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From Fredholm and Wronskian representations to rational solutions to the KPI equation depending on 2N

-2 parameters

Introduction

We consider the Kadomtsev-Petviashvili equation (KP) which can be written in the form (4u t -6uu x + u xxx ) x -3u yy = 0, (1) 1 subscripts x, y and t denoting partial derivatives. Kadomtsev and Petviashvili [1] first proposed that equation in 1970. That equation is considered as a model, for example, for surface and internal water waves [START_REF] Ablowitz | On the evolution of packets of water waves[END_REF], and in nonlinear optics [START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF]. In 1974 Dryuma showed how the KP equation could be written in Lax form [START_REF] Dryuma | On analytical solutions of the two-dimensional Kortewegde Vries equation[END_REF]. The inverse scattering transform (IST)for the KPI equation is due to Manakov [START_REF] Manakov | The inverse scattering transform for the time-dependent Schrodinger equation and Kadomtsev-Petviashvili equation[END_REF].

The first rational solutions were found in 1977 by Manakov,Zakharov,Bordag and Matveev [6].

From the end of the seventies, a lot of methods have been carried out to solve that equation. Dubrovin constructed for the first time in 1981 [START_REF]Dubrovin Theta functions and non-linear equations[END_REF] the solutions to KPI given in terms of Riemann theta functions in the frame of algebraic geometry.

Various researches were conducted and more general rational solutions of the KPI equation were obtained. We can mention the following studies of Krichever in 1978 [START_REF] Krichever | Rational solutions of the Kadomtcev-Petviashvili equation and integrable systems of n particules on a line[END_REF][START_REF] Krichever | Holomorphic bundles over Riemann surfaces and the KPI equation[END_REF], Satsuma and Ablowitz in 1979 [START_REF] Satsuma | Two-dimensional lumps in nonlinear dispersive systems[END_REF], Matveev in 1979 [11], Freeman and Nimmo in 1983 [START_REF] Freeman | Nimmo Rational solutions of the KdV equation in wronskian form[END_REF][START_REF] Freeman | The use of Bäcklund transformations in obtaining N-soliton solutions in wronskian form[END_REF], Pelinovsky and Stepanyants in 1993 [START_REF] Pelinovsky | New multisolitons of the Kadomtsev-Petviashvili equation[END_REF], Pelinovsky in 1994 [START_REF] Pelinovsky | Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution[END_REF], Ablowitz and Villarroel [START_REF] Ablowitz | Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations[END_REF][START_REF] Villarroel | On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation[END_REF] in 1997-1999, Biondini andKodama [18, 19, 20] in 2003-2007. In particular in 1999, the inverse scattering method has been applied by Prinari to obtain solutions to the KPI and KPII equations [START_REF] Prinari | Inverse scattering theory for the KP equations[END_REF].

In the following, we recall the results of the author about the representations of solutions to the KPI equation. We have expressed the solutions in terms of Fredholm determinants of order 2N depending on 2N -1 parameters. We have also given another representation in terms of wronskians of order 2N with 2N -1 parameters. These representations allow to obtain an infinite hierarchy of solutions to the KPI equation, depending on 2N -1 real parameters . We have used these results to build rational solutions to the KPI equation, making a parameter to 0 tend to 0. Here we construct rational solutions of order N depending on 2N -2 parameters without the presence of a limit. That gives a new method to build rational solutions. We prove that these families depending on 2N -2 parameters for the N -th order can be written as a ratio of two polynomials of x, y and t of degree 2N (N + 1). That provides an effective method to build an infinite hierarchy of rational solutions of order N depending on 2N -2 real parameters. We present here only the explicit rational solutions of order 4, depending on 6 real parameters, and the representations of their modulus in the plane of the coordinates (x, y) according to the real parameters a We need to define some notations. First one defines real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N depending on a parameter ǫ which will be intended to tend towards 0; they can be written as

