x) ∼K (g(x)) when K = 1.

We focus in the sequel on the properties of these new relaxation schemes. The asymptotic behaviour
of these methods are illustrated in Lemmas 3.2 and 3.3. Then, we move to convergence properties of the
methods considering a sequence of stationary points, which is proved to converge to an A-stationary point
in Theorem 4.1 and to an M-stationary point, Corollary 4.1, with some relation between the sequences
{tk} and {rk}. In both results we discuss weak constraint quali�cations necessary to ensure convergence of
these methods. The main motivation to consider relaxation methods for (MPCC) is to solve a sequence of
regular problems. Under classical assumptions the butter�y relaxed non-linear programs satisfy Guignard
CQ, Theorem 4.2. A speci�c kind of butter�y methods, where tkθ

′(0) = rk for k su�ciently large, has
improved properties since they satisfy Abadie CQ, Theorem 4.3. It is more realistic to consider a sequence
of ε-stationary points instead of classical stationary points. Also there is a price to pay here since conver-
gence properties of most of the relaxation methods are damaged. This is discussed in Theorem 4.5 for the
formulation with tk = o(rk). Finally, numerical results will be presented in Sect. 5 and show that these new
methods are very competitive compared to existing methods.

Before moving to our main results regarding convergence and regularity properties of the butter�y relax-
ations, we provide some useful results on the asymptotic behaviour of functions θr and ΦB(G(x), H(x); t̂).
Direct computation gives the gradient of ΦB(G(x), H(x); t̂) in the following lemma.

Lemma 3.1. For all i ∈ {1, . . . , q}, the gradient of ΦBi (G(x), H(x); t̂) at x is given by

∇ΦBi (G(x), H(x); t̂)(x) =


(
F1i(x; t̂)− tθ′r(Gi(x))F2i(x; t̂)

)
∇Gi(x)

+
(
F2i(x; t̂)− tθ′r(Hi(x))F1i(x; t̂)

)
∇Hi(x) if F1i(x; t̂) + F2i(x; t̂) ≥ 0(

tθ′r(Gi(x))F1i(x; t̂)− F2i(x; t̂)
)
∇Gi(x)

+
(
tθ′r(Hi(x))F2i(x; t̂)− F1i(x; t̂)

)
∇Hi(x) if F1i(x; t̂) + F2i(x; t̂) < 0

The following result illustrates the behaviour of functions θr and their derivatives when t and r are going
through zero.
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Lemma 3.2. Given two sequences {rk} and {tk}, which converge to 0 as k goes to in�nity and ∀k ∈
N, (rk, tk) ∈ R2

++. Then, for any z ∈ R+

lim
k→∞

tkθrk(z) = 0.

Furthermore, let {zk} be such that limk→∞ zk = 0. Then, either zk = O(rk) and so there exists a constant
Cθ ∈ [0, θ′(0)] such that,

lim
k→∞

tkθ
′
rk

(zk) = lim
k→∞

Cθ
tk
rk
,

otherwise, i.e zk = ω(rk), then

lim
k→∞

tkθ
′
rk

(zk) ≤ lim
k→∞

θ′(1)
tk
rk
.

Proof. First part of the lemma follows from the de�nition of functions θr. Indeed, it holds for all z ∈ R+

that θr(z) ∈ [0, 1]. Therefore, limk→∞ tkθrk(zk) = 0.
Second part of the lemma uses the fact that functions θr are de�ned as perspective functions, that is for

all zk ∈ R+

θrk(zk) = θ

(
zk

rk

)
,

and so, computing the derivative gives

tkθ
′rk(zk) =

tk
rk
θ′
(
zk

rk

)
.

So, either zk = o(rk) and by 0 < θ′(0) <∞

lim
k→∞

tkθ
′
rk

(zk) = lim
k→∞

tk
rk
θ′
(
zk

rk

)
= lim
k→∞

tk
rk
θ′(0).

Either there exists a constant C > 0 such that zk = Crk and so

lim
k→∞

tkθ
′
rk

(zk) = lim
k→∞

tk
rk
θ′
(
Crk

rk

)
= lim
k→∞

tk
rk
θ′(C).

Otherwise for k su�ciently large rk ≤ zk and by concavity of θr

0 ≤ lim
k→∞

tkθ
′
rk

(zk) ≤ lim
k→∞

tkθ
′
rk

(rk) = lim
k→∞

tk
rk
θ′(1).

The following lemma is a direct application of Lemma 3.2 on the convergence of the butter�y relaxation
when t and r go to zero.

Lemma 3.3 (Convergence of ΦB(G(x), H(x); t̂)). Assume that (MPCC) has a non-empty feasible set. Given
two sequences {rk} and {tk}, which converge to 0 as k goes to in�nity and ∀k ∈ N, (rk, tk) ∈ R2

++. Let {xk}
be a sequence of points such that limk→∞ xk = x∗ and satisfying for all i ∈ {1, . . . , q} and for all k ∈ N

Gi(x
k) ≥ −r̄, Hi(x

k) ≥ −r̄, ΦBi (G(x), H(x); t̂)(xk) ≤ 0.

Then, x∗ is a feasible point for (MPCC) as long as g(x∗) ≤ 0 and h(x∗) = 0.

We conclude this section by an example that shows that the butter�y relaxation may improve relaxations
from [46] and [48]. Indeed, it illustrates an example where there are no sequences of stationary points that
converge to some undesirable point.
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Example 3.1.

min
x∈R2

−x1 s.t x1 ≤ 1, 0 ≤ x1 ⊥ x2 ≥ 0.

In this example, there are two stationary points : an S-stationary point (1, 0) that is the global minimum
and an M-stationary point (0, 0). Since, obviously MPCC-LICQ holds at the latter point it is undesirable by
Theorem 2.2.

Unlike the relaxations (KDB) and (KS) where for tk = 1
k a sequence xk = (tk tk)T may converge to (0, 0)

as k goes to in�nity there is no sequences of stationary point that converges to this undesirable point with
the butter�y relaxation.

4 Theoretical Properties

The study of theoretical properties of the butter�y relaxation methods is split into three parts: convergence
of the sequence of stationary points, existence of Lagrange multipliers for the relaxed non-linear program
and convergence of the sequence of ε-stationary points. In each case, this new technique discussed here is
proved to get the best-known theoretical properties for some choices of the parameters.

4.1 Convergence

In this section, we focus on the convergence properties of the butter�y relaxation methods and the constraint
quali�cations guaranteeing convergence of the sequence of stationary points generated by the methods. Our
aim is to compute an M-stationary point or at least to provide a certi�cate if we converge to an undesirable
point.

Relaxation methods that converge to M-stationary points are introduced in [46] and [48]. C-stationary
points are also frequent guests in these relaxations methods as in [65] and [54].

We prove in Theorem 4.1 that butter�y relaxations converge to an A-stationary point and provide a
certi�cate independent of the multipliers in the case it converges to undesirable points. This result is
improved to a convergence to M-stationary points for some choices on the parameters t and r in Corollary
4.1.

Another main concern in the literature is to �nd the weakest constraint quali�cation, which ensures
convergence of the method. This has been extensively studied in the thesis [67] and related papers mentioned
herein, where they prove convergence of most of the existing relaxation methods in the literature under a
hypothesis close to MPCC-CRCQ. More recently in [63] the author proves convergence of the relaxation
from [46] and [48] under MPCC-CCP.

Convergence of the butter�y relaxations under MPCC-CRCQ is proved in Proposition 4.1. An improved
result for some choices of the parameter t and r is given in Proposition 4.2 that uses our new constraint
quali�cation denoted MPCC-CRSC. Example 4.4 shows that our methods may not converge under MPCC-
CCP since it requires boundedness of some multipliers.

Theorem 4.1. Given two sequences {tk} and {rk} decreasing to zero such that (tk, rk) ∈ R2
+ satisfying (6).

Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points from Rn × Rp × Rm × R3q that are stationary
points of RB

t̂
(xk) for all k ∈ N with xk → x∗. Assume that the sequence

{λg,k, λh,k, ηG,k, ηH,k}, (8)

where for all i ∈ {1, . . . , q}

ηG,ki := λG,k − λΦ,k
i

(
F1i(x

k; t̂k)− tkθ′rk
(
Gi(x

k)
)
F2i(x

k; t̂k)
)
,

ηH,ki := λH,k − λΦ,k
i

(
F2i(x

k; t̂k)− tkθ′rk
(
Hi(x

k)
)
F1i(x

k; t̂k)
)
,

is bounded. Then, one of the three following case holds:

17



(i) x∗ is an S-stationary point, if for all i ∈ I00(x∗) one of the following holds:

(i.a) there exists k̄ ∈ N such that Gi(x
k) = Hi(x

k) = −r̄k, ∀k ≥ k̄;

(i.b) the sequence of multiplier {λΦ,k
i } is bounded;

(i.c) {λΦ,k
i } is unbounded with lim

k→∞
λΦ,k
i F2i(x

k; t̂k) = 0 for i ∈ I0+
GH(xk; t̂k) and lim

k→∞
λΦ,k
i F1i(x

k; t̂k) =

0 for i ∈ I+0
GH(xk; t̂k).

(ii) x∗ is an M-stationary point, if for all i ∈ I00(x∗) that do not satisfy conditions (i) the sequence

of multiplier {λΦ,k
i } is unbounded and either for i ∈ I0+

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Gi(x
k)) = 0 either for

i ∈ I+0
GH(xk; t̂k), lim

k→∞
tkθ
′
rk

(Hi(x
k)) = 0.

(iii) x∗ is an A-stationary point, if the sequence of multiplier diverges or for all i ∈ I00(x∗) that do

not satisfy conditions (ii) the sequence of multiplier {λΦ,k
i } is unbounded and either for all i ∈

I0+
GH(xk; t̂k), lim

k→∞
tkθ
′
rk

(Gi(x
k)) > 0 either for all i ∈ I+0

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Hi(x
k)) > 0.

The boundedness assumption on the sequence (8) is a classical assumption and is guaranteed under some
constraint quali�cation as shown in the next Proposition 4.1.

Proof. First, we identify the expressions of the multipliers of the complementarity constraint in De�nition
2.7 in function of the stationary points of RB

t̂
(xk). Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of KKT

points of RB
t̂
for all k ∈ N, that by de�nition satis�es

0 = ∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)

−
q∑
i=1

λH,ki ∇Hi(x
k) +

q∑
i=1

λΦ,k
i ∇ΦBi (G(xk), H(xk); t̂k),

with

λg,ki = 0, ∀i /∈ Ig(xk) and λg,ki ≥ 0, ∀i ∈ Ig(xk)

λG,ki = 0, ∀i /∈ IG(xk) and λG,ki ≥ 0, ∀i ∈ IG(xk)

λH,ki = 0, ∀i /∈ IH(xk) and λH,ki ≥ 0, ∀i ∈ IH(xk)

λΦ,k
i = 0, ∀i /∈ IGH(xk; t̂k) and λΦ,k

i ≥ 0, ∀i ∈ IGH(xk; t̂k).

