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To recover a signal x from the magnitude of a possible linear transform of it, problem known as Phase Retrieval (PR), signal sparsity property has been used to guide the uniqueness of the solution. This paper presents herein a new method for sparse phase retrieval (SPR). Based on a lifting operation, we reduce the problem of SPR to solving a linear system with regards to a vectorized version of xx T . We then use the structured sparsity property of this vectorized form to interpret this operation rather as a lifting operation of the signal support. The signal support is identified iteratively using the gradient pursuit principle in conjunction with subsequent refinements aiming to control the stability of the updated solution.

A simple least square estimation on the lifted support is then brought out, iteratively and if required, to determine the lifted solution; from which a rank-1 decomposition is achieved to recover the signal of interest. Simulation results confirm the efficiency of the so-called Greedy Support-Lifting Based algorithm (GSuLA) with acceptable complexity. Robustness of the algorithm is also assured for noisy measurements.

INTRODUCTION

Recently, solving the problem of Phase Retrieval (PR) experienced a great advance, both on the theoretical level, by studying the conditions of successful recovery of the unknown signals involved, and on the practical level, by suggesting efficient algorithms guaranteeing good recovery success rates with acceptable complexity. In fact, PR problems arise in many areas of applied physics such that in crystallography, astronomical and X-ray imaging; and in many optical applications. Solving the PR problem consists in finding an N -length signal vector x from a set of measurements corresponding to the magnitude of its Fourier transform or more generally of a linear transform, given by y = |Hx| 2 ∈ R M + . In [1], it was shown that PR can be successfully solved using multiple sets of measurements (structured illuminations, oversampling) when M = 3N . In this last work and in a matrix completion framework; the so-called PhaseLift operation of the problem leads to a rank matrix minimization that can be solved through Semi-Definite Programming (SDP). If M < 3N , PR problem needs to integrate some known constraints on the vector of interest. The sparsity property was thus considered to assess a unique solution recovery, dealing with Sparse Phase Retrieval (SPR). Fienup and Gerchberg-Saxton algorithms [2]- [START_REF] Gerchberg | A practical algorithm for the determination of phase from image and diffraction plane pictures[END_REF] are the pioneering works dealing with SPR via alternating projections'. Very recently, The renewed interest in solving the SPR problem led to new efficient algorithms (see [START_REF] Shechtman | Phase Retrieval with Application to Optical Imaging: A contemporary overview[END_REF] for an overview) such as GESPAR [START_REF] Shechtmann | GESPAR : Efficient phase retrieval of sparse signals[END_REF]. The GESPAR algorithm uses a 2-opt local search which is implicitly based on a gradient pursuit followed by a number of iterations of swaps between couples of indices potentially and temporarily in and out of the support. The gradient is determined in a sub-optimal solution obtained by minimizing the nonlinear objective using a variant of a Gauss-Newton algorithm. SPR can also be solved efficiently using rank matrix minimization via SDP under different SPR problem formulations [START_REF] Jaganathan | Phase retrieval for sparse signals unsing rank minimization[END_REF]- [START_REF] Ohlsson | CPRL-An Extension of Compressive Sensing to the Phase Retrieval Problem[END_REF]. Nevertheless, SDP suffers from high complexity for large dimension problems. Moreover, SPR is particularly studied in the case of "compressive measures" including the challenging case M < N as reported in [START_REF] Schniter | Compressive phase retrieval via generalized approximate message passing[END_REF], where the generalized approximate message passing (GAMP) method offers a robust Bayesian solver for this problem. In this context, SPR approach can share the same principles as NonLinear Compressed Sensing (NLCS) [START_REF] Blumensath | Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems[END_REF]. In [START_REF] Bahmani | Greedy Sparsityconstrained optimization[END_REF]- [START_REF] Blumensath | Gradient pursuit for nonlinear sparse signal modelling[END_REF], greedy recovery schemes based on gradient pursuit principle to recover the solution's support coupled with a constrained nonlinear optimizer over the recovered support are proposed to solve a general NLCS problem, for which SPR can be seen as a particular case. In the same spirit, a more recent work [START_REF] Jaganathan | Sparse phase retrieval: Uniqueness guarantees and recovery algorithms[END_REF] proposes a two stage phase retrieval (TSPR) algorithm, from Fourier magnitude measures, built upon a combinatorial algorithm for support recovery of x followed by a trace minimization regularized with l 1 norm to find the value of the lifted solution for xx T over the so derived support. In this contribution, we rather focuss on the support of the vectorized version of xx T that we deduce by lifting of the support of x. So, our solution does not address directly the optimiza-tion of the PR-relative objective function based on the matrix xx T . We specifically use the Gradient Pursuit (GP) principle for SPR solving to identify iteratively the support of the sparse solution x alternately with LS estimation of the solution over this support. More precisely, using a lifting operation, we first give a new formulation of the SPR problem as a linear system, where the new unknown variable to determine, designed by the vector X, presents a structured sparsity [START_REF] Baraniuk | Model-based compressive sensing[END_REF] and can then be simply determined via a Least Square (LS) estimate. The optimization of the nonlinear objective related to the PR problem can then be saved. An improved gradient pursuit procedure is then used to determine the signal support, and subsequently the support of the lifted solution, via multiple index swaps aiming to check the stability of the so-obtained LS estimate. So, if we have to highlight the main contribution of this work with regard to existing methods, we should say that -the common PR solvers based on lifting aims to find the matrix xx T via relaxed rank minimization using SDP methods. Our solution, by expressing the measurement vector linearly in function of the vectorized version of xx T , namely X, invokes simpler LS and possibly many LS related optimizers -by taking into account of the structured sparsity of the solution sought for X, LS estimation is directly performed on the support deduced by lifting of the support of x, where from the support-lifting naming of our solution. This confers another mechanism to the lifting operation which is different from the common one in this context. Indeed, the algorithm stems from an alternation of LS estimation of the solution performed in the lifted space and a GP-based support update realized in the non lifted one.