1 , b 1 , a 2 , b 2 , a 3 , b 3 and time t.
λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (2) 
The terms κ ν , δ ν , γ ν , τ ν and x r,ν are functions of λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj ,; x r,j = (r -1) ln γj -i γj +i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1 j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N.
(3) e ν 1 ≤ ν ≤ 2N are defined in the following way :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N -1. (4) 
ǫ ν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (5) 
Let I be the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν y + τ ν t + x r,ν + e ν ). (6) 
Then we recall the following result1 :

Theorem 2.1 The function v defined by v(x, y, t) = -2 |n(x, y, t)| 2 d(x, y, t) 2 (7) 
where

n(x, y, t) = det(I + D 3 (x, y, t)), (8) 
d(x, y, t) = det(I + D 1 (x, y, t)), (9) 
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(iκ ν x -2δ ν y + τ ν t + x r,ν + e ν ). ( 10 
)
is a solution to the KPI equation ( 1), dependent on 2N -

1 parameters a k , b k , 1 ≤ k ≤ N -1 and ǫ.
We recall a second result on the solutions to KPI equation obtained recently by the author in terms of wronskians. We need to define the following notations : [START_REF] Matveev | Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation depending on functional parameters[END_REF] with the arguments

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3,
Θ r,ν = κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 , 1 ≤ ν ≤ 2N. ( 12 
)
We denote W r (w) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. (13) 
We consider the matrix D r = (d νµ ) ν, µ∈ [1,...,2N ] defined in [START_REF] Satsuma | Two-dimensional lumps in nonlinear dispersive systems[END_REF]. Then we have the following statement2 

φ r,ν (w) = sin( κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 ), 1 ≤ ν ≤ N, φ r,ν (w) = cos( κν x 2 + iδ ν y -i xr,ν 2 -i τν 2 t + γ ν w -i eν 2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3,
κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), ( 2) and ( 4).

From those two preceding results, we construct rational solutions to the KPI equation as a quotient of two determinants. We use the following notations :

X ν = κ ν x 2 + iδ ν y -i x 3,ν 2 -i τ ν 2 t -i e ν 2 , Y ν = κ ν x 2 + iδ ν y -i x 1,ν 2 -i τ ν 2 t -i e ν 2 ,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in [START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF] and parameters e ν defined by [START_REF] Dryuma | On analytical solutions of the two-dimensional Kortewegde Vries equation[END_REF]. We define the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (14) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (15) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (16) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (17) 
for 1 ≤ k ≤ N .

The following ratio q(x, t)

:= W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . ( 18 
)
The terms λ j depending on ǫ are defined by λ j = 1 -2jǫ 2 . All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ. They can all be prolonged by continuity when ǫ = 0. We use the following expansions

ϕ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, y, t, 0), ϕ j,1 [0] = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, y, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions ψ j,k .

ψ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, y, t, 0), ψ j,1 [0] = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, y, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Then we get the following result :

Theorem 2.3 The function v defined by v(x, y, t) = -2 | det((n jk) j,k∈[1,2N ] )| 2 det((d jk) j,k∈[1,2N ] ) 2 (19) 
is a rational solution to the KPI equation ( 1).

(4u t -6uu x + u xxx ) x -3u yy = 0,
where

n j1 = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕj,1 ∂ǫ 2k-2 (x, y, t, 0), n jN +1 = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕj,N+1 ∂ǫ 2k-2
(x, y, t, 0),

d j1 = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψj,1 ∂ǫ 2k-2 (x, y, t, 0), d jN +1 = ψ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψj,N+1 ∂ǫ 2k-2 (x, y, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N (20)
The functions ϕ and ψ are defined in ( 14),( 15), ( 16), [START_REF] Villarroel | On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation[END_REF].

Remark 2.1 In general solutions of KPI have the form

u(X, Y, T ) = -2 ∂ 2 ∂X 2 ln F (X, Y, T ) (21) 
for some function F (X, Y, T ), due to the formulation of solutions through the inverse scattering method.

It is clear that the formulation given in this article is different from those given by ( 21). If it were the case, then necessarily, F should be of degree 20 in X,and an elementary calculation proves that the expression of u would be the quotient of a polynomial of degree 38 in X on a polynomial of degree 40 in X in the case of order 4 of the article, what is not the case.