Since the representation of ΦBi (G(x), H(x); t̂)(xk) immediately gives ∇ΦBi (G(x), H(x); t̂)(xk) = 0, ∀i ∈
I00
GH(xk; t̂k) for all k ∈ N. Thus, we can rewrite the equation above as

−∇f(xk) =

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

ηG,ki ∇Gi(xk)−
q∑
i=1

ηH,ki ∇Hi(x
k), (9)

where

ηG,ki =


λG,k, if i ∈ IG(xk; t̂k)

−λΦ,k
i tkθ

′
rk

(Gi(x
k))F2i(x

k; t̂k), if i ∈ I0+
GH(xk; t̂k)

λΦ,k
i F1i(x

k; t̂k), if i ∈ I+0
GH(xk; t̂k)

0, otherwise,

ηH,ki =


λH,k, if i ∈ IH(xk; t̂k)

−λΦ,k
i tkθ

′
rk

(Hi(x
k))F1i(x

k; t̂k), if i ∈ I+0
GH(xk; t̂k)

λΦ,k
i F2i(x

k; t̂k), if i ∈ I0+
GH(xk; t̂k)

0, otherwise.
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Noticing that whenever i ∈ {i = 1, . . . , q | F1(x; r, t)i(x
k; t̂k) = 0} implies that i ∈ I0+

GH(xk; t̂k) or symmet-
rically i ∈ {i | F2(x; t, r)i(x

k, t̂k) = 0} implies that i ∈ I+0
GH(xk; t̂k) by concavity and tkθ

′(0) ≤ rk for all
k ∈ N.

Since we admit that the sequence {λg,k, λh,k, ηG,k, ηH,k} is bounded and then converges, up to a subse-
quence, to some limit denoted by {λg,∗, λh,∗, ηG,∗, ηH,∗}.

These multipliers are well-de�ned since

IG(xk; t̂k) ∩ IGH(xk; t̂k) ∩
(
{1, . . . , q} \ I00

GH(xk; t̂k)
)

= ∅
IH(xk; t̂k) ∩ IGH(xk; t̂k) ∩

(
{1, . . . , q} \ I00

GH(xk; t̂k)
)

= ∅,

and for k su�ciently large

supp(λG,k) ⊆ IG(xk; t̂k)

supp(λH,k) ⊆ IH(xk; t̂k)

supp(λG,k) ⊆ IGH(xk; t̂k)

supp(ηG,k) ⊆ IGH(xk; t̂k) ∩ ({1, . . . , q} \ I00
GH(xk; t̂k))

supp(ηH,k) ⊆ IGH(xk; t̂k) ∩ ({1, . . . , q} \ I00
GH(xk; t̂k)).

Moreover, for k su�ciently large it holds

supp(λG,∗) ⊆ supp(λG,k)

supp(λH,∗) ⊆ supp(λH,k)

supp(ηG,∗) ⊆ supp(ηG,k)

supp(ηH,∗) ⊆ supp(ηH,k).

Proof that shows convergence of the sequence and weak-stationarity of x∗ is given by Lemma 4.3 for
εk = 0.
So, let us verify that for i in I00 in some cases x∗ is an M- or an A-stationary point. Consider the various
possible cases, where we denote

λG0 := {i = 1, . . . , q | λG,∗i = ηG,∗i } and λ
H
0 := {i = 1, . . . , q | λH,∗i = ηH,∗i } :

1. If i ∈ supp(λG,∗) ∩ supp(λH,∗), then for k su�ciently large i ∈ supp(λG,k) ∩ supp(λH,k). One has

λG,ki ≥ 0, λH,ki ≥ 0 and
Gi(x

k) = Hi(x
k) = −r̄k.

2. If i ∈ supp(λG,∗) ∩ supp(ηH,∗), then for k su�ciently large i ∈ supp(λG,k) ∩ supp(ηH,k). One has

λG,ki ≥ 0, Gi(x
k) = −r̄k and necessarily i ∈ IGH(xk; t̂k), which is not possible.

3. The case i ∈ supp(ηG,∗) ∩ supp(λH,∗) is completely similar.

4. If i ∈ supp(λG,∗) ∩ λH0 , then ηG,∗i ≥ 0 and ηH,∗i = 0.

5. If i ∈ λG0 ∩ supp(λH,∗), then ηG,∗i ≥ 0 and ηH,∗i = 0.

6. If i ∈ λG0 ∩ λH0 , then ηG,∗i = ηH,∗i = 0.

7. If i ∈ λG0 ∩ supp(ηH,∗), then i ∈ λG0 ∩ supp(ηH,k). Since ηG,k = 0 and ηH,k free, one has λΦ,k
i ≥ 0 and

then i ∈ IGH(xk; t̂k).

ηG,ki = 0⇐⇒ F1i(x
k; t̂k) = tkθ

′
rk

(Gi(x
k))F2i(x

k; t̂k) or λΦ,k
i = 0.

Moreover tkθ
′
rk

(Gi(x
k)) > 0, so either λΦ,k

i = 0 or F1i(x
k; t̂k) = F2i(x

k; t̂k) = 0. It follows that

ηG,∗i = ηH,∗i = 0.
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8. The case i ∈ supp(ηG,∗) ∩ λH0 is completely similar to the previous case and leads to γ̂ = ν̂ = 0.

9. If i ∈ supp(ηG,∗) ∩ supp(ηH,∗), then i ∈ supp(ηG,k) ∩ supp(ηH,k) for k su�ciently large and i ∈
IGH(xk; t̂k).

(a). i ∈ I00
GH(xk; t̂k) implies that F1i(x

k; t̂k) = F2i(x
k; t̂k), therefore G(xk) = H(xk) = 0 and ηG,∗i =

ηH,∗i = 0.

(b). If i ∈ I0+
GH(xk; t̂k), then F1i(x

k; t̂k) = 0

0 < Hi(x
k) = tkθrk(Gi(x

k)) <
tkθ
′(0)

rk
Gi(x

k),

therefore F2i(x
k; t̂k) > 0. Assume λΦ,k

i is not bounded, then going through the limit there is a
non-negative constant C such that

lim
k→∞

λΦ,k
i F2i(x

k; t̂k) = C ≥ 0,

and so ηH,∗i = −C. If λΦ,k
i is bounded, it corresponds to the case C = 0. Furthermore either one

has
lim
k→∞

tkθ
′
rk

(Gi(x
k)) ≥ 0

and so ηG,∗i ≥ 0 and ηH,∗i ≤ 0. Either one has

lim
k→∞

tkθ
′
rk

(Gi(x
k)) = 0

and so ηG,∗i = 0 and ηH,∗i < 0.

(c). The case i ∈ I+0
GH(xk; t̂k) is completely similar to the previous case.

Indices that correspond to the �rst eight cases and 9.a) are indices that satisfy S-stationary condition.
Furthermore, the indices in cases 9.b) and 9.c), when the constant C = 0, also have the sign of S-stationary
indices.

M- and A-stationary indices may appear only in the case 9.b) when C 6= 0 and either tkθ
′
rk

(Gi(x
k)) = 0

or tkθ
′
rk

(Gi(x
k)) > 0 for i ∈ I+0

GH(xk; t̂k) and symmetrically in case 9.c).

The following proposition proves convergence of the sequence of multipliers under MPCC-CRCQ by a
direct application of Theorem 2.3. Indeed, assumption (3) of Theorem 2.3 is guaranteed by Theorem 4.1.

Proposition 4.1. Given two sequences {tk} and {rk} satisfying (6) such that ∀k ∈ N, (tk, rk) ∈ R2
+, both

sequences decrease to zero as k goes to in�nity. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points
that are stationary points of RB

t̂
(xk) for all k ∈ N with xk → x∗ such that MPCC-CRCQ holds at x∗. Then,

the sequence (8) is bounded.

In [63], the author proves similar convergence results for the relaxations [46] and [48] using the very weak
constraint quali�cation MPCC-CCP, obtained by deriving the sequential optimality conditions from [9] in
non-linear programming to (MPCC). However, this constraint quali�cation does not ensure boundedness of
the sequence of multipliers (8), which is necessary for our previous theorem. The following example shows
that the result of Proposition 4.1 is sharp since convergence can not be ensured if MPCC-MFCQ holds at
the limit point. Furthermore, since MPCC-MFCQ is stronger than MPCC-CRSC a similar behaviour can
be observed with the later MPCC-CQ.

Example 4.1. Consider the following two dimensional example

min
(x1,x2)∈R2

x2 s.t 0 ≤ x1 + x2
2 ⊥ x1 ≥ 0.
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MPCC-MFCQ holds at (0, 0)T . However MPCC-CRCQ obviously fails to hold at this point. In this case the
point (0, 0)T is even not a weak-stationary point. Indeed, given a sequence xk ∈ IGH such that xk → (0, 0)T

then λG,k = λH,k = 0 and we can choose λΦ,k that satis�es

ηG,k = −ηH,k =
1

2xk2
.

So, in this case there exists a sequence of stationary points that converges to an highly undesirable point.

Theorem 4.1 describes the various sequences that can arise from these relaxation methods in a constructive
way. Indeed, it shows that in general the butter�y relaxations may converge to some undesirable A-stationary
points. This theorem also provides a certi�cate independent of the computed multiplier that detects during
the iterations, whether the method converges to this kind of undesirable point.

According to condition (iii) from Theorem 4.1 if we detect for k su�ciently large that there exists an
index i ∈ I00(x∗) such that

either i ∈ I0+
GH(xk; t̂k), lim

k→∞
tkθ
′
rk

(Gi(x
k)) > 0 either i ∈ I+0

GH(xk; t̂k), lim
k→∞

tkθ
′
rk

(Hi(x
k)) > 0

then xk converges to an A-stationary point and not more. This is a priori not a trivial task, since the set
of multiplier at those points is not bounded and an M-stationary point may be de�ned for only a subset
of multipliers among the unbounded set of multiplier at this point. The following examples illustrate this
phenomenon.

Example 4.2.

min
(x1,x2)∈R2

x2
1 + x1x2 + x2

2 −
1

2
x1 + x2

0 ≤ x1 ⊥ x2 ≥ 0

.