-introduction of the idea of sub-optimal solution perturbation as a mean to enhance the support recovery obtained according to the GP principle, is also somewhat new in this field. The remainder of the paper is organized as follows. Section 2 addresses the new SPR problem formulation. In section 3, the corresponding new greedy support-lifting based algorithm steps are detailed. Section 4 describes the numerical results of the so-called GSuLA algorithm. Section 5 gives our conclusion.

Notation vectors are in bold and matrices in capital letters. If U is a set of indices and A is a matrix, then A U is the submatrix formed by the columns of A which indices belong to U . When a is a vector then a| U is the sub-vector formed by the elements which indices are in U . supp(a) is the support of vector a. U c is the complementary set of indices of U . P † = (P H P ) -1 P H denotes the pseudo-inverse of a matrix P .

NEW SPARSE PHASE RETRIEVAL PROBLEM FORMULATION VIA SUPPORT LIFTING

The problem of sparse phase retrieval consists in recovering an N -length signal vector x, which is K-sparse, from an M -length intensity measurement vector y = [y 1 y 2 . . . y M ] T given by

y = |Hx| 2 = [ |h 1 x| 2 |h 2 x| 2 . . . |h M x| 2 ] T (1)
where the M × N matrix H is assumed to have real or complex entries and for which the i th line is denoted by

h i = [h i1 h i2 . . . h iN ],
x here is a real vector and |.| 2 denotes the component-wise square operator. Each measurement is written explicitly as

y i = ∑ j |h ij | 2 x 2 j + 2 ∑ (j,j ′ )|j ′ >j Re{h * ij h ij ′ }x j x j ′ (2)
Our proposed solution is based on the simple remark that equality (2) assures that each measurement y i can actually be linearly written in function of the squared terms of x, namely x 2 1 ,. . ., x 2 N and of the inter-products x 1 x 2 , x 1 x 3 , . . . , x N -1 x N . Hence, the measurement vector can be written using following linear system

y = AX where X = [x T s X T s ] T (3) 
x s = [x 2 1 , . . . , x 2 N ] T , X s = [x 1 x 2 , . . . , x 1 x N , . . . , x N -1
x N ] T and A is the so generated M × N (N + 1)/2 matrix from this expression, which can be constructed using the following pseudo-code A = [ ]; for j = 1 : N,

