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ABSTRACT

Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other
drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities
may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined
effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland
mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist
microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a
significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil
labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N
interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed
a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-
positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist
abundance may play a role in the short-term stability of microbial communities under global change.
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INTRODUCTION

Growing awareness of the key role of soil biodiversity for the
maintenance of ecosystem services has led to considerable in-
terest in the impacts of global change on belowground diver-
sity in recent years (Bardgett and van der Putten 2014). Elevated

CO2 and nitrogen (N) fertilisation or deposition are two main
components of global change that may have significant con-
sequences for microbial community structure and microbial-
mediated processes. Empirical evidence suggests that N addi-
tions increase the fungal/bacterial ratio in grasslands in the
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short-term (Bardgett et al. 1999), but decrease this ratio in the
longer term (>1 year; Bardgett and McAlister 1999; Bradley,
Drijber and Knops 2006; Clegg 2006; Denef et al. 2009; Rousk,
Brookes and Bååth 2011). In contrast, previous grassland studies
have reported inconsistent responses of soil microbial commu-
nity structure to elevated carbon dioxide (CO2): elevated CO2 had
either no effect on microbial community structure (Ebersberger
et al. 2004; Gutknecht, Field and Balser 2012) or led to signifi-
cant increases in fungal biomarkers and fungal/bacterial ratio
(Kandeler et al. 2008; Guenet et al. 2012). In theory, increases in
the fungal/bacterial ratio driven by decreased soil N availability
under elevated CO2 could be offset by N addition, especially in
N-limited ecosystems (Lagomarsino et al. 2007). However, micro-
bial community responses to simultaneous increases in N and
CO2 have attracted little attention to date (Gutknecht, Field and
Balser 2012).

The response of soil microbial communities to global
changes may be mediated by the plant community via changes
in plant biomass or plant-induced changes in soil resource
availability, such as labile C or mineral N contents (Bardgett,
Freeman and Ostle 2008; Gutknecht, Field and Balser 2012; Drigo
et al. 2013; Philippot et al. 2013). Moreover, resistance of the mi-
crobial community structure (i.e. the degree to which microbial
composition remains unchanged in the face of a disturbance,
Allison and Martiny 2008) to disturbances (i.e. events that al-
ter directly or indirectly a community, usually through effects
on the environment of the community) may depend on the rel-
ative abundance and contribution of specific functional groups
and their life-history strategies (Schimel, Balser andWallenstein
2007; Wallenstein and Hall 2011). For example, r-strategists ex-
hibit high growth rates and consume soil labile carbon, while
K-strategists present slower growth rates and are likely to out-
compete r-strategists in conditions of low nutrient availability
due to their higher substrate affinities (Fierer, Bradford and Jack-
son 2007). Numerous studies suggest that K-strategist microor-
ganisms are more resistant to global change induced distur-
bances (de Vries and Shade 2013; Bischoff et al. 2016; Villa et al.
2016; Zhang et al. 2016). The fungal/bacterial ratio and Gram-
positive/Gram-negative bacteria ratios have been proposed as
proxies of the prevalence of K-strategists in the microbial com-
munity and are thus expected to be positively related to micro-
bial community resistance (de Vries and Shade 2013).

In this experiment, we investigate the combined effects of el-
evated CO2 and N supply on soil microbial community structure
in grassland mesocosms planted with Dactylis glomerata. Previ-
ous work published on this mesocosm experiment has shown
that soil microbial processes related to C and N cycling were al-
tered by the combined effects of elevated CO2 and N addition
(Niboyet et al. 2010), and that the abundance of nitrifiers was al-
tered by experimental treatments (Simonin et al. 2015). We ex-
amine how soil PLFA profiles are affected by elevated CO2 and N
addition, and analyse the links between the relative abundance
of r- and K-strategists and the resistance of the soil microbial
community structure to these disturbances.