There exist two stationary points : an A-stationary point (0, 0)T and the global minimum ( 1
4 , 0)T . Similar

computation gives two stationary points for the Butter�y relaxation (5) with tk = rk, ∀k ∈ N : (1/2, 0)T

and a point (x1, x2)T such that

x1 = tθr(x2), 0 =
1

2
+ tθr(x2) + 2x2 − tθ′r(x2)(1− 2tθr(x2)− x2).

Example 4.3 gives another example with an A-stationary point. However, in this case the butter�y
relaxation can not converges to this point as the multiplier are too large.

Example 4.3. This example is very similar to the previous example and consider

min
(x1,x2)∈R2

x2
1 + x1x2 + x2

2 − x1 + x2

0 ≤ x1 ⊥ x2 ≥ 0
.

There exists two stationary point : an A-stationary point (0, 0)T with multipliers λG = −1, λH = 1 and the
global minimum ( 1

2 , 0)T with multipliers λG = 0, λH = 3
2 , which is S-stationary. Notice that λG and λH are

unique for each stationary point since MPCC-LICQ holds at any feasible point.
Simple computation gives two stationary points for the Butter�y relaxation (5) with tk = rk, ∀k ∈ N :

(1/2, 0)T and a point (x, y) such that

x1 = tθr(x2), 0 = 1 + tθr(x2) + 2x2 − tθ′r(x2)(1− 2tθr(x2)− x2).

However, the previous equations never holds for tθ′(0) ≤ r.
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The following corollary of Theorem 4.1 shows that for some choice of parameters we can get rid of the
undesirable A-stationary points. It is an essential result, since it shows that a subfamily of the butter�y
relaxations has the desired convergence property.

Corollary 4.1. Given two sequences {tk} and {rk} decreasing to zero such that (tk, rk) ∈ R2
+ ∀k ∈ N

and tk = o(rk) for k su�ciently large. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points that are
stationary points of RB

t̂
(xk) for all k ∈ N with xk → x∗. Assume that the sequence (8) is bounded. Then,

x∗ is an M-stationary point.

Proof. Condition (iii) Theorem 4.1 can not hold by Lemma 3.2.

For this relation between the parameters t and r, we can improve the result of Proposition 4.1 by a
straightforward application of Corollary 2.2.

Proposition 4.2. Given two sequences {tk} and {rk} decreasing to zero such that (tk, rk) ∈ R2
+ ∀k ∈ N

and tk = o(rk) for k su�ciently large. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points that are
stationary points of RB

t̂
(xk) for all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗. Then, the

sequence (8) is bounded.

In conclusion, a sequence of stationary points of the butter�y relaxation with tk = o(rk) that satis�es
MPCC-CRSC at its limit point converges to an M-stationary point.

The following example shows that this result is sharp, since it illustrates an example where MPCC-
CRSC does not hold and the method converge to a undesirable weak-stationary point. This phenomenon
only happen if the sequence of multipliers (8) is unbounded multiplier.

Example 4.4.

min
(x1,x2)∈R2

x2
2 s.t 0 ≤ x2

1 ⊥ x1 + x2
2 ≥ 0.

The feasible set of this example is the set Z = {(x1, x2)T ∈ R2 | x1 = 0} ∪ {(x1, x2)T ∈ R2 | x1 = −x2
2}.

There is a unique stationary point (0, 0), which is M-stationary with (λG, λH = 0).
It is easy to verify that MPCC-CCP holds at this point. However, MPCC-CRSC fails to hold at any point

(0, a ∈ R)T since the gradient of x2
1 is non-zero for x 6= 0.

In this example the butter�y relaxation method may fail to converge to a weak-stationary point. Indeed,
for x∗ = (0, a 6= 0)T we can �nd a sequence xk such that for tk, rk su�ciently small F2(xk; t̂k) = 0 and

xk1 = tkθ
′
rk

(xk1 + a2), xk2 = a, λΦ,kF1(xk; t̂k) =
1

−tkθ′rk(xk1 + a2)

In this case, we have

ηG,k =
1

tkθ′rk(xk1 + a2)
→∞ and ηH,k = −1,

which is not a weak stationary point, since ηH,k 6= 0.

We conclude this section by the case where (MPCC) satis�es MPCC-LICQ and then M-stationary point
are undesirable, as for instance in Example 4.5.

It can be seen from their de�nitions that M- and S-stationary points coincide if strict complementarity
holds. That is why in the literature convergence to an S-stationary point is usually guaranteed under an
hypothesis relative of the indices that do not satisfy strict complementarity. An asymptotically weakly
non-degenerate hypothesis was �rst introduced in [28] in this context.

De�nition 4.1. A sequence {xk} is asymptotically weakly non-degenerate, if xk → x∗ as {t̂k} ↓ 0 and there
is a t̂∗ such that for t ∈ (0, t̂∗) one has

−1 ≤ Gi(x
k)

Hi(xk)
≤ 1, (i ∈ I00(x∗) | Hi(x

k) 6= 0) and − 1 ≤ Hi(x
k)

Gi(xk)
≤ 1, (i ∈ I00(x∗) | Gi(xk) 6= 0)
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In [46], convergence of their approximation scheme to an S-stationary point has been proved if the
sequence {xk} satis�es the asymptotically weakly non-degenerate assumption for (KDB). Theorem 4.1 gives
a full description of the sequences of points converging to an S- stationary point and a similar result could
be derived here. This is illustrated by the following example.

Example 4.5.

min
(x1,x2)∈R2

x2
1 − x1x2 +

1

3
x2

2 − 2x1

0 ≤ x1 ⊥ x2 ≥ 0

There is one S-stationary point (1, 0)T and one M-stationary point (0, 0)T . It is essential to note here that
MPCC-LICQ holds at (0, 0)T and so this point is undesirable.

Using the relaxation (KDB) we get two M-stationary points (1, 0)T ∀t and (t, 3
2 t)

T which doesn't satisfy
asymptotically weakly non-degenerate assumption.

Considering the butter�y relaxation, it follows that (x1, x2, λ
G, λH , λΦ) ∈ R2 × R3

+ satisfy

0 = 2x1 − x2 − 2− λG + λΦ(F1(x; t̂)− tθ′r(x1)F2(x; t̂))

0 = −x1 +
2

3
x2 − λH + λΦ(F2(x; t̂)− tθ′r(x2)F1(x; t̂)),

with λΦF1(x; t̂)F2(x; t̂) = 0, λGx1 = 0, λHx2 = 0. There exists a sequence (xk1,S , x
k
2,S)T that tends to (1, 0)T ,

which veri�es

xk1 = tkθrk(xk1), 2xk1 − xk2 − 2− tkθ′rk(xk1)(xk2 −
2

3
xk1) = 0, with λΦ,k

S → 1,

and a sequence (xk1,M , x
k
2,M )T that tends to (0, 0)T , which veri�es

xk1 = tkθrk(xk2), xk1 −
2

3
xk2 − tkθ′rk(xk2)(2− 2xk1 + xk2) = 0, with xk1 = ω(rk), λΦ,k

M →∞.

However, the latter sequence does not satisfy the asymptotically weakly non-degenerate hypothesis for t and
r su�ciently small.

It should be noted however that this result is not sharp as shown by the following example.

Example 4.6 (Tangi).

min
(x1,x2)T∈R2

(2x1 − x2)4 +
1

x1x2 + 1
s.t 0 ≤ x1 ⊥ x2 ≥ 0.

It is clear that (0, 0)T is the global minimum and satis�es MPCC-LICQ. So, it is an S-stationary point
by Theorem 2.2. The relaxation (KDB) possesses a global minimum in x(t) = ( t2 , t)

T , which converges to
(0, 0)T as t goes to 0 and does not satisfy the asymptotically weakly non-degenerate assumption.

According to [65] one important feature of stationary point that satis�es MPCC-LICQ is that the mul-
tiplier associated are unique. Further research may propose heuristics to try to avoid this undesirable case
of computing an M-stationary point that satis�es MPCC-LICQ.

4.2 Existence of Lagrange Multipliers of the Relaxed sub-problems

In this part, we consider regularity properties of the relaxed non-linear programs. Indeed, in order to
guarantee the existence of a sequence of stationary points the relaxed non-linear programs must satisfy some
constraint quali�cations in the neighborhood of the limit point. The butter�y relaxations satisfy Guignard
CQ as stated in Theorem 4.2, which is equivalent in term of regularity to the relaxation (KS). The butter�y
relaxations with tθ′(0) = r are more regular as they satisfy Abadie CQ, see Theorem 4.3.

In our proofs we use the following results from [67] which allows to compute the tangent cone of XB
t̂

and
its polar.
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Lemma 4.1. [[67], Lemma 8.10] For all t > 0 and all x feasible for RB
t̂
,

TXB
t̂

(x) = ∪I⊆I00GH(x;t̂)TX (t̂,I)(x),

where X (t̂, I) is the feasible set of the non-linear program NLPt,I(x) with I ⊆ I00
GH(x; t̂) de�ned as

min
x∈Rn

f(x)

g(x) ≤ 0, h(x) = 0,

G(x) ≥ −r̄, H(x) ≥ −r̄,
ΦBi (G(x), H(x); t̂) ≤ 0, i /∈ I00

GH(x; t̂),

F1i(x; t̂) ≤ 0, F2i(x; t̂) ≥ 0, i ∈ I,
F1i(x; t̂) ≥ 0, F2i(x; t̂) ≤ 0, i ∈ Ic,

(NLPt,I(x))

where I ∪ Ic = I00
GH(x; t̂) and I ∩ Ic = ∅.

We also need the following lemma that links the gradients of G and H with the gradients of F1(x; r, t)
and F2(x; t, r).

Lemma 4.2. Let I ∈ P(I00
GH(x; t̂)). Assume that the gradients

{∇gi(x) (i ∈ Ig(x)), ∇hi(x) (i = 1, . . . ,m),

∇Gi(x) (i ∈ I00
GH(x; t̂) ∪ I+0

GH(x; t̂)), ∇Hi(x
∗) (i ∈ I00

GH(x; t̂) ∪ I0+
GH(x; t̂))}

are linearly independent. Then, MFCQ holds at x for (NLPt,I(x)).