Proof : In each column k (and N +k) of the determinants appearing in q(x, t), we successively eliminate the powers of ǫ strictly inferior to 2(k -1); then each common term in the numerator and denominator is factorized and simplified; in the end, we take the limit when ǫ goes to 0. First, the components j of the columns 1 and N +1 are respectively equal by definition to

ϕ j1 [0] + 0(ǫ) for C 1 , ϕ jN +1 [0] + 0(ǫ) for C N +1 of ∆ 3 , and ψ j1 [0] + 0(ǫ) for C ′ 1 , ψ jN +1 [0] + 0(ǫ) for C ′ N +1 of ∆ 1 .
At the the first step of the reduction, we replace the columns C k by C k -C 1 and C N +k by C N +k -C N +1 for 2 ≤ k ≤ N , for ∆ 3 ; the same changes for ∆ 1 are made. Each component j of the column C k of ∆ 3 can be rewritten as

N -1 l=1 1 (2l)! ϕ j,1 [l](k 2l -1)ǫ 2l and the column C N +k replaced by N -1 l=1 1 (2l)! ϕ j,N +1 [l](k 2l - 1)ǫ 2l for 2 ≤ k ≤ N .
For ∆ 1 , we make the same reductions, each component j of the column C ′ k can be rewritten as

N -1 l=1 1 (2l)! ψ j,1 [l](k 2l -1)ǫ 2l and the column C ′ N +k replaced by N -1 l=1 1 (2l)! ψ j,N +1 [l](k 2l -1)ǫ 2l for 2 ≤ k ≤ N . The term k 2 -1
2 ǫ 2 for 2 ≤ k ≤ N can be factorized in ∆ 3 and ∆ 1 in each column k and N + k , and so those common terms can be simplified in the numerator and denominator. If we restrict the developments at order 1 in columns 2 and N +2, we respectively get ϕ j1 [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF] 

+ 0(ǫ) for the component j of C 2 , ϕ jN +1 [1] + 0(ǫ) for the component j of C N +2 of ∆ 3 , and ψ j1 [1] + 0(ǫ) for the component j of C ′ 2 , ψ jN +1 [1] + 0(ǫ) for the component j of C ′ N +2 of ∆ 1 . We can continue this algorithm up to the columns C N , C 2N of ∆ 3 and C ′ N , C ′ 2N of ∆ 1 .
Then we take the limit when ǫ tends to 0, and q(x, y, t) can be replaced by Q(x, y, t) defined by :

Q(x, y, t) := ϕ 1,1 [0] . . . ϕ 1,1 [N -1] ϕ 1,N +1 [0] . . . ϕ 1,N +1 [N -1] ϕ 2,1 [0] . . . ϕ 2,1 [N -1] ϕ 2,N +1 [0] . . . ϕ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ϕ 2N,1 [0] . . . ϕ 2N,1 [N -1] ϕ 2N,N +1 [0] . . . ϕ 2N,N +1 [N -1] 2      ψ 1,1 [0] . . . ψ 1,1 [N -1] ψ 1,N +1 [0] . . . ψ 1,N +1 [N -1] ψ 2,1 [0] . . . ψ 2,1 [N -1] ψ 2,N +1 [0] . . . ψ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ψ 2N,1 [0] . . . ψ 2N,1 [N -1] ψ 2N,N +1 [0] . . . ψ 2N,N +1 [N -1]      2 (22) 
So the solution to the KPI equation takes the form :

v(x, y, t) = -2Q(x, y, t)
and we get the result. 2

2.2

The structure of the families of rational solutions of order N depending on 2N -2 parameters

Here, we give a theorem which states, in this representation, the structure of the rational solutions to the KPI equation. In this section we use the notations defined in the previous sections. The functions ϕ and ψ are defined in ( 14), ( 15), ( 16), [START_REF] Villarroel | On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation[END_REF].