H j = h H j .h j ; a j = [|h j1 | 2 . . . |h jN | 2 ] = diag(H j ); for i = 1 : N -1, a j = [a j 2Re{H j (i, (i + 1) : N )}]; 1 end A = [ A a j ]
end diag(H j ) denotes here the diagonal of matrix H j defined as a line vector. Formulation (3) explicitly lifts the problem of finding the N -dimensional K-sparse vector x in a higher dimensional space of N ′ = N (N + 1)/2 dimensions, where the unknown vector to be determined is also sparse with a degree equal to K ′ = K(K + 1)/2. A real benefit from this lifting lies in the fact that solving linear equation systems is always less problematic than nonlinear ones. On the other hand, X presents a structured sparsity since the support of X is entirely determined by that of x (the positions of the non-null entries in the sub-vector X s become fixed according to the positions of the non null entries in x s since supp(x s ) = supp(x)). Moreover, identifying X depends on the relative positioning of the values of M , N ′ and K ′ . If M < N ′ (an under-determined case of (3)), which is more likely to be set, sparsity property can be used to recover X from y. Denoting by U X the support of the lifted vector X, once U X identified and if M > K ′ , a least square solution, denoted by XLS , can be deduced for X by determining

XLS U X = arg min ||y -A U X X U X || 2 ; XLS U c X = 0 (4)
The components of the solution XLS are rearranged then to form an approximate solution for X mat = xx T from which a rank-1 decomposition is carried out to obtain a solution for x; the components of the solution out of the support are eventually set to zero. The main issue, then, is how to identify the support of X. GP approach, as proposed by Blumensath et. al in [START_REF] Blumensath | Gradient pursuit for nonlinear sparse signal modelling[END_REF] for NLCS recovery, is an imminent alternative which is expected to achieve the support identification. Globally, the indices in the support are identified so that the corresponding components, when perturbed, lead to a significant variation of the pre-chosen objective function measuring the misfit between the measurements and the measurement model output.

In other words, the gradient of the objective function over the support indices should take large values. Let us note here that matrix A is highly structured, thereby exhibiting poor incoherence, which anticipates a certain degradation when identifying the right support indices in only K steps as achieved by an OMP procedure. That's why the GP-based support recovery algorithm is achieved in the non lifted space and followed by a number of swaps between an actual value of the support and a candidate index maximizing the gradient of the objective function taken in a perturbed version of the last available sub-optimal solution. The global structure of the proposed iterative algorithm can then be resumed by (i) obtain a value of U x by GP (ii) obtain the support of X by lifting U x (iii) give an estimate X of X over U X using LS or another optimizer (iv) obtain the estimate x from X using a rank-1 decomposition Remark The same recovery scheme is also possible for complex signals, for which, each measure can be written as

y i = N ∑ j=1 |h ij | 2 + 2 ∑ j ′ >j Re[h ij h * ij ′ x j x * j ′ ] = a i X with a i = [|h i1 | 2 , . . . , |h iN | 2 2Re[a inter i ] -2Im[a inter i ]] when 
a inter i = [h i1 h * i2 h i1 h * i3 . . . h i(N -1) h * iN ], X =   x x Re[X s ] Im[X s ]   and X s =      x 1 x * 2 x 1 x * 3 . . . x N -1 x * N     
so, here also, y = AX where A is the matrix which the i th line is equal to a i .