Proof. We show that the gradients of the constraints of (NLPt,I(x)) are positively linearly independent. For
this purpose, we prove that the trivial solution is the only solution to the equation

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x) +
∑

i∈IG(x;t̂)

λGi ∇Gi(x) +
∑

i∈IH(x;t̂)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t̂)∪I0+GH(x;t̂)

λΦ
i ∇ΦBi (G(x), H(x); t̂) +

∑
i∈I

νF1
i ∇F1i(x; t̂)−

∑
i∈I

νF2
i ∇F2i(x; t̂)

−
∑
i∈Ic

µF1
i ∇F1i(x; t̂) +

∑
i∈Ic

µF2
i ∇F2i(x; t̂),

with λg, λG, λH , λΦ, νF1 , νF2 , µF1 , µF2 ≥ 0. By de�nition of F1(x; r, t) and F2(x; t, r) it holds that

∇F1i(x; t̂) = ∇Hi(x)− tθ′r(Gi(x))∇Gi(x)

∇F2i(x; t̂) = ∇Gi(x)− tθ′r(Hi(x))∇Hi(x).

The gradients of ΦB(G(x), H(x); t̂) is given by Lemma 3.1.
We now replace those gradients in the equation above

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)

+

q∑
i=1

∇Gi(x)
(
λGi + λΦ

i (F1i(x; t̂)− F2i(x; t̂)tθ′r(Gi(x)))− νF1
i tθ′r(Gi(x))− νF2

i + µF1
i tθ′r(Gi(x)) + µF2

i

)
+

q∑
i=1

∇Hi(x)
(
λHi + λΦ

i (F2i(x; t̂)− F1i(x; t̂)tθ′r(Hi(x)))− νF2
i tθ′r(Hi(x))− νF1

i + µF2
i tθ′r(Hi(x)) + µF1

i

)
,
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with supp(λg) ⊂ Ig(x), supp(λG) ⊂ IG(x; t̂), supp(λH) ⊂ IH(x; t̂), supp(λΦ) ⊂ I+0
GH(x; t̂) ∪ I0+

GH(x; t̂),
supp(νF1) ⊂ I, supp(νF2) ⊂ I and supp(µF1) ⊂ Ic, supp(µF2) ⊂ Ic where I ∪ Ic = I00

GH(x; t̂) and I ∩ Ic = ∅.
Using the assumption of linear independence of the gradients gives that the solution of the equation

above satisfy the following system of equations

λg = 0, λh = 0, λG = 0, λH = 0

− λΦ
i F2i(x; t̂)tθ′r(Gi(x)) = 0 and λΦ

i F2i(x; t̂) = 0 ∀i ∈ I0+
GH(x; t̂)

λΦ
i F1i(x; t̂) = 0 and − λΦ

i F1i(x; t̂)tθ′r(Hi(x)) = 0 ∀i ∈ I+0
GH(x; t̂)

− νF1
i tθ′r(Gi(x))− νF2

i = 0 and − νF2
i tθ′r(Hi(x))− νF1

i = 0 ∀i ∈ I
µF1
i tθ′r(Gi(x)) + µF2

i = 0 and µF2
i tθ′r(Hi(x)) + µF1

i = 0 ∀i ∈ Ic

From the second and third equations it follows that λΦ
i = 0. The second last equation for i ∈ I gives

νF2
i = −νF1

i tθ′r(Gi(x)).

This implies that νF1
i = νF2

i = 0 by non-decreasing hypothesis on θ and non-negativity of νF1
i and νF2

i .

We proceed in the exact same way with the last equation to get µF1
i = µF2

i = 0.
This completes the proof that the trivial solution is the only solution to our �rst equation and so the

results follows.

Now we move to the theorem stating the constraint quali�cations satis�ed by the butter�y relaxations.

Theorem 4.2. Let x∗ ∈ XB
t̂

such that MPCC-LICQ holds at x∗. Then, there exists t̄ > 0 and a neighbour-

hood U(x∗) of x∗ such that the following holds for all t ∈ (0, t̄]. If x ∈ U(x∗) ∩ XB
t̂
, then standard GCQ for

RB
t̂
holds in x.

Proof. First we note that it always holds that L ◦XB
t̂

(x) ⊆ T ◦XB
t̂

(x). So, it su�cient to show the reverse

inclusion.
The linearized cone of RB

t̂
is given by

LXB
t̂

(x) = {d ∈ Rn | ∇gi(x)T d ≤ 0, i ∈ Ig(x), ∇hi(x)T d = 0, i = 1, . . . ,m

∇Gi(x)T d ≥ 0, i ∈ IG(x), ∇Hi(x)T d ≥ 0, i ∈ IH(x)

∇ΦBi (G(x), H(x); t̂)(x)T d ≤ 0, i ∈ I0+
GH(x; t̂) ∪ I+0

GH(x; t̂)}.

Let us compute the polar of tangent cone. Consider the non linear program (NLPt,I(x)) with I ∈ P(I00
GH(x; t̂)).

By construction of U(x∗) and t̄, the gradients {∇gi(x∗) (i ∈ Ig(x∗)),∇hi(x∗) (i = 1, . . . ,m),∇Gi(x∗) (i ∈
I00(x∗) ∪ I0+(x∗),∇Hi(x

∗) (i ∈ I+0(x∗) ∪ I00(x∗))} remain linearly independent for all x ∈ U(x∗) by
continuity of the gradients in a neighbourhood and

Ig(x) ⊆ Ig(x∗)
IG(x) ⊆ I00(x∗) ∪ I0+(x∗)

IH(x) ⊆ I+0(x∗) ∪ I00(x∗)

I00
GH(x; t̂) ∪ I+0

GH(x; t̂) ⊆ I00(x∗) ∪ I0+(x∗)

I00
GH(x; t̂) ∪ I0+

GH(x; t̂) ⊆ I+0(x∗) ∪ I00(x∗).

Therefore, we can apply Lemma 4.2 that gives that MFCQ holds for (NLPt,I(x)) at x. Furthermore, by
Lemma 4.1 and since MFCQ in particular implies Abadie CQ it follows

TXB
t̂

(x) = ∪I⊆I00GH(x;t̂)TNLP (t̂,I)(x) = ∪I⊆I00GH(x;t̂)LNLP (t̂,I)(x).
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By [[11], Theorem 3.1.9], passing to the polar yields

T ◦XB
t̂

(x) = ∩I⊆I00GH(x;t̂)L
◦
NLP (t̂,I)

(x),

and by [[11], Theorem 3.2.2]

L ◦
NLP (t̂,I)

(x) = {v ∈ Rn | v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x)

λGi ∇Gi(x)−
∑

i∈IH(x)

λHi ∇Hi(x)

+
∑

i∈I+0
GH(x;t̂)∪I0+GH(x;t̂)

λΦ
i ∇ΦBi (G(x), H(x); t̂)−

∑
i∈I

λGi ∇Gi(x) +
∑
i∈Ic

λGi ∇Gi(x)

−
∑
i∈I

λHi ∇Hi(x) +
∑
i∈Ic

λHi ∇Hi(x) : λg, λG, λH , λΦ ≥ 0}

Taking v ∈ T ◦XB
t̂

(x) implies v ∈ L ◦
NLP (t̂,I)

(x) for all I ⊆ I00
GH(x; t̂). If we �x such I, then there exists some

multipliers λh and λg, λG, λH , λΦ ≥ 0 so that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x)

λGi ∇Gi(x)−
∑

i∈IH(x)

λHi ∇Hi(x) +
∑

i∈I+0
GH(x;t̂)∪I0+GH(x;t̂)

λΦ
i ∇ΦBi (G(x), H(x); t̂)

−
∑
i∈I

λGi ∇Gi(x) +
∑
i∈Ic

λGi ∇Gi(x)−
∑
i∈I

λHi ∇Hi(x) +
∑
i∈Ic

λHi ∇Hi(x).

Now, it also holds that v ∈ L ◦
NLP (t̂,Ic)

(x) and so there exists some multipliers λh and λg, λG, λH , λΦ ≥ 0

such that

v =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x)−
∑

i∈IG(x)

λGi ∇Gi(x)−
∑

i∈IH(x)

λHi ∇Hi(x) +
∑

i∈I+0
GH(x;t̂)∪I0+GH(x;t̂)

λΦ
i ∇ΦBi (G(x), H(x); t̂)

+
∑
i∈I

λGi ∇Gi(x)−
∑
i∈Ic

λGi ∇Gi(x) +
∑
i∈I

λHi ∇Hi(x)−
∑
i∈Ic

λHi ∇Hi(x).

By construction of t̄ and U(x∗) the gradients involved here are linearly independent and so the multipliers
in both previous equations must be equal. Thus, the multipliers λGi and λHi with indices i in I ∪ Ic vanish.
Therefore, v ∈ L ◦XB

t̂

(x) and as v has been chosen arbitrarily then T ◦XB
t̂

(x) ⊆ L ◦XB
t̂

(x).

The result follows since it always holds that L ◦XB
t̂

(x) ⊆ T ◦XB
t̂

(x).

The following example shows that this results is sharp since Abadie CQ does not hold on Example 4.7.

Example 4.7.

min
(x1,x2)∈R2

f(x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

At x∗ = (0, 0)T it holds that ∇ΦB(G(x), H(x); t̂)(x∗) = (0, 0)T and so LXB
t̂

(x∗) = R2, which is obviously

di�erent from the tangent cone at x∗.

Regarding the butter�y relaxation with tθ′(0) = r an improved regularity result holds.

Theorem 4.3. Let x∗ ∈ XBtθ′(0)=r such that MPCC-LICQ holds at x∗. Then, there exists t̄ > 0 and a

neighbourhood U(x∗) of x∗ such that the following holds for all t ∈ (0, t̄]. If x ∈ U(x∗) ∩ XBtθ′(0)=r, then

standard ACQ for RBtθ′(0)=r holds in x.
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Proof. The proof follows exactly the ones of Theorem 4.2, until we compute the tangent cone of XBtθ′(0)=r as

TXB
tθ′(0)=r

(x) = ∪I⊆I00GH(x;t̂)TNLP (t,I)(x) = ∪I⊆I00GH(x;t̂)LNLP (t,I)(x),

since in particular ACQ holds in x for (NLPt,I(x)). A simple computation gives the linearized tangent cone
for (NLPt,I(x))

LNLPt,I (x) = {d ∈ Rn | ∇gi(x)T d ≤ 0, i ∈ Ig(x), ∇hi(x)T d = 0, i = 1, . . . ,m

∇Gi(x)T d ≥ 0, i ∈ IG(x), ∇Hi(x)T d ≥ 0, i ∈ IH(x)

∇F1(x; r, t)i(x; t)T d ≤ 0, ∇F2(x; t, r)i(x; t) ≥ 0, i ∈ I
∇F1(x; r, t)i(x; t)T d ≥ 0, ∇F2(x; t, r)i(x; t) ≤ 0, i ∈ Ic

∇ΦBi (G(x), H(x); t̂)
T
d ≤ 0, i ∈ I0+

GH(x; t̂) ∪ I+0
GH(x; t̂)}.