Theorem 2.4 The function v defined by

v(x, y, t) = -2 det((n jk) j,k∈[1,2N ] ) 2 (det((d jk) j,k∈[1,2N ] )) 2 (23) 
is a rational solution to the KPI equation ( 1) quotient of two polynomials n(x, y, t) and d(x, y, t) depending on 2N -2 real parameters a j and b j , 1 ≤ j ≤ N -1.

n and d are polynomials of degrees 2N (N + 1) in x, y and t.

The terms n jk and d jk are defined by ( 20) and the functions ϕ and ψ are defined in ( 14), ( 15), ( 16), [START_REF] Villarroel | On the discrete spectrum of the nonstationary Schrdinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation[END_REF].

Proof : From the previous result ( 22), we have to analyze the functions ϕ k,1 , ψ k,1 and ϕ k,N +1 , ψ k,N +1 . The functions ϕ k,j and ψ k,j differ only by the term of the argument x 3,k , so only the study of functions ϕ k,j will be carried out. Then we study functions ψ k,j and it can be easily deduced from the analysis of ϕ k,j .

We study the expansions of those functions in ǫ. We denote (l kj ) k,j∈ [1,2N ] the matrix defined by

l kj = ∂ 2j-2 ∂ǫ 2j-2 ϕ k1 , l k,j+N = ∂ 2j-2 ∂ǫ 2j-2 ϕ k,1+N , 1 ≤ j ≤ N, 1 ≤ k ≤ 2N, ∂ 0
∂x 0 ϕ meaning ϕ. Each coefficient of the matrix (l kj ) k,j∈ [1,2N ] must be evaluated, the power of x, y and t in the coefficient of ǫ 2(m-1) for the column m ∈ [1, 2N ]. We remark that with those notations, the matrix (l kj ) k,j∈ [1,2N ] evaluated in ǫ = 0 is exactly (n kj ) k,j∈ [1,2N ] defined in [START_REF] Biondini | Line Soliton Interactions of the Kadomtsev-Petviashvili Equation[END_REF]. There are four cases to study depending on the parity of k.

1. Case l k1 for k odd, k = 2s + 1.

l k1 = (-1) s sin(2ǫ(1-ǫ 2 ) 1 2 x+4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )y-(12ǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 ) 2 +16ǫ 3 (1-ǫ 2 ) 3 2 )t -i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e 1 ) × ǫ k-2 (1 -ǫ 2 ) -k-2 2 = (-1) s sin ǫ( p l=0 c 2l ǫ 2l x+2i p l=0 c 2l ǫ 2l (1-2ǫ 2 )y+ p l=0 h 2l ǫ 2l t+2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s sin ǫ( p l=0 (c 2l x+d 2l y+h 2l t+f 2l +O(ǫ p+1 ))ǫ 2l )×ǫ k-2 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 (c 2n x+d 2n y+h 2l t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l+1 ×ǫ k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0
(-1) l+s ǫ 2l (2l + 1)! (

p n=0 P n (x, y, t)ǫ 2n ) 2l+1 × ǫ k-1 r l=1 g 2l ǫ 2l + O(ǫ t )
where P n (x, y, t) is a polynomial of order 1 in x, y and t.

l k,1 = q l=0 ǫ 2l α0+...+αp=2l+1
β α0,...,αp P 0 (x, y, t) α0 . . . P p (x, y, t) αp ǫ 2(α1+2α2+pαp) ×ǫ 2s r l=1

g 2l ǫ 2l +O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l+1 Q α0,...,αp (x, y, t)ǫ 2(α1+2α2+pαp) × ǫ 2s r l=1 g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, y, t) is a polynomial of order 2l + 1 in x, y and t.

Terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1.

For the column m, we search the terms in ǫ 2m-2 with the maximal power in x, y and t. It is obtained for 2l + k -1 = 2m -2, which gives l = ms -1.

