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Abstract: This paper deals with lateral and steering dynamics estimation of powered two-
wheeled (PTW) vehicles. It presents an experimental validation of the Unknown Input Observer
(UIO) addressed in Damon et al. (2016). A small scooter equipped with a multi-sensor
architecture used to performed the test is introduced. A mathematical model of the scooter
is derived using measured parameters on a Computer-Aided Design (CAD) model. Then the
main design steps of the UIO are shortly remind. Finally, an urban driving scenario is presented
to show the effectiveness of the proposed observer to estimate the lateral dynamics and the
rider’s action in real riding scenario.

Keywords: Experimentation, Motorcycle, Observation, Linear Parameter Varying (LPV)
Systems, Unknown Input Estimation.

1. INTRODUCTION AND MOTIVATIONS

Nowadays, more and more vehicles are equipped with Ad-
vanced Driver Assistance Systems (ADAS). These systems
are included in a more general topic which is Intelligent
Transportation Systems (ITS). ITS is the application of
the new technologies on transportation field including ve-
hicle, environment and infrastructure. Since autonomous
driving and road user’s safety became real challenges there
is a high interest for ADAS. They have to realize particular
tasks such as: vehicle localization, automatic guidance,
obstacle avoidance, pedestrian detection, stability control,
etc. Most of them are dedicated to improve safety by
informing the driver about dangerous situations and some-
times by acting on vehicle dynamics. However, ADAS de-
veloped during last years were mainly aimed to automotive
industry. Indeed, Powered Two-Wheeled (PWT) market
is cheaper, it is difficult to cover instrumentation (sensors,
embedded electronic, ECU, etc.) and R&D costs with an
attractive selling price. Moreover, most of these systems
are based on a mathematical models of the vehicle, and
motorcycles are much more complex to model and strongly
nonlinear than four-wheeled vehicles.

Nevertheless, since several motorcycle models have been
proposed Sharp (1971), Sharp et al. (2004), Cossalter
(2006), Pacejka (2006) and Nehaoua et al. (2013a), em-
bedded electronics is becoming common and sensors are
affordable. ADAS for motorcycle, recently, becomes an
essential research issue for motorcycle manufacturer. Their
performance highly depends of the embedded architecture
including global electronic architecture, sensor integration
and limitation, sampling frequency, etc. Such architectures
allow to facilitate the implementation of algorithms by
⋆ This work is supported by National Agency of Research under the
framework VIROLO++.

managing the communication between algorithms and sen-
sors. For instance, they can collect sensor data and control
the system without blocking algorithm execution. The
topic of electronic architecture was largely addressed for
four-wheel vehicles but few architectures exist for PWT.
This paper proposed a solution of architecture for experi-
mental investigation.

Today several systems exist on motorcycle market: Anti-
lock Braking System (ABS), Traction Control System
(TCS), Motorcycle Stability Control (MSC), etc. But for
most of them they equipped premium motorcycles which
represent a tiny proportion of the whole of motorcycle
park. Estimation and observation are major tools to make
easier the development of ADAS by allowing a reduction
of the number of sensors and hence reducing the cost. It
could be the best solution to make it available on a large
proportion of sold motorcycles. Lot of recent works deal
with motorcycle dynamic state estimation Dabladji et al.
(2015), Nehaoua et al. (2013b) and Ichalal et al. (2013) but
few of them perform experimental investigations to vali-
date the results. In Dabladji et al. (2016) or in Filippi et al.
(2010) authors proposed a validation on BikeSim which is a
multi-body motorcycle simulator. Even if such simulator is
known for its ability to simulate real scenarios, it is difficult
to take into account the inherent problems related to real
tests like sensor noises or faults. This type of simulator can
give a first idea about observer performance but cannot
replace real implementations. In Boniolo et al. (2012) and
Lot et al. (2012) experimental tests are performed but only
roll angle estimation is considered. In Teerhuis and Jansen
(2012) authors proposed a more complete experimental
investigation to validate estimated states with extended
Kalman filter but only medium speed are considered and
speed range is very reduced.



The main contribution of this paper is the experimental
validation of the proposed works in Damon et al. (2016)
by designing the observer on a simple motorcycle model.
Indeed, the next objective is to estimate dynamic states
in-line which means while the vehicle is moving and detect
in real-time critical situations. That is why the observer
design is based on a simple two bodies model of the scooter
which allows to get very good estimation time perfor-
mance. Let us remind that the considered UIO is able
to simultaneously estimate every lateral dynamic states
and rider’s action without any forward speed limitation
in contrast with Teerhuis and Jansen (2012) or in Ichalal
et al. (2013).

This paper is organized as follows: Section 2 introduces the
vehicle and the embedded architecture used to perform the
tests. Section 3 explains how the mathematical model of
the vehicle is derived. Section 4 aims to remind the main
steps in the observer design presented in Damon et al.
(2016). Section 5 discusses the results of the experimental
tests. Finally, section 6 presents concluding remarks and
discussions.

2. VEHICLE AND SENSOR ARCHITECTURE

2.1 Instrumented scooter

The instrumented PWT vehicle in order to perform the
tests is a Peugeot Scoot’elec (fig. 1). It is equipped with an
electric power-train developing a maximum power around
3 kW allowing a maximum speed of 45 km/h. Three blocs
of NiCad batteries with, for each one, a capacity of 100
Ah for 6 V voltage feed the motor and inevitably lead to
a consequent weight of 115 kg without rider. The vehicle
can reach a maximum distance between 40 and 60 km
depending on the driving behavior with a full electric
charge. An additional top case is fixed at the rear of the
scooter to embed computer and data acquisition devices.