Moreover one has for all I ⊆ I00
GH(x; t̂),

∇F1(x; r, t)i(x; t) = ∇Hi(x)− tθ′r(Gi(x))∇Gi(x)

= ∇Hi(x)−∇Gi(x) = −∇F2(x; t, r)i(x; t),

since tθ′(0) = r and for all i ∈ I00
GH(x; t̂) it follows that Gi(x) = Hi(x) = 0.

It is to be noted that

∪I⊆I00GH(x;t̂){d ∈ Rn | ∇Hi(x)T d ≤ ∇Gi(x), i ∈ I ; ∇Hi(x)T d ≥ ∇Gi(x), i ∈ Ic} = Rn.

Therefore, it holds that

∪I⊆I00GH(x;t̂)LNLP (t,I)(x) = {d ∈ Rn | ∇gi(x)T d ≤ 0, i ∈ Ig(x), ∇hi(x)T d = 0, i = 1, . . . ,m

∇Gi(x)T d ≥ 0, i ∈ IG(x), ∇Hi(x)T d ≥ 0, i ∈ IH(x)

∇ΦBi (G(x), H(x); t̂)
T
d ≤ 0, i ∈ I0+

GH(x; t̂) ∪ I+0
GH(x; t̂)}.

Thus, ∪I⊆I00GH(x;t̂)LNLP (t,I)(x) = LXB
tθ′(0)=r

(x) and the result follows.

This result is sharp since very weak constraint quali�cation like quasinormality and CCP does not hold
in example 4.7.

Example 4.8. We show that CRSC and CCP do not hold in x∗ = (0, 0)T for the relaxation RBtθ′(0)=r.

It holds that ∇ΦBtθ′(0)=r(x
∗) = (0, 0)T , therefore ∇ΦBtθ′(0)=r(x

∗) ∈ −L (x∗)◦. However, for any x in a

small neighbourhood around x∗ the gradient ∇ΦBtθ′(0)=r(x
∗) 6= (0, 0)T . So, the rank is not constant in this

neighbourhood and CRSC does not hold in x∗.
In order to verify that CCP does not hold in x∗, we check that there exists an AKKT sequence that does

not converges to a KKT point. Given {xk}, {λG,k}, {λH,k}, {λΦ,k} such that

lim
k→∞

∇f(xk) + λΦ,k∇ΦB(tθ′(0)=r)(x
k)− λG,k∇G(xk)− λH,k∇H(xk) = 0

lim
k→∞

min(λΦ,k,−ΦB(tθ′(0)=r)(x
k)) = 0

lim
k→∞

min(λG,k, G(xk)) = 0

lim
k→∞

min(λH,k, H(xk)) = 0.

We can �nd a sequence xk such that tkθ
′
rk

(H(xk)) → 0, F1(xk; t̂k) = 0, F2(xk; t̂k) ≥ 0 and λk = 1
kF2(xk;t̂k)

,

λG,k → 1
k , λ

H,k → 0 so that CCP does not hold at x∗.
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The following example shows that we can not have a similar result with MPCC-MFCQ instead of MPCC-
LICQ for Theorem 4.3.

Example 4.9. Consider
0 ≤ x1 + x2

2 ⊥ x1 ≥ 0.

MPCC-MFCQ holds at x∗, since the gradients are linearly dependent but only with coe�cients λG = −λH
that does not respect the condition given in De�nition 2.10.

Now, taking a sequence of stationary point such that xk → x∗ = (0, 0)T and

F2(xk; t̂k) = 0,−tkθ′rk(H(xk))→ −1.

Since ∇G(x∗) = ∇H(x∗) it holds that ∇F2(x; t, r)(x∗; 0) = (0 0)T and so MFCQ does not hold for
(NLPt,I(x)).

Both Theorem 4.2 and Theorem 4.3 are slightly disappointing since MPCC-LICQ is a quite strong
assumption. Fortunately, the following result guarantees that the di�culties are only localized in indices i
of x∗ that belongs to I00(x∗).

Theorem 4.4. Let x∗ ∈ XB
t̂

be such that MPCC-LICQ holds at x∗. Then, there exists t̄ > 0 and a

neighbourhood U(x∗) of x∗ such that the following holds for all t ∈ (0, t̄]. If x ∈ U(x∗)∩XB
t̂

and I00
GH(x; t̂) = ∅,

then standard LICQ for RB
t̂
holds in x.

Proof. Following the same path than Lemma 4.2, the gradient of the Lagrangian for RB
t̂
at x ∈ U(x∗) for t̂

su�ciently small gives

0 =
∑

i∈Ig(x)

λgi∇gi(x) +

m∑
i=1

λhi∇hi(x) +
∑

i∈IG(x)

∇Gi(x)λGi +
∑

i∈IH(x)

∇Hi(x)λHi

+
∑

i∈I+0
GH(x;t̂)

∇Gi(x)
(
λΦ
i (F1i(x; t̂)− F2i(x; t̂)tθ′r(Gi(x)))

)
+
∑

i∈I0+GH(x;t̂)

∇Hi(x)
(
λΦ
i (F2i(x; t̂)− F1i(x; t̂)tθ′r(Hi(x)))

)
.

Using the assumption of linear independence of the gradients and

Ig(x) ⊆ Ig(x∗)
IG(x) ⊆ I00(x∗) ∪ I0+(x∗)

IH(x) ⊆ I+0(x∗) ∪ I00(x∗)

I+0
GH(x; t̂) ⊆ I00(x∗) ∪ I0+(x∗)

I0+
GH(x; t̂) ⊆ I+0(x∗) ∪ I00(x∗)

gives that the solution of the equation above satisfy the following system of equations

λg = 0, λh = 0, λG = 0, λH = 0

− λΦ
i F2i(x; t̂)tθ′r(Gi(x)) = 0 and λΦ

i F2i(x; t̂) = 0 ∀i ∈ I0+
GH(x; t̂)

λΦ
i F1i(x; t̂) = 0 and − λΦ

i F1i(x; t̂)tθ′r(Hi(x)) = 0 ∀i ∈ I+0
GH(x; t̂)

From the second and third equations it follows that λΦ
i = 0. So, the only solution is the trivial solution.

Thus, the result follows.
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4.3 Convergence of the ε-stationary points

Non-linear programming algorithms usually compute sequences of approximate stationary points or ε-
stationary points. This approach that has become an active subject recently alter signi�cantly the con-
vergence analysis of relaxation methods as stated in [46, 49, 50] and [63].

Previous results in the literature in [50] provides convergence to C-stationary point for the relaxation
(SS) and the one from Lin & Fukushima, [54], at the limit point and under hypothesis on the sequence
εk, respectively εk = O(tk) and εk = o(t2k). Furthermore, they provide a counter-example with sequences
converging to a weak-stationary point if this conditions does not hold. Although in [50], they prove that
relaxation (SU), (KDB) and (KS) converge only to a weak stationary point and require more hypothesis on
the sequences εk and xk to improve to a C- or an M-stationary limit point. In the following theorem we
prove that the situation is similar with the new butter�y relaxation method.

Lemma 4.3. Given {t̂k} a sequence of parameter satisfying (6) and {εk} a sequence of non-negative pa-
rameter such that both sequences decrease to zero as k ∈ N goes to in�nity. Let {xk, λk}k be a sequence of
εk-stationary points of (RB

t̂
) for all k ∈ N with xk → x∗. Let {ηG,k}, {ηH,k} be two sequences such that

ηG,ki :=

{
λG,ki + λΦ,k

i

(
tkθ
′
rk

(Gi(x
k))F2i(x

k; t̂k)− F1i(x
k; t̂k)

)
if F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0

λG,ki + λΦ,k
i

(
F2i(x

k; t̂k)− tkθ′rk(Gi(x
k))F1i(x

k; t̂k)
)
if F1i(x

k; t̂k) + F2i(x
k; t̂k) < 0

ηH,ki :=

{
λH,ki + λΦ,k

i

(
tkθ
′
rk

(Hi(x
k))F1i(x

k; t̂k)− F2i(x
k; t̂k)

)
if F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0

λH,ki + λΦ,k
i

(
F1i(x

k; t̂k)− tkθ′rk(Hi(x
k))F2i(x

k; t̂k)
)
if F1i(x

k; t̂k) + F2i(x
k; t̂k) < 0

,

(10)

for i ∈ {1, . . . , q}. Assume that the sequence of multipliers {λh,k, λg,k, ηG,k, ηH,k} is bounded. Then, x∗ is a
weak-stationary point of (MPCC).

About the choice of the sequence εk it is of interest to see that εk = o(rk) implies that εk = o(r̄k) by
de�nition of the latter.

Proof. By de�nition, since xk is an εk stationary point for RB
t̂
it holds for all k ∈ N∥∥∥∥∥∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

λG,ki ∇Gi(x
k)

−
q∑
i=1

λH,ki ∇Hi(x
k) +

q∑
i=1

λΦ,k
i ∇ΦBi (G(x), H(x); t̂)(xk)

∥∥∥∥∥
∞

≤ εk

with

|hi(xk)| ≤ εk, ∀i ∈ {1, . . . ,m}

gi(x
k) ≤ εk, λg,ki ≥ 0,

∣∣∣λg,ki gi(x
k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , p}

Gi(x
k) + r̄k ≥ −εk, λG,ki ≥ 0,

∣∣∣λG,ki (Gi(x
k) + r̄k)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}
Hi(x

k) + r̄k ≥ −εk, λH,ki ≥ 0,
∣∣∣λH,ki (Hi(x

k) + r̄k)
∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}

ΦBi (G(x), H(x); t̂)(xk) ≤ εk, λΦ,k
i ≥ 0,

∣∣∣λΦ,k
i ΦBi (G(x), H(x); t̂)(xk)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q}.
The representation of ΦBi (G(x), H(x); t̂)(xk) immediately gives∇ΦBi (G(x), H(x); t̂)(xk) = 0, ∀i ∈ I00

GH(xk; t̂k)
for all k ∈ N. Thus, we can rewrite the equation above as∥∥∥∥∥∇f(xk) +

p∑
i=1

λg,ki ∇gi(x
k) +

m∑
i=1

λh,ki ∇hi(x
k)−

q∑
i=1

ηG,ki ∇Gi(xk)

−
q∑
i=1

ηH,ki ∇Hi(x
k)

∥∥∥∥∥
∞

≤ εk.
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Besides, the sequence of multipliers {λh,k, λg,k, ηG,k, ηH,k} is assumed bounded. Therefore, it follows that
the sequence converges up to some subsequence to some limit point

{λh,k, λg,k, ηG,k, ηH,k} → (λh, λg, ηG, ηH).