We get the following result

Proposition 2.1 deg(n 2s+1,m ) = 2(m -s) -1 for s ≤ m -1, n 2s+1,m = 0 for s ≥ m. (24) 
2. Case l k1 for k even, k = 2s.

l k1 = (-1) s+1 cos(2ǫ(1-ǫ 2 ) 1 2 x+4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )y-(12ǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 ) 2 +16ǫ 3 (1-ǫ 2 ) 3 2 )t -i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e 1 ) × ǫ k-2 (1 -ǫ 2 ) -k-2 2 = (-1) s+1 cos ǫ( p l=0 c 2l ǫ 2l x+2i p l=0 c 2l ǫ 2l (1-2ǫ 2 )y+ p l=0 h 2l ǫ 2l t+2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ k-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s+1 cos ǫ( p l=0 (c 2l x+d 2l y+h 2y t+f 2l +O(ǫ p+1 ))ǫ 2l )×ǫ k-2 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+d+1 ǫ 2l (2l)! ( p n=0 (c 2n x+d 2n y+h 2l t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l ×ǫ k-2 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s+1 ǫ 2l (2l)! ( p n=0 P n (x, y, t)ǫ 2n ) 2l × ǫ 2s-2 r l=1 g 2l ǫ 2l + O(ǫ t )
where P n (x, y, t) is a polynomial of order 1 in x, y and t.

l k,1 = q l=0 ǫ 2l α0+...+αp=2l
β α0,...,αp P 0 (x, y, t) α0 . . . P p (x, y, t) αp ǫ 2(α1+2α2+pαp) ×ǫ 2s-2 r l=1

g 2l ǫ 2l +O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l Q α0,...,αp (x, y, t)ǫ 2(α1+2α2+pαp) × ǫ 2s-2 r l=1 g 2l ǫ 2l + O(ǫ t ),
where Q α0,...,αp (x, y, t) is a polynomial of order 2l in x, y and t.

Terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1.

For the column m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + k -2 = 2m -2, which gives l = ms. So we have :

Proposition 2.2 deg(n 2s,m ) = 2(m -s) for s ≤ m, n 2s,m = 0 for s > m. ( 25 
) 3. Case l k M 2 +1 for k odd, k = 2s + 1. l k M 2 +1 = (-1) s cos(2ǫ(1-ǫ 2 ) 1 2 x-4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )y+i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e M 2 +1 -(12ǫ(1 -ǫ 2 ) 1 2 (1 -2ǫ 2 ) 2 + 16ǫ 3 (1 -ǫ 2 ) 3 2 )t) × ǫ M -k-1 (1 -ǫ 2 ) -M -k-1 2 = (-1) s (cos ǫ( p l=0 c 2l ǫ 2l x-2i p l=0 c 2l ǫ 2l (1-2ǫ 2 )y+ p l=0 h 2l ǫ 2l t-2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ M -k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s (cos ǫ( p l=0 (c 2l x+d 2l y+h 2l t+f 2l )ǫ 2l +O(ǫ p+1 ))×ǫ M -k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l)! ( p n=0 (c 2n x+d 2n y+h 2l t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l ×ǫ M -k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l)! ( p n=0 P n (x, y, t)ǫ 2n + O(ǫ p+1 )) 2l × ǫ M -2s-2 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 ))
where P n (x, y, t) is a polynomial of order 1 in x and t.

l k, M 2 +1 = q l=0 ǫ 2l α0+...+αp=2l β α0,...,αp P 0 (x, y, t) α0 . . . P p (x, y, t) αp ǫ 2(α1+2α2+pαp) × ǫ M -2s-2 r l=1 g 2l ǫ 2l + O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l Q α0,...,αp (x, y, t)ǫ 2(α1+2α2+pαp) ×ǫ M -2s-2 r l=1 g 2l ǫ 2l +O(ǫ t ),
where Q α0,...,αp (x, y, t) is a polynomial of order 2l in x, y and t.