THE NEW GREEDY SUPPORT-LIFTING ALGORITHM FOR SPR PROBLEM SOLVING

Initial filling of the support using the GP principle

Let us denote by x(k) : the updated solution at iteration k.

-U x (k) = supp(x), U X (k) = supp(X) : the obtained supports for x and X at iteration k supp lif t : the application going from

[1, N ] K towards [1, N ′ ] K ′ such that it associates to each U x (k) = [i 0 , i 1 , . . . , i K ] the corresponding lifted support U X (k) = [i 0 , . . . , i K , . . . , i K ′ ] -f (x) = ||y -|Hx| 2 || 2 = M ∑ i=1 (y i -|h i x| 2
) 2 : the objective function to minimize. U x (k) is recovered by detecting, gradually and in K steps, the indices leading to significant values of the objective function gradient (see Algorithm GSuLA-phase 1). We note here that we force the support in the first K iterations to contain K different indices. At each iteration k, U x (k) is updated and then lifted to the support of X, so as to form U X (k). An LS estimate of X over the lifted support U X (k), XLS (k), is then computed, which terms are rearranged then to obtain an estimate for the rank-1 matrix X mat = xx T ; from which an estimate for the solution x(k) is obtained subsequently via a rank-1 decomposition procedure. During this phase, x(k) should be calculated for each k = 1, . . . , K to allow the next gradient computation.

Final support recovery via index swaps in conjunction with the solution update

As U x (K) may be not reliable (f (x(K)) is high), we suggest to refine the support via multiple indices' swaps between a potential valid index out of the support and the indices actually in last available value of the support. The proposed algorithm is built upon the fact that any perturbation of the true solution should not lead to a significant differentiation of the objective function. Therefore, the GSuLA proceeds, at each iteration of the support enhancement, to the generation of a disturbed version of the last sub-optimal solution as follows

xp (k) = x(k -1) + ϵ(k)
ϵ(k) is a perturbation vector which can be chosen as a random vector. The index of the maximum of the gradient magnitude computed in this perturbed version is then deter-

mined i 0 = arg max j | ▽ f (x)| xp (k) | j . If i 0 / ∈ U x (k -1), a
swap between each index in U x (k -1) and i 0 is done. Each temporary obtained support value U p x (k) is then lifted into the corresponding support of X, U p X (k). The LS estimate of X is subsequently computed as well as the corresponding objective function. If the objective function is decreasing, then U p x (k) is a more reliable support then U x (k -1), and the values of the support and of the recovered vector x(k) are updated accordingly (via the rank-1 decomposition). No update is made if the objective function is not decreased and we move to a new iteration with a new perturbation of the last obtained solution. The algorithm is stopped if the objective drops under a prefixed value (we choose 1e-4) or if a number of allowed solution's perturbation iterations is attained (K 0 ). The GSuLA-phase 2 algorithm details this update procedure as follows GSuLA-phase 1 : Initial filling of the support using the GP principle Initialization x(0

) ∼ N N ×1 (0, 1), U x (0) = ∅ for k = 1 : K, g = ▽f (x)| x(k-1) , g| Ux(k-1) = 0, i 0 = arg max j |g j | U x (k) = {U x (k -1) ∪ i 0 }, U X (k) = supp lif t(U x (k)) compute XLS U X (k) (k) = A † U X (k) y, x(k) = rank1 decomposition( XLS mat (k)); x(k)| U c x (k) = 0 end
GSuLA-phase 2 : Support update and solution recovery for k = (K + 1) :

(K + K 0 ) While threshold > 1e -4, generate xp (k) = x(k -1) + ϵ(k) g = ▽f (x)| xp (k) , i 0 = arg max j |g j | if i 0 / ∈ U x (k -1) for i = 1, . . . , K U p x (k) = {U x (k -1)\U x (k -1)[i] ∪ i 0 } U p X (k) = supp lif t(U p x (k)) compute Xp,LS U p X (k) (k) = A † U p X (k) y and objective = ||y -A U p X (k) Xp,LS U p X (k) (k)|| 2 if objective < threshold, threshold=objective, support update U x (k) = U p x (k) x(k) = rank1 decomposition( Xp,LS mat (k)); x(k)| U c x (k) = 0 end end else, U x (k) = U x (k -1) x(k) = x(k -1)
end end end In the next section, the GSuLA performance is evaluated for random gaussian and masked-Fourier measurement matrix choice.