It is to be noted that for k su�ciently large it holds

supp(λg,k) ⊂ supp(λg)

supp(ηG,k) ⊂ supp(ηG)

supp(ηH,k) ⊂ supp(ηH).

We prove that (x∗, λh, λg, ηG, ηH) is a weak-stationary point. Obviously, since εk ↓ 0 it follows that x∗ ∈ Z,
∇xL1

MPCC(x∗, λh, λg, ηG, ηH) = 0 by previous inequality and that λgi = 0 for i /∈ Ig(x∗). It remains to show
that for indices i ∈ I+0(x∗), ηGi = 0. The opposite case for indices i ∈ I0+(x∗) would follow in a completely
similar way. So, let i be in I+0(x∗).
By de�nition of εk-stationarity it holds for all k that

|λG,ki (Gi(x
k) + t̄k)| ≤ εk.

Therefore, λG,ki →k→∞ 0 since εk ↓ 0 and Gi(x
k)→ Gi(x

∗) > 0.
Now, there is two possible cases either F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0 either F1i(x

k; t̂k) + F2i(x
k; t̂k) < 0.

Consider the case F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0 and denote

αH(xki ; tk) := −tkθ′rk(Gi(x
k))F2i(x

k; t̂k) + F1i(x
k; t̂k)

αG(xki ; tk) := −tkθ′rk(Hi(x
k))F1i(x

k; t̂k) + F2i(x
k; t̂k).

It remains to prove that αH(xki ; tk)λΦ,k
i →k→∞ 0. Assume by contradiction that

lim
k→∞

αH(xki ; tk)λΦ,k
i = C < 0, (11)

which is necessary a �nite value by boundedness hypothesis of the sequence of multiplier. Obviously the
sequence {λΦ,k} must be unbounded otherwise (11) does not hold.

Additionally, limk→∞ F1i(x
k; t̂k)λΦ,k

i = 0 since
∣∣∣λΦ,k
i ΦBi (G(x), H(x); t̂)(xk)

∣∣∣ ≤ εk. So, by (5) we have

that lim
k→∞

αGi (xk; tk) = Gi(x
∗) > 0 and therefore lim

k→∞
αG(xk; tk)λΦ,k

i = lim
k→∞

Gi(x
k)λΦ,k

i =∞. Boundedness

assumption in the statement of the theorem implies that ηHi is bounded and so

lim
k→∞

|λH,ki − αG(xk; tk)λΦ,k
i | <∞.

The complementarity conditions on Hi(x
k) ≥ −r̄k gives that necessary Hi(x

k) ∼ −r̄k otherwise λH,ki would
be unbounded.

However, this leads to a contradiction with λΦ,k →∞, since λΦ,k
i F1(x; r, t)(xk)→ 0 gives that λΦ,k

i r̄k ≤ εk
and we assume in the statement of the theorem that εk = o(rk). So in the case F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0

it holds that ηG,∗i = 0.
Let us consider the case F1i(x

k; t̂k) + F2i(x
k; t̂k) < 0. As pointed out above it is true by (5) that

F1i(x
k; t̂k) → Hi(x

∗) and F2i(x
k; t̂k) → Gi(x

∗). Therefore, for k su�ciently large this case never happen
since we choose i ∈ I0+(x∗).

This conclude the proof that ηG,∗i = 0. The case i ∈ I0+(x∗) is completely similar by symmetry and

gives that ηH,∗i = 0 for i ∈ I+0(x∗). So, x∗ is a weak-stationary point.
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Lemma 4.4. Given {t̂k} a sequence of parameter satisfying (6) and {εk} a sequence of non-negative parame-
ter such that both sequences decrease to zero as k ∈ N goes to in�nity. Assume that εk = o(max(G(xk), H(xk)))
and tk = o(rk). Let {xk, λk}k be a sequence of εk-stationary points of (RB

t̂
) for all k ∈ N with xk → x∗. Let

{ηG,k}, {ηH,k} be two sequences de�ned in (10). Assume that the sequence of multipliers {λh,k, λg,k, ηG,k, ηH,k}
is bounded. Then, x∗ is an M-stationary point of (MPCC).

Proof. First part of this proof that shows convergence of the sequence and weak-stationarity of x∗ given by
Lemma 4.3.
We now consider indices i ∈ I00(x∗). Our aim here is to prove that x∗ is an M-stationary point. Assume by

contradiction that there exists a subsequence K ⊆ N and i ∈ I00(x∗) such that ηG,ki ηH,ki →K ηG,∗i ηH,∗i 6= 0

and either ηG,ki < 0 or ηH,ki < 0.
Without loss of generality suppose that εk

|Gi(xk)| →K 0. Indeed, the case εk
|Hi(xk)| →K 0 is similar by

symmetry and the case εk
|Hi(xk)| →K> 0, εk

|Gi(xk)| →K> 0 is not possible by de�nition of εk.

Let α and β be such that Gi(x
k)

tkθrk (Hi(xk))
→ α and Hi(x

k)
tkθrk (Gi(xk))

→ β. Obviously the sequence {λΦ,k} must
be unbounded otherwise x∗ is an S-stationarity by non-negativity of λG,k and λH,k.

Consider the case with α 6= 1 and F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0 then∣∣∣∣λΦ,k
i F1i(x

k; t̂k)

(
1− tkθrk(Hi(x

k)

Gi(xk)

)∣∣∣∣ ≤ ∣∣∣∣ εk
Gi(xk)

∣∣∣∣ ,
and so λΦ,k

i F1i(x
k; t̂k) → 0. By hypothesis and by de�nition of εk we necessarily have −Gi(xk) ∼K r̄k and

F2i(x
k; t̂k) > 0 otherwise λG,ki → 0 and then ηG,∗i ηH,∗i = 0. Therefore, it holds thatGi(x

k) > tkθrk(Hi(x
k)) ∼

Hi(x
k) tkrk θ

′(0) with Gi(x
k) ≤ 0 and so, Hi(x

k) = Ω(rk) since r̄k ∼K r2k
tk

when tk = o(rk). In these conditions,

F1(x; r, t)i(x
k; t̂k) ∼K rk = ω(εk) and so λΦ,k

i F2i(x
k; t̂k) → 0. However, this leads to a contradiction with

λΦ,k unbounded and α 6= 1.
In the case with α 6= 1 and F1i(x

k; t̂k) + F2i(x
k; t̂k) ≤ 0 then∣∣∣∣λΦ,k

i F2i(x
k; t̂k)

(
1− tkθrk(Hi(x

k)

Gi(xk)

)∣∣∣∣ ≤ ∣∣∣∣ 2εk
Gi(xk)

∣∣∣∣ ,
and so λΦ,k

i F2i(x
k; t̂k) → 0. Furthermore, it necessarily holds that F1i(x

k; t̂k) ≤ 0 otherwise ηG,∗i ηH,∗i ≥ 0.
We now consider two cases :

1. If Gi(x
k) ≥ 0, then by |λG,ki | ≤ εk/Gi(xk) it follows that λG,ki → 0 and so ηG,ki → 0.

2. If Gi(x
k) ≤ 0, then in a similar way as in the case α 6= 1 and F1i(x

k; t̂k) + F2i(x
k; t̂k) ≥ 0, it is

necessary that −Gi(xk) ∼K r̄ otherwise λG,ki → 0 and so by F1i(x
k; t̂k) ≤ 0 we have Hi(x

k) = Ω(rk).
Furthermore, we have |Hi(x

k)| ≤ r̄ + ε and then F1i(x
k; t̂k) = ω(rk). The contradiction follows from

the fact that λΦ,k
i F1i(x

k; t̂k)→ 0 since in these conditions F1i(x
k; t̂k) = ω(εk).

In both cases we get a contradiction.
Now, if α = 1 then necessarily β 6= 1. Indeed, the case α = β = 1 is not possible since it implies that

Gi(x
k) ∼ tkθrk(Hi(x

k)) and Hi(x
k) ∼ tkθrk(Gi(x

k)),

which is in contradiction with tk = o(rk). Considering β 6= 1 and F1i(x
k; t̂k) + F2i(x

k; t̂k) ≥ 0 it follows∣∣∣∣λΦ,k
i F2i(x

k; t̂k)

(
1− tkθrk(Gi(x

k)

Hi(xk)

)∣∣∣∣ ≤ ∣∣∣∣ εk
Hi(xk)

∣∣∣∣ .∣∣∣ εk
Hi(xk)

∣∣∣ → 0 since by α = 1 we have |Gi(xk)| < |Hi(x
k). It follows that λΦ,k

i F2i(x
k; t̂k) → 0. Now, we

consider two cases :
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1. Hi(x
k) ≥ 0 : By |λH,ki (Hi(x

k) + r̄k)| ≤ εk and εk = o(r̄k), we have λH,ki → 0 and so ηH,ki → 0.

2. Hi(x
k) ≤ 0 : In order not to violate our hypothesis, F1i(x

k; t̂k) must be non-negative. That is
Hi(x

k) ≥ tkθrk(Gi(x
k)) and so |Hi(x

k)| ≤ |Gi(xk)|, which is a contradiction with α = 1.

In every cases we get a contradiction and so x∗ is an M-stationary point.

Theorem 4.5. Given two sequences {tk} and {rk} satisfying (6) such that ∀k ∈ N, (tk, rk) ∈ R2
+, both

sequence decrease to zero as k goes to in�nity. Let {xk, λg,k, λh,k, λG,k, λH,k, λΦ,k} be a sequence of points
that are εk-stationary points of RB

t̂
(xk) for all k ∈ N with xk → x∗ such that MPCC-CRSC holds at x∗.

Furthermore assume that tk = o(rk) ∀k ∈ N su�ciently large and that the sequence {εk} is such that
εk = o(max(G(xk), H(xk)) and εk = o(rk). Then, x∗ is an M-stationary point.

Proof. The proof is direct by Lemma 4.4 and Corollary 2.2 that ensures boundedness of the sequence (10)
under MPCC-CRSC.

In the weaker conditions of Lemma 4.3 boundedness of the sequence should be expected under MPCC-
CRCQ in similar way as Proposition 4.1.

The following example from [48] shows that the butter�y relaxations with tk = o(rk) may converge to an
undesirable A-stationary point without the hypothesis that εk = o(max(G(xk), H(xk)).

Example 4.10.

min
(x1,x2)T∈R2

x2 − x1 s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

Let tk = r2
k and choose any positive sequences {rk} and {εk} such that rk, εk → 0. Consider the following

ε-stationary sequence

xk = (εk,
εk
2

)T , λG,k = 0, λH,k = 1− λΦ,k(r2
kθrk

(εk
2

)
F1(xk; t̂k))− F2(xk; t̂k))

and

λΦ,k =
1

r2
kθrk (εk)F2(xk; t̂k))− F1(xk; t̂k)

.