The terms in ǫ 0 (column M 2 + 1) are obtained for l = 0 in the two summations with α 0 = 1. For the column M 2 +m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + 2(Ns -1) = 2m -2, which gives l = m + s -N . So we obtain the following result

Proposition 2.3 deg(n 2s+1,m+ M 2 ) = 2m + 2s -M for s ≥ M 2 -m, n 2s+1,m = 0 for s < M 2 -m. (26) 4. Case l k,1+ M 2 for k even, k = 2s. l k M 2 +1 = (-1) s sin(2ǫ(1-ǫ 2 ) 1 2 x-4iǫ(1-ǫ 2 ) 1 2 (1-2ǫ 2 )y+i ln 1 + iǫ(1 -ǫ 2 ) -1 2 1 -iǫ(1 -ǫ 2 ) -1 2 -e M 2 +1 -(12ǫ(1 -ǫ 2 ) 1 2 (1 -2ǫ 2 ) 2 + 16ǫ 3 (1 -ǫ 2 ) 3 2 )t) × ǫ M -k-1 (1 -ǫ 2 ) -M -k-1 2 = (-1) s sin ǫ( p l=0 c 2l ǫ 2l x-2i p l=0 c 2l ǫ 2l (1-2ǫ 2 )y+ p l=0 h 2l t-2 p l=0 (-1) l ǫ 2l (1 -ǫ 2 ) -2l+1 2 (2l + 1) - N -1 l=1 ãl ǫ 2l + i N -1 l=1 bl ǫ 2l + O(ǫ p+1 )) × ǫ M -k-1 ( r l=1 g 2l ǫ 2l + O(ǫ r+1 )) = (-1) s sin ǫ( p l=0 (c 2l x+d 2l y+h 2l t+f 2l )ǫ 2l +O(ǫ p+1 ))×ǫ M -k-1 ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 (c 2n x+d 2n y+h 2l t+f 2n +O(ǫ p+1 ))ǫ 2n ) 2l+1 ×ǫ M -k ( r l=1 g 2l ǫ 2l +O(ǫ r+1 )) = q l=0 (-1) l+s ǫ 2l (2l + 1)! ( p n=0 P n (x, y, t)ǫ 2n + O(ǫ p+1 )) 2l+1 × ǫ M -2s ( r l=1 g 2l ǫ 2l + O(ǫ r+1 ))
where P n (x, y, t) is a polynomial of order 1 in x, y and t.

l k,1 = q l=0 ǫ 2l α0+...+αp=2l+1 β α0,...,αp P 0 (x, y, t) α0 . . . P p (x, y, t) αp ǫ 2(α1+2α2+pαp) × ǫ M -2s r l=1 g 2l ǫ 2l + O(ǫ t ) = q l=0 ǫ 2l α0+...+αp=2l+1 Q α0,...,αp (x, y, t)ǫ 2(α1+2α2+pαp) ×ǫ M -2s r l=1 g 2l ǫ 2l +O(ǫ t ),
where Q α0,...,αp (x, y, t) is a polynomial of order 2l + 1 in x,y and t.

The terms in ǫ 0 are obtained for l = 0 in the two summations with α 0 = 1.

For the column M 2 + m, we search the terms in ǫ 2m-2 with the maximal power in x and t. It is obtained for 2l + Mk = 2m -2, which gives l = m + s -N -1. We get the following result Proposition 2.4

deg(n 2s,m+ M 2 ) = 2m + 2s -M -1 for s ≥ M 2 + 1 -M, n 2s,m+ M 2 = 0 for s < M 2 + 1 -m. (27) 
These results can be rewritten in the following way Proposition 2.5

deg(n j,k ) = 2k -j for j ≤ 2k, n j,k = 0 for j > 2k, deg(n j,k ) = 2k + j -2M -1 for j ≥ 2M + 1 -2k, n j,k = 0 for j < 2M + 1 -2k. ( 28 
)
Now we can evaluate the degree of the determinant of the matrix (n kj ) k,j∈ [1,2N ] .