MATERIALS AND METHODS

Experimental design

The mesocosm experiment was performed in growth chambers
at the Université Paris Sud (Orsay, France) and comprised two
treatments in a factorial design: atmospheric CO2 (ambient 381
± 6 μmol mol−1 vs elevated 645 ± 9 μmol mol−1) and N addition
(no N addition vs +10 g N-NH4NO3 m−2). The elevated CO2 con-

centration corresponds to the intermediary IPCC projections at
the horizon 2050 (Stocker 2014), whereas the N addition (equiv-
alent to 100 kg N ha−1) is in line with local fertiliser practices
(Bloor, Barthes and Leadley 2008). Each mesocosm consisted of
a PVC pot (15 × 20 × 50 cm) filled with soil from a nearby grass-
land (pH = 8.5, 2.46 g C kg−1, organic matter content 4.26 g kg−1,
0.23 g N kg−1, cation exchange capacity 1.81 cmol kg−1).
Mesocosms were sown with Dactylis glomerata and two meso-
cosms were placed in each of 12 growth chambers within
a large glasshouse. CO2 was manipulated at the cham-
ber level whereas N was manipulated at the mesocosm
level; each growth chamber contained one replicate meso-
cosm of each N treatment such that each CO2 × N treat-
ment combination was replicated six times (total of 24 meso-
cosms). The treatments were initiated 1 month after sow-
ing, when the D. glomerata seedlings had fully emerged (Ni-
boyet et al. 2010), and the mesocosms were harvested after
10weeks under treatments. The aboveground (shoot) and below-
ground (root) plant biomass were collected, washed and oven-
dried (60◦C, 72 h) prior to weighing to determine dry mass. Sam-
ples from the top soil (0–10 cm)were collected at the final harvest
and sieved at 2 mm, and then immediately used for measure-
ments of soil water content, soil respiration and gross N miner-
alisation rates (see Niboyet et al. 2010 for additional details). In
addition, soil samples were stored at –20◦C for PLFA extraction.

Analysis of the soil microbial community structure
by PLFA profiles

A solution of chloroform (15 mL), methanol (30 mL) and cit-
rate buffer (12 mL) was used to extract the lipids from 10 g of
freeze-dried soil (Frostegård, Tunlid and Bååth 1993). After ex-
traction and derivatisation, the fatty acid methyl esters (FAME)
were characterised based on a standard bacterial acid methyl
ester (BAME) ranging from 11:0 to 20:0. We used an Agilent 6890
gas chromatograph equipped with a Flame Ionisation Detector
(GC-FID) and a SGE-BPX5 column (65 m × 320 μm × 0.25 μm)
to quantify the FAME extracted from the soil samples based on
their retention time and mass spectral comparison. Standard
fatty acid nomenclature was used following Frostegård, Tunlid
and Bååth (1993). Seventeen lipids were identified and for each
lipid, the relative area of the corresponding peak was calculated.
The assignments of PLFA regarded as bacterial biomarkers, fun-
gal biomarker, Gram-negative bacterial biomarkers and Gram-
positive bacterial biomarkers were performed as described by
O’Leary and Wilkinson (1988), Frostegård, Tunlid and Bååth
(1993), Frostegård and Bååth (1996) and Zelles (1997, 1999). These
biomarkers were used to compute the relative abundance of
bacteria, fungi and the Gram-positive/Gram-negative and fun-
gal/bacterial ratios.

Statistical analysis of PLFA profiles

The experimentwas represented as a fully factorial split-plot de-
sign: the whole-plot factor is the CO2 treatment and the N treat-
ment is the split-plot factor.