This sequence converge to x∗ = (0, 0), which is an A-stationary point.

We see on Figure 5 that the butter�y relaxations with ε feasibility is similar to relaxation (SS). Therefore,
it is not surprising that we can only expect to converges to a C-stationary point without strong hypothesis.
Those issues clearly deserves a speci�c studies that is left here for further research.

5 Numerical Results

In this section, we focus on the numerical implementation of the butter�y relaxation methods. Our aim is
to compare these new methods with the existing ones in the literature and show some of their features. This
comparison uses the collection of test problems MacMPEC [51]. This collection has been widely used in the
literature to compare relaxation methods as in [36, 46, 68]. The test problems included in MacMPEC are
extracted from the literature and real world applications.

We also present an example of an (MPCC) that illustrates the di�culties that may occur by dealing with
ε-stationary points.

Finally, an adaptation of the butter�y relaxations to the mathematical program with vanishing constraints
is presented.
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Figure 5: Feasible set of the butter�y relaxation with 2t = r and a constraint ΦB(G(x), H(x); t̂) ≤ ε.

5.1 On the Implementation of the Butter�y Relaxations

As pointed out through this paper, the butter�y relaxations handle two parameters t and r. It can be
practical to choose a relation between both parameters. Among the in�nite possibilities of relationship
between t and r, at least two are speci�c :

(i) t = r, since as stated in Theorem 4.3 this relaxation is more regular, but may converge to undesirable
A-stationary points, Theorem 4.1;

(ii) t = o(r), for instance t = r3/2, which ensures convergence to M-stationary points as stated in Corollary
4.1.

Practical implementation could consider a slightly di�erent model, by skipping the relaxation of the
positivity constraint and adding a new parameter s in order to move the intersection of both wings in the
point (G(x), H(x)) = (s, s). This can be done by rede�ning F1(x; r, t) and F2(x; t, r) such that

F1i(x; r, s, t) = (Hi(x)− s− tθr(Gi(x)− s))
F2i(x; r, s, t) = (Gi(x)− s− tθr(Hi(x)− s)).

Even if we did not give any theoretical proof regarding this modi�ed system, this modi�cation does not alter
the behaviour of the butter�y relaxations.

The numerical comparison of the butter�y relaxations with other existing methods considers the three
schemes illustrated in Figure 6 :

1. B(t=r) : (s = 0, t = r)

2. B(t=r3/2) : (s = 0, t = r3/2)

3. B(s=t,2t=r) : (s = t, 2t = r)

Each scheme is duplicated whether we omit or not the relaxation of the positivity constraints. The models
with this relaxation are denoted B+

(t=r) with a + as a superscript. So, we use 6 di�erent butter�y schemes

with very di�erent properties.
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Figure 6: butter�y relaxations from left to right :B(t=r), B(s=t,2t=r) and B(t=r3/2).

5.2 Comparison of the Relaxation Methods

We provide in this section and in Algorithm 2 some more details on the implementation and the comparison
between relaxation methods. It is to be noted that our aim is to compare the methods and so no attempt to
optimize any method has been carried out. We use 101 test problems from MacMPEC, where are omitted
the problems that exceed the limit of 300 variables or constraints and some problems with evaluation error
of the objective function or the constraints. Algorithm 2 is coded in Matlab and uses the AMPL API.

Rt̂k denotes the relaxed non-linear program associated with a generic relaxation, where except from the

butter�y methods the parameter rk does not play any role. At each step we compute xk+1 as a solution
of Rt̂k starting from xk. Therefore, at each step the initial point is more likely to be infeasible for Rt̂k .
The iterative process stops when tk and rk are smaller than some tolerance, denoted pmin which is set as
10−15 here, or when the solution xk+1 of Rt̂k is considered an ε-solution of (MPCC). To consider xk+1 as
an ε-solution with ε set as 10−7 we check three criteria :

a) Feasibility of the last relaxed non-linear program: νf (x) := max(−g(x), |h(x)|,−Φ(x)),

b) Feasibility of the complementarity constraint: νcomp(x) := min(G(x), H(x))2,

(c) The complementarity between the Lagrange multipliers and the constraints of the last relaxed non-
linear program :

νc(x) := max
(
‖g(x) ◦ λg‖∞, ‖h(x) ◦ λh‖∞, ‖G(x) ◦ λG‖∞, ‖H(x) ◦ λH‖∞, ‖ΦB(G(x), H(x); t̂)(x) ◦ λΦ‖∞

)
Obviously, it is hard to ask a tighter condition on the complementarity constraint since the feasibility only
guarantees that the product component-wise with less than ε. Using these criteria we de�ne a measure of
optimality

min_local(x) := max (νf (x), νcomp(x), νc(x)) .

A fourth criterion could be the dual feasibility, that is the norm of the Lagrangian. However, solvers like
SNOPT or MINOS do not use this criterion as the stopping criterion. One reason among other to discard
such a criteria could be numerical issues implied by the degeneracy in the KKT conditions.
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In the case of an infeasible or unbounded sub-problem Rt̂k , the algorithm stops and return a certi�cate.

Data:
starting vector x0; initial relaxation parameter t0; update parameter (σt, σr) ∈ (0, 1)2 and pmin the
minimum parameter value, ε the precision tolerance ;

1 Begin ;
2 Set k := 0 ;
3 while max(tk, rk) > pmin and min_local(x) > ε do
4 xk+1 solution of Rtk,rk with xk initial point;
5 (tk+1, rk+1) := (tkσt, rkσr) ;

6 return: fopt the optimal value at the solution xopt or a decision of infeasibility or unboundedness.

Algorithm 2: Basic Relaxation methods for (MPCC), with a relaxed non-linear program Rt̂k .

Step 4 in Algorithm 2 is performed using three di�erent solvers accessible through AMPL, [27], that are
SNOPT 7.2-8 [29], MINOS 5.51 [59] and IPOPT 3.12.4 [70] with their default parameters. Previous similar
comparison in the literature only consider SNOPT to solve the sub-problems.

We compare the butter�y schemes with the relaxations (SS) and (KS) that we respectively denote SS
and KS. Moreover, we also take into account results of the non-linear programming solver without speci�c
MPCC tuning and denote it NL.

In order to compare the various relaxation methods we need to have a coherent use of the parameters. In
a similar way as in [67] we consider the value of the "intersection between G and H", which is (t, t) for KDB,
KS and Butter�y , (

√
t,
√
t) for SS and 2π

π−2 (t, t) for SU. Then, we run a sensitivity analysis on several values
of the parameters T ∈ {100, 25, 10, 5, 1, 0.5, 0.05} and S ∈ {0.1, 0.075, 0.05, 0.025, 0.01}, which corresponds
to t0 and σt as described in Table 1.

Relaxation NL SS KS Butter�y
t0 none T 2 T T
σt none S2 S S

Table 1: Parameter links among the methods

SS KS Butter�y

(
√
t,
√
t) (t, t) (t, t)

Table 2: Link between the parameters of relaxation methods.

In [39], the authors consider as a stopping criterion the feasibility of the last parametric non-linear
program in particular by considering the complementarity constraint by the minimum component-wise. Table
3 provides our result with this criterion. We provide elementary statistics by considering the percentage of
success for each set of parameter. A problem is considered solved in this case if criteria a) and b) are satis�ed.

First, we see that the method NL is giving decent results. It is not a surprise as was pointed out in [25].
Practical implementation of relaxation methods would select the best choice of parameters so that we focus
most of our attention to the line 'best'. In all cases, the relaxations manage to improve or at least equal
the number of problem solved by NL. By using SNOPT, KS and butter�y with t = r3/2 methods get 1% of
improvement and with IPOPT the method butter�y with t = r3/2 is the only one that attains 100%. The
relaxation methods seem to give a signi�cant improvement over NL with MINOS. In this case, it is clear that
the butter�y methods bene�t from the introduction of the parameter s and the method with s = t, 2t = r is
very competitive.
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Solver snopt NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 97.03 97.03 98.02 97.03 97.03 98.02
average 97.03 95.02 94.71 95.39 93.89 94.88
worst 97.03 91.09 91.09 92.08 91.09 91.09
std 0 1.64 2.09 1.50 1.97 2.42

Solver minos NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 89.11 94.06 93.07 90.10 95.05 89.11
average 89.11 91.20 90.89 83.54 91.06 81.92
worst 89.11 87.13 87.13 77.23 86.14 76.24
std 0 1.50 1.44 2.81 2.15 2.89

Solver ipopt NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 98.02 99.01 98.02 99.01 98.02 100
average 98.02 98.16 96.38 94.03 93.89 94.79
worst 98.02 95.05 93.07 89.11 88.12 88.12
std 0 0.97 1.99 2.62 2.80 3.60

Table 3: Sensitivity analysis for MacMPEC test problems considering the feasibility of (MPCC). Results
are percentage of success. best : percentage of success with the best set of parameter, worst : percentage of
success with the worst set of parameter, average : average percentage of success among the distribution of
(T, s), std : standard deviation

Our goal by solving (MPCC) is to compute a local minimum. The results using the local minimum
criterion de�ned above as a measure of success are given in Table 4. Once again we provide percentage of
success.

Solver snopt NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 92.08 94.06 96.04 96.04 97.03 96.04
average 92.08 90.78 91.17 92.08 90.04 92.33
worst 92.08 83.17 86.14 87.13 82.18 87.13
std 0 3.15 2.59 2.45 2.86 2.77

Solver minos NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 85.15 94.06 93.07 88.11 94.06 87.13
average 85.15 90.94 90.18 81.92 90.04 80.11
worst 85.15 87.13 86.14 76.23 85.15 74.26
std 0 1.50 1.62 2.65 2.31 2.95

Solver ipopt NL SS KS B(t=r) B(s=t,2t=r) B(t=r3/2)

best 91.09 93.07 93.07 94.06 93.07 94.06
average 91.09 91.82 89.84 89.05 88.80 89.02
worst 91.09 90.10 86.14 84.16 84.16 81.19
std 0 1.14 2.19 3.09 2.72 3.86

Table 4: Sensitivity analysis for MacMPEC test problems considering the optimality of (MPCC). Results
are percentage of success. best : percentage of success with the best set of parameter, worst : percentage of
success with the worst set of parameter, average : average percentage of success among the distribution of
(T, s), std : standard deviation

In comparison with Table 3, this new criterion appears to be more selective. Independently of the solver,
the relaxation methods with some correct choices of parameter provide improved results. Using SNOPT
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as a solver, the methods KS and butter�y gives the highest number of results. The method butter�y with
t = r3/2 even improved the number of problem solved by SNOPT alone in average. In a similar way as in the
previous experiment the butter�y method bene�t of the introduction of the parameter s when using MINOS
as a solver.