From the previous analysis, x, y and t have necessarily the same power in each n kj . The maximal power in x, y and t, is successively taken in each column. It is realized by the following product Applying the result given in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] we get

deg(det(n kj ) k,j∈[1,2N ] ) = N j=1 deg(n j,j ) + N j=1 deg(n N +j,2N +1-j ) = N j=1 2j -j + N j=1 2(M + 1 -j) -2M -1 + M 2 + j = N j=1 j + N j=1 N + 1 -j = N (N + 1).
We have the same argument for the determinant det(d kj ) k,j∈ [1,2N ] , we have deg(det

(d kj ) k,j∈[1,2N ] ) = N (N + 1).
Thus the quotient det((n kj) j,k∈ [1,2N ] ) det((d kj) j,k∈ [1,2N ] ) defines a quotient of two polynomials, each of them of degree N (N + 1). As the expression of the solution v is given by n(x,y,t)n * (x,y,t) d(x,y,t) 2

, it gives the result on the degrees of the polynomials |n| 2 and d 2 . So we obtain det((n kj) j,k∈ [1,2N ] )

2 det((d kj) j,k∈[1,2N ] )
2 is a quotient of two polynomials of degree 2N (N + 1). 23 Explicit expression of rational solutions of order 4 depending on 6 parameters

In the following, we explicitly construct rational solutions to the KPI equation of order 4 depending on 6 parameters.

Because of the length of the expression, it cannot be given in that paper. We only give the expression without parameters in the appendix.

We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in function of the parameters a 1 , a 2 , a 

Conclusion

From the previous representations of the solutions to the KPI equation given by the author in terms of Fredholm determinants of order 2N depending on 2N -1 real parameters and in terms of wronskians of order 2N depending on 2N -1 real parameters, we succeed in obtaining rational solutions to the KPI equation depending on 2N -2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N (N + 1) in x, y and t. That gives a new approach to find explicit solutions for higher orders and try to describe the structure of those rational solutions.

In the (x, y) plane of coordinates, different structures appear. For a given t, when one parameter grows and the other ones are equal to 0 we obtain triangles or rings; for a 1 = 0 or b 1 = 0 and the other parameters equal to zero, we obtain a triangle with 10 peaks; for a 2 = 0 or b 2 = 0, and other parameters equal to zero, we obtain two concentric rings of 5 peaks on each of them; in the last case, when a 3 = 0 or b 3 = 0, and the other parameters equal to zero, we obtain one ring with 7 peaks. It will be relevant to go on this study for higher orders to try to understand the structure of those rational solutions.

Appendix : Because of the length of the complete expression, we only give in this appendix the explicit expression of the rational solution of order 4 to KPI equation without parameters. They can be written as 

v

Theorem 2 . 2 2 (W 1

 2221 The function v defined by v(x, y, t) = -2 |W 3 (φ 3,1 , . . . , φ 3,2N )(0)| (φ 1,1 , . . . , φ 1,2N )(0)) 2 is a solution to the KPI equation depending on 2N -1 real parameters a k , b k 1 ≤ k ≤ N -1 and ǫ, with φ r ν defined by

  3 , b 1 , b 2 , b 3 , and time t. When at least one parameter is not equal to 0, we observe the presence of ten peaks. The maximum of modulus of those solutions is checked equal in this case N = 4 to 2(2N + 1) 2 = 2 × 9 2 = 162.

Figure 1 .

 1 Figure 1. Solution of order 4 to KPI, on the left for t = 0; in the center for t = 0, 01; on the right for t = 0, 1; all the parameters to equal to 0.

Figure 2 .

 2 Figure 2. Solution of order 4 to KPI, on the left for t = 0, 2; in the center for t = 10; on the right for t = 50; all the parameters to equal to 0.

Figure 3 .

 3 Figure 3. Solution of order 4 to KPI for t = 0, on the left for a 1 = 10 3 ; in the center for b 1 = 10 3 ; on the right for a 2 = 10 6 ; all the other parameters to equal to 0.

Figure 4 .

 4 Figure 4. Solution of order 4 to KPI for t = 0, on the left for b 2 = 10 6 ; in the center for a 3 = 10 9 ; on the right for b 3 = 10 9 ; all the other parameters to equal to 0.