The PLFA patterns of the soil samples were analysed in
R (R Core Team 2015) by non-metric multidimensional scal-
ing (NMDS) with the ‘Vegan: Community Ecology Package’
(Oksanen et al. 2007). Bray-Curtis similaritieswere used to build a
distance matrix for the NMDS. Permutational multivariate anal-
ysis of variance (PERMANOVA) was then used to test whether
treatments altered PLFA patterns using the adonis function (999
permutations) of the Vegan package.
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Figure 1. NMDS of the PLFA pattern (17 lipids) in D. glomerata mesocosms in the four treatments (n = 6 in each treatment). Root and shoot biomass, soil respiration

and gross N mineralisation rates are represented as vectors as they were found to be significant explanatory variables (P < 0.05).

The interactive effects of elevated CO2 and N supply on the
relative abundance of bacteria and fungi, and on the ratios
between the relative abundance of fungal/bacterial and Gram
positive/Gram negative biomarkers were assessed using PROC
MIXED in SAS 9.3 (SAS Institute, Cary, NC, USA).

Correlations between NMDS scores and potential drivers of
microbial community structure (plant biomass, soil respiration,
gross N mineralisation and soil water content; Niboyet et al.
2010) were assessed with the envfit function and post hoc per-
mutation tests (n = 999). Soil respiration was used as an indi-
cator of soil labile carbon, and gross N mineralisation rates as a
proxy of soil N availability.

Resistance of the soil microbial community structure

To measure the resistance of the soil microbial community
structure to the disturbances, we calculated Bray-Curtis similar-
ities in microbial communities in disturbed treatments (CO2, N
or CO2 + N) relative to the control treatment given by the PLFA
profiles (de Vries and Shade 2013) using the vegdist function (Ve-
gan in R). A similarity of 1 indicates maximum resistance, i.e. no
effect of disturbance onmicrobial community structure, while a
similarity close to 0 indicates very low resistance. Correlations
between the resistance index and Gram-positive/Gram-negative
ratio or fungal/bacterial ratio were examined using Proc CORR in
SAS 9.3.

RESULTS

Elevated CO2 and N addition effects on soil microbial
community structure

Multivariate analysis (NMDS) indicated that N addition signifi-
cantly altered themicrobial community structure (PERMANOVA:
P = 0.003) (Fig. 1). In contrast, elevated CO2 had no significant
effect (P = 0.86) and no significant CO2 × N interactions were
detected (P = 0.38). The addition of N significantly increased
the relative abundance of fungi (P < 0.05, +78%, Fig. 2A) and
the fungal/bacterial ratio (P < 0.001, +95%, Fig. 2B), while CO2,
alone or in combination with the N treatment, had no effect on
these variables (Fig. 2). The bacterial relative abundance (Fig. 2A),
the Gram+ and Gram– relative abundance (data not shown), and

the ratio of Gram-positive/Gram-negative bacterial biomarkers
(Fig. 2B) were not affected by any of the treatments.

Relationships between PLFA profiles and plant
and soil variables

The correlations with the NMDS axis 2 indicate that the effect
of the N treatment on the soil microbial community structure
seemed to be mainly related to a gradient in root and shoot
biomass and in soil respiration (a proxy of soil labile C avail-
ability) and gross N mineralisation rates (a proxy of soil mineral
N availability) (Fig. 1, Table S2, Supporting Information). In this
experiment, N addition had a positive effect on root and shoot
biomass (P < 0.001 in both cases), especially under elevated CO2

(P = 0.02 and P = 0.003, respectively, Table S1, Supporting In-
formation). Elevated CO2 and N addition had positive effects on
soil respiration (P = 0.03 and P < 0.001, respectively, Table S1,
Supporting Information). N addition also increased gross Nmin-
eralisation rates when combined with elevated CO2 (P = 0.03,
Table S1, Supporting Information).

Resistance of the soil microbial community structure
to the environmental change

The resistance of the PLFA profiles to the disturbances (i.e. to the
imposed increases in CO2, N or in both CO2 and N) decreased
with the fungal/bacterial ratio (Fig. 3A) but increased with the
ratio of Gram-positive/Gram-negative bacteria (Fig. 3B). These
correlations also tended to be observed when considering each
disturbance separately (Table S3, Supporting Information).