The relaxations (KDB) and (SU) have been discarded after preliminaries results. Indeed numerical
di�culties can arise that are explained in the following two examples. In particular the following example
illustrates one these di�culties for the relaxation (KDB). It is to be noted that both methods have received
a special attention in [47] and [67] to solve the sub-problems that handle those issues.

Example 5.1 (KDB infeasible).

min
x∈R2

x1 − x2

x1 ≤ 0, x2 ≤ 0

0 ≤ x1 ⊥ x2 ≥ 0

The feasible set of relaxation KDB is always empty for t > 0.

5.3 An Example of Numerical Di�culties

In this section, we illustrate the possible numerical di�culties that can arise by solving a (MPCC) with
relaxation methods.

Example 5.2. Consider the problem

min
x∈R4

exp(−x2
1 − x2

2) + exp(−x3)

s.t. x2
3 ≤ (x2

1 + x2
2 − 1)(x2

1 + x2
2 − 10) + x4,

x2
1 + x2

2 − 10 ≤ 0, x2
4 ≤ 0,

0 ≤ x2
1 + x2

2 − 1 ⊥ x3(−x2
1 − x2

2 + 10) ≥ 0.

The feasible set is the union of two circles, {x ∈ R4 | x3 = x4 = 0, x2
1 + x2

2 = 1} and {x ∈ R4 | x3 = x4 =
0, x2

1 + x2
2 = 10}. In this example, all the feasible points are local minima.

Let us now compute the stationary points of the problem. The gradient of MPCC-Lagrangian function
equal to zero yields

−2 exp(−x2
1 − x2

2)x1 − 2λg1x1((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x1 − 2λGx1 + 2λHx1x3 = 0,

−2 exp(−x2
1 − x2

2)x2 − 2λg1x2((x2
1 + x2

2 − 10) + (x2
1 + x2

2 − 1)) + 2λg2x2 − 2λGx2 + 2λHx2x3 = 0,

− exp(−x3) + 2λg1x3 − λH(−x2
1 − x2

2 + 10) = 0,

−λg1 + 2λg3x4 = 0.

It is clear that necessarily x3 = x4 = 0, thus λg1 = 0 and

− exp(−x2
1 − x2

2)x1 + λg2x1 − λGx1 = 0,

− exp(−x2
1 − x2

2)x2 + λg2x2 − λGx2 = 0,

−1 = λH(−x2
1 − x2

2 + 10).

The third equality gives that x2
1 + x2

2 6= 10, thus λg2 = 0. Furthermore, by the inequality constraints it is
necessary that x2

1 + x2
2 = 1 and so either x1 or x2 is non-zero. It follows that λH < 0 and

− exp(−1) = λG < 0.
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x0
1\x

0
2 0 1 2 3

0 o C C M
1 C C C M
2 C C M M
3 M M M M

Table 5: Sensitivity analysis depending on the initial point (x0
1, x

0
2, 0, 0) on Example 5.2 by using the butter�y

relaxation method t = r3/2 with T = 0.5, s = 0.01 and SNOPT as a non-linear solver. Legend: o: error, C:
circle x2 + y2 = 1, M: circle x2 + y2 = 10.

relaxation solver output last parameter x1 x2 x3 x4

(last iter.)
NL SNOPT 401 . 0.1929 0.9812 0.0117 0.0001
SS 401 2.5e− 13 0.1929 0.9812 0.0112 0.0001
KS 401 5.0e− 15 0.1930 0.9811 0.0112 0.0001

B(t=r3/2) 401 5.0e− 15 0.1927 0.9812 0.0116 0.0001

NL MINOS 0 . 0.7266 0.6870 0.0005 2.8389e-7
SS 0 2.5e− 9 0.7266 0.6870 0.0007 5.3595e-7
KS 0 5.0e− 5 0.7265 0.6870 0.0005 3.1903e-7

B(t=r3/2) 0 5.0e− 5 0.7266 0.6869 0.0005 3.5130e-7

NL IPOPT 0 . 0.1819 0.9833 0.0100 9.9999e-5
SS 0 0.25 0.1961 0.9805 0.0100 9.9999e-5
KS 0 0.5 0.1961 0.9805 0.0100 9.9999e-5

B(t=r3/2) 0 0.5 0.1961 0.9805 0.0100 9.9999e-5

Table 6: Example 5.2 with initial point (0.1, 0.5). output 0 is a success and output 401 is iteration limit
message.

To sum up, any point that satis�es x2
1 + x2

2 = 1 is C-stationary and is a local minimum, while any point
that satis�es x2

1 + x2
2 = 10 is not stationary, despite the fact that it is a global minimum.

Up to this point, we may notice that the points that belong to the circle of centre 0 and radius
√

10 that
are the global minima of the problem are sequentially M-stationary. Indeed, let (xk1 , x

k
2 , x

k
3 , x

k
4) = (0,

√
10 −

1
k , 0, 1/k), λH,k = − 1

10−xk,22

< 0, λG,k = 0, λg,k1 =
− exp(−xk,21 −x

k,2
2 )

2λg,k1 (−xk,22 + 11
2 )

, λg,k2 = 0 and 2λg,k3 = kλg,k1 .

We run Algorithm 2 with T = 0, 5 and s = 0, 01. Table 5 shows that the butter�y relaxation with t = r3/2

may converge to both circles depending on the initial point. Note that for (x0
1, x

0
2) = (0, 0) the algorithm

declares the problem infeasible. We do not give the results for other methods and other solvers here, but it
has a similar behavior.

Those results may be surprising since it is proved that this method should converge to an M-stationary
point and not less. So, in theory the algorithm should have some di�culties to compute Lagrange multiplier
at this point. We run Algorithm 1 with methods NL, SS, KS and butter�y t = r3/2 on this example. Results
are presented in Table 6.

We see that independently of the solver all of the methods converge to a C-stationary point. In the cases
of IPOPT and MINOS, the solvers exit with a success output and even more, they satisfy our local minimum
criterion.

Those disturbing results are explained by Theorem 4.5 and related results in the literature that illustrate
the fact that computing ε-stationary point may perturb the convergence properties of these methods. We
also point out here that local minima of the problem are not M-stationary and so by Theorem 2.1 MPCC-
GCQ does not hold at these points. Moreover, this example does not contradict the Theorem 4.5 since in
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Figure 7: MPVC

particular MPCC-CRSC is not veri�ed at any feasible point of the problem.

5.4 The Butter�y Relaxation for Mathematical Program with Vanishing Con-

straints

We consider the mathematical program with vanishing constraint

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

H(x) ≥ 0,

Gi(x)Hi(x) ≤ 0, i = 1, . . . , q,

(MPVC)

with f : Rn → R, h : Rn → Rm, g : Rn → Rp and G,H : Rn → Rq. This problem was �rst proposed
by Achtziger in [4] motivated by applications in topology design and in mechanical structures problems.
This problem can be reformulated as an (MPCC), however this runs at some constraint quali�cations issues
explaining why we need to propose speci�c numerical methods even so they are very close to methods for
(MPCC). The feasible set of the vanishing constraint is given on Figure 7.

Relaxation methods from previous sections can be adapted to this case by considering the parametric
non-linear program

min
x∈Rn

f(x)

s.t g(x) ≤ 0, h(x) = 0,

H(x) ≥ 0,

Φt(x) ≤ 0.

Recent literature extend relaxation methods for (MPCC) to the problem (MPVC) : [5, 41] deal with the
smooth method by Scheel & Scholtes, [3] consider a nonsmooth reformulation, [37] uses the local regu-
larization from Ste�ensen & Ulbrich and �nally [38] adapt the new paradigm of relaxation method with
convergence to M-stationary point in particular the method by Kanzow & Schwartz.

Following the same path, we can extend the Butter�y relaxation method for MPVC :

ΦB(t,r)i(x) := Gi(x)(Hi(x)− tθr(Gi(x))), i = 1, . . . , q

where θ is de�ned as before.

In order to validate this approach we run the method on an application of MPVC to truss topology
optimization that was described in depth in chapter 9 of the monograph [36].
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Figure 8: The feasible set of Example 5.3 from [36].

sovler x∗ f(x∗) last value of t
SNOPT (0, 5)T 10 0, 5
IPOPT (0, 0)T 0 4, 67.10−4

MINOS (0, 0)T 0 0, 5

Table 7: Butter�y (MPVC) relaxation with t = r3/2 on Example 5.3 with initial point (6, 6)T .

Example 5.3.

min
x∈R2

4x1 + 2x2

x1 ≥ 0, x2 ≥ 0,

(5
√

2− x1 − x2)x1 ≤ 0,

(5− x1 − x2)x2 ≤ 0.

The feasible set of this example is given in Figure 8. As the geometry indicates, numerical methods based
on feasible descent concepts generally converge to the point x̂ = (0, 5

√
2)T . The unique global solution to

the problem is the point x∗ = (0, 0)T . In practical application this point must be excluded by an additional
constraint, and then the unique optimal solution to the problem is the point x̄ = (0, 5)T .

We run butter�y relaxation tailored to (MPVC) on Example 5.3 using an initial point inside the feasible
domain x0 = (6, 6)T . Results are presented in Table 7 with solvers SNOPT, IPOPT and MINOS. In two
cases the butter�y method manages to converge to the global optimum and in the third case it converges to
the point (0, 5) which is a local minimum.

6 Concluding Remarks

This paper proposes a new family of relaxation schemes for the mathematical program with complementarity
constraints. We prove that these methods have the same theoretical properties as the best-known methods
of [48] and [46] in the literature while extending them.

Convergence of the method is proved under the new and weak MPCC-CRSC condition. This new
de�nition is also completed by the characterization of approximate stationary sequences that are proved to
be bounded under this condition.

We provide a complete numerical study with remarks regarding the implementation as well as a numerical
comparison with existing methods in the literature. These numerical experiments show that the new butter�y
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schemes are very competitive. We also provide an example that illustrates some of the pitfalls that solvers
may encounter while solving those degenerate non-linear programs.

The mathematical program with vanishing constraint is also a di�cult non-linear program that need
special care to handle. It appears as we shown that the butter�y schemes can also be adapted to this class
of problems.

Further research, may focus on the two main di�culties regarding relaxation schemes that are the conver-
gence of approximate stationary sequences and the existence of Lagrange multipliers. A discussion regarding
the former problem a been initiated in [50] and appeal further discussion.
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