20 k=0

 20 f k (Y, T )X k , H 4 (X, Y, T ) = 20 k=0 h k (Y, T )X k , Q 4 (X, Y, T ) = 20 k=0 q k (Y, T )X k . f 20 = 1, f19= -60 T , f 18 = 1710 T 2 + 10 Y 2 -30, f 17 = -30780 T 3 + (-540 Y 2 + 2340)T , f 16 = 392445 T 4 + 45 Y 4 + (13770 Y 2 -78030)T 2 -1350 Y 2 -675, f 15 = -3767472 T 5 + (-220320 Y 2 + 1542240)T 3 + (-2160 Y 4 + 67680 Y 2 + 23760)T , f 14 = 28256040 T 6 + 120 Y 6 + (2478600 Y 2 -20655000)T 4 -9000 Y 4 + (48600 Y 4 -1587600 Y 2 -210600)T 2 +16200 Y 2 -19800, f 13 = -169536240 T 7 +(-20820240 Y 2 +201262320)T 5 + (-680400 Y 4 +23133600 Y 2 -3402000)T 3 +(-5040 Y 6 +378000 Y 4 -680400 Y 2 +831600)T , f 12 = 826489170 T 8 + 210 Y 8 + (135331560 Y 2 -1488647160)T 6 -27720 Y 6 + (6633900 Y 4 -234397800 Y 2 + 112776300)T 4 + 224700 Y 4 + (98280 Y 6 -7371000 Y 4 +14175000 Y 2 -18937800)T 2 +163800 Y 2 -330750, f 11 = -3305956680 T 9 +(-695990880 Y 2 + 8583887520)T 7 +(-47764080 Y 4 +1751349600 Y 2 -1512529200)T 5 +(-1179360 Y 6 +88452000 Y 4 -191872800 Y 2 + 297410400)T 3 + (-7560 Y 8 + 977760 Y 6 -7182000 Y 4 -4989600 Y 2 + 12209400)T , f 10 = 10909657044 T 10 + q 20 = 1, q 19 = -60 T , q 18 = 1710 T 2 + 10 Y 2 + 10, q 17 = -30780 T 3 + (-540 Y 2 + 180)T , q 16 = 392445 T 4 + 45 Y 4 + (13770 Y 2 -22950)T 2 -270 Y 2 + 405, q 15 = -3767472 T 5 + (-220320 Y 2 + 660960)T 3 + (-2160 Y 4 + 15840 Y 2 -16560)T , q 14 = 28256040 T 6 + 120 Y 6 + (2478600 Y 2 -10740600)T 4 -1800 Y 4 + (48600 Y 4 -421200 Y 2 + 437400)T 2 + 1800 Y 2 + 16200, q 13 = -169536240 T 7 + (-20820240 Y 2 + 117981360)T 5 + (-680400 Y 4 + 6804000 Y 2 -8845200)T 3 + (-5040 Y 6 + 75600 Y 4 -75600 Y 2 -680400)T , q 12 = 826489170 T 8 + 210 Y 8 + (135331560 Y 2 -947320920)T 6 -4200 Y 6 + (6633900 Y 4 -75184200 Y 2 + 130466700)T 4 + 6300 Y 4 + (98280 Y 6 -1474200 Y 4 +2381400 Y 2 +14175000)T 2 +113400 Y 2 +425250, q 11 = -3305956680 T 9 +(-695990880 Y 2 +

2

  Rational solutions to KPI equation of order N depending on 2N -2 parameters 2.1 Families of rational solutions of order N depending on 2N -2 parameters

  4 (x, y, t) = -2 |n 4 (x, y, t)| 2 (d 4 (x, y, t)) 2

	with	n 4 (x, y, t) d 4 (x, y, t)	=	F 4 (2x, 4y, 4t) -iH 4 (2x, 4y, 4t) Q 4 (2x, 4y, 4t)
	with			
		F 4 (X, Y, T ) =

The proof of this result has been given by the author[START_REF] Gaillard | Rational solutions to the KPI equation and multi rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF] 

The proof of this result has been given[START_REF] Gaillard | Rational solutions to the KPI equation and multi rogue waves[END_REF][START_REF] Gaillard | Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves[END_REF].