DISCUSSION

Increases in fungal biomass after the addition of N have been
frequently observed in short-term studies, i.e. in studies con-
ducted over several months (Bardgett et al. 1999; Gallo et al.
2004), where the progressive inhibition of growth or the decrease
of mycorrhizal fungal biomass by N has not already occurred
(Bardgett and McAlister 1999; Gallo et al. 2004; Treseder 2008).
Our results confirm an N-induced increase in both the relative
abundance of fungi and the fungal/bacterial ratio. Stimulation
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(A)

(B)

Figure 2. Relative abundance of the bacterial and fungal biomarkers (A) and ratios of the PLFA relative abundance of fungi/bacteria and Gram-positive/Gram-negative

bacteria (B) in the four treatments. The means and standard errors (n = 6) are presented. Significant effects are indicated (∗P < 0.05, ∗∗∗ P < 0.001).

(A) (B)

Figure 3. Pearson’s correlations between ratios of the PLFA relative abundance of fungi/bacteria (A) and Gram-positive/Gram-negative bacteria (B) and the resistance
of the soil microbial community structure to the treatments (elevated CO2, N addition and elevated CO2 combined with N addition). The linear regressions are drawn
and the associated equations, R-square and P values are given.

of root and shoot biomass by the supply of N likely resulted in
an increase in C inputs via rhizodeposition (Niboyet et al. 2010),
as suggested by the large increase in soil respiration with N ad-
dition. The resulting higher C availability seems to have bene-
fited fast-growing fungi, specialised in the metabolism of large
quantities of labile C substrates, and not bacteria (Chigineva,
Aleksandrova and Tiunov 2009; de Graaff et al. 2010, de Vries
and Caruso 2016). In our experiment, elevated CO2 did not al-
ter the microbial community structure, in agreement with other
short- and long-term studies (Zak et al. 1996; Ebersberger et al.

2004; Gutknecht, Field and Balser 2012). The absence of CO2 ef-
fects and of interactive effects with N addition might reflect the
lack of negative-CO2 effects on soil mineral N availability in this
study.

Microbial functional traits, and especially the relative abun-
dance in a community of r- and K-strategists, may be use-
ful indicators of the response of the soil microbial community
structure to stressors, such as global environmental changes.
In our study, the Gram-positive/Gram-negative ratio was posi-
tively correlatedwith the resistance of themicrobial community
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structure; assuming that the Gram positive/Gram negative ratio
is a proxy of the presence of K-strategists, these results are con-
sistent with the idea that K-strategists promote microbial com-
munity resistance (de Vries and Shade 2013). In our study, the
Gram-positive/Gram-negative ratio only explained 49% of the
variance of the resistance to the treatments, which is probably
related to the limited effects of the treatments on the Gram-
positive/Gram-negative ratio.

Surprisingly, the fungal/bacterial ratio, which is potentially
also an indicator of the proportion of K-strategists, was nega-
tively correlatedwith the resistance of themicrobial community
structure. One possible explanation is that the fungal commu-
nity comprises both r- and K-strategists, and that in this short-
term experiment, the fungal communitywas dominated by fast-
growing fungi (i.e. r-strategists) that experienced drastic changes
in composition and abundance. Our findings thus suggest that
the Gram-positive/Gram-negative bacteria ratio may be a useful
indicator ofmicrobial community resistance to elevated CO2 and
N addition and that a higher relative abundance of K-strategist
may promote the stability of the microbial community under
global change. Other functional and taxonomic traits of soil mi-
crobial communities such as genome size, 16S rDNA gene copy
number or mean generation time (Fierer, Bradford and Jackson
2007; Leff et al. 2015) should also be considered to confirm the
role of K-strategists for the resistance of the soil microbial com-
munity structure to disturbances under future environmental
changes.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSLE online.
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