NUMERICAL RESULTS

We investigate in this section the numerical results of GSuLA for the following settings : signal vectors x of length N = 64 are generated so that to have K random non null real elements drawn from a gaussian N (0, 1). The support of x is chosen uniformly at random for each signal. H elements are drawn from a gaussian N (0, 1). At each algorithm realization, a new H is constructed. The signal recovery is considered to be successful (at a global sign) if the Normalized MSE (NMSE) on the true signal is less than -60 dB. The NMSE is given by

NMSE=min(20log 10 ( ||x(k) -x|| ||x|| ), 20log 10 ( ||x(k) + x|| ||x|| ))
The success rate is determined by its empirical counterpart on a set of 100 different realizations of both x and H. K 0 is fixed to 2500 and each element of the perturbation ϵ i (k) ∼ N (0, 6). For each algorithm realization corresponding to a fixed K, many attempts are allowed, to escape local minima, which correspond to different random initializations x(0) of the GSuLA algorithm, not exceeding N attempt = 200. Figure 1 shows that good success rates are recorded for M = N and M = 2N , compared to Gerchberg-Saxton algorithm, until respectively K = 8 and K = 15, without any additional knowledge on the support. Here, the initialization of the Gerchberg-Saxton algorithm is done through the same spectral method adopted in the Wirtinger-flow algorithm [START_REF] Candès | Phase Retrieval via Wirtinger Flow: Theory and Algorithms[END_REF]; since it leads to better recovery results than random initialization. We note here that LS estimate is expected to be consistent when

M ≥ K ′ = K(K + 1)/2 that's for K ≤ ⌊ -1+ √ 1+8M 2
⌋, which correspond actually to K = 10 and K = 15 respectively for M = 64 and M = 128. Note that GESPAR [] achieves almost the same success rates for H chosen as the DFT matrix and using an additional support information resulting from the sequence autocorrelation determination. For M = 2N , figure 2 gives the empirical distribution of the number of swaps' iterations leading to a good solution recovery and as we can notice, recovery is achieved with less than 200 swaps' iterations with a high probability. More precisely, table 1 shows that the percentage of successful recoveries using only the procedure GSuLA-phase 1 increases as K increases, which means that for these realizations, the true vector can be recovered in only K iterations. This does not exclude though the fact that updating the support by phase 2 is still needed to increase the probability of successful recovery. Examining now the distribution of the number of attempts made till a successful recovery (Figure 3), we can see that less than 40 GSuLA restarts, in average, are needed, with a high probability, which is acceptable. The GSuLA is further tested for recovery from noisy intensity measurements y = |Hx| 2 + w for M = 2N . The simulations are carried out for H with complex gaussian entries CN (0, 1) then for masked Fourier matrices of the following structure

H = [ F W 1 F W 2 ]
, F : The N -DFT matrix W 1 and W 2 are 2 binary masks corresponding to N × N random matrices with identically distributed binary entries. Here also, GSuLA exhibits robust recovery behavior.

CONCLUSION

In this work, we proposed a new algorithm for SPR solving, which is based on a support lifting simplifying the SPR problem into a linear constrained optimization one. The gradient pursuit approach was used to lead the support identification, via successive refinements aiming to check the solution stability. An immediate perspective to this work will consider Bayesian methods for support recovery as well as the contri- bution of block sparsity for a better management of the algorithm complexity.
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