2.2 Embedded computer

In order to perform the various calculations and dynamic
variable measurements, we have chosen a computer dedi-
cated to embedded applications manufactured by Neousys
Technology (fig. 1). According to its compact size the
model NUVO-3005EB is ideal for installation under a seat
or in a top case and offers several features and benefits
like: High performance GPU (Intel Core i7-3610QM), PCIe
Expansion Slot, Wi-Fi, 3G and GPS options integrated.

2.3 Digital/Analog IO interface card

Regarding the number of sensors, their features (operat-
ing range, analog/digital, maximum sampling frequency,
etc.), we have opted for the PCIe-6353 card manufactured
by National Instrument. This version is able to achieve
sampling rate until 10 MHz/s and is provided with a 68
pin box referenced by SCB-68. This is an extension board
for direct connection of sensors. This solution allows the
use of different software for data acquisition, one can find
dedicated tool boxes in Labview or in Matlab/Simulink.
The second solution have been considered to perform the
tests given below.

Fig. 1. Instrumented Scooter

2.4 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) is a IG-500A man-
ufactured by SBG Systems (fig. 1). It can work on angular
movements of 360◦ on the 3 axes and offers orientation
matrix either on Cartesian or Euler angles. The needed
measures for our application are:

• The angular positions: roll, pitch and yaw respectively
φ, γ and ψ

• The angular rates: roll rate, pitch rate and yaw rate
respectively φ̇, γ̇ and ψ̇

• The axial accelerations: longitudinal, lateral and ver-
tical acceleration respectively ax, ay and az in a local
frame

The IMU is placed as close as possible to the gravity center
of the whole driver and scooter (fig. 1) and its orientation
is based on the theoretical referential used in the Sharp
model of the motorcycle. Therefore, it directly sends the
vehicle axial accelerations, angle and rotational speeds
data around each axis (the rotational motion of the earth
is assumed to be negligible).

2.5 Steering angle encoder

Several methods are possible in instrumentation of steering
mechanism. We made the choice of an absolute encoder
to measure the handlebar position. Several architectures
are possible, directly installed on the steering column, the
encoder gives the steering angle δ without any transforma-
tion or ratio or another possibility is proposed in Mammar
et al. (2006) where authors have chosen the use of a pulley
system with a belt linked to the steering column. The first
solution is considered because it is simpler to implement
and gives direct information about the front wheel angle
relatively to the frame. The selected sensor is an absolute
encoder of GA210 type manufactured by IVO Industries
(fig. 1), it is a 10 bit resolution, 1024 steps per turn with
parallel output and a 400 Hz sampling frequency.

2.6 Wheel rotation speed sensor

Mostly incremental encoders are used to make a measure-
ment for a distance and a speed. As for production ve-
hicles, whether motorcycle or automobile manufacturers,
they use single pulse Hall effect sensors. For our architec-
ture, optical encoder has been chosen for the measurement



of the wheel rotation speed. The optical encoder is a KTIR
0221 DS , manufactured by Kingbright (fig. 1).

The measure will be expressed in number of counted teeth,
knowing the number of teeth per revolution the rotational
speed is easy to obtain. Deduct the forward speed vx
from the wheel velocity ω is not trivial because the speed
depends of the longitudinal slip of both wheels as follows:

λi =
vx −Riωi

max(vx, Riωi)
i = f, r (1)

On our scooter the rear Hall effect sensor is installed on
the belt receiving pulley which has 8 teeth. This pulley
transfers the motor torque and speed to the rear wheel
through a fixed gear ratio of 13/47.

3. MATHEMATICAL MODEL OF THE SCOOTER

Over the last 50 years modeling motorcycle was a real
challenge and lot of literature have been provided about
motorcycle modeling. One main difference between the
proposed models is the complexity due to the number of
bodies with whom the motorcycle is modeled. One can
find a single body model in van Daal (2009) which is a
simple inverse pendulum or very complicated one as in
Sharp et al. (2004) where the whole PWT and rider are
divided into eight different bodies allowing 16 degrees of
freedom.

Motorcycle modeling highlights two different dynamic
modes:

• in-plane mode, which aims to describe longitudinal
dynamics in straight running. It involves pitch, longi-
tudinal speed and acceleration.

• out-of-plane mode, which aims to describe lateral
dynamics in cornering situation. It involves roll, yaw,
steering and lateral motion of the PTW.

The well-known Sharp’71 model presented in Sharp (1971)
is used in this work to derive the lateral model of the
scooter. The compromise between simplicity and ability
to capture dynamics is the main motivation of this choice.
It considers the motorcycle as a set of two rigid bodies
joined at the steering axis with freedom, restrained by a
linear steering damper. Compared to a single body model
whose the input are the steering angle the Sharp’71 model
takes into account the steering dynamics and considers the
rider’s torque applied on handlebar as the system input.
It is obtained with a linearisation around straight-running
with small-angle approximation assumption and also con-
sidering that the products between dynamic states are neg-
ligible. The obtained equations describe lateral dynamics
and take into account coupling between longitudinal and
lateral motions by considering the forward speed vx as a
time varying parameter. Tire relaxation is also considered
by including the linear dynamics expression of Fyf and
Fyr which are respectively, the front and rear lateral forces
of tires. This dynamics is important to take into account
because it plays an important role for the vehicle stability
Sharp et al. (2004). As mentioned previously, in addition
to tire dynamics, rider’s torque τ , roll φ, yaw ψ, steering
angle δ, lateral motion vy and their dynamics define the
whole of lateral dynamic state as:

Lateral motion:

m33v̇y +m34ψ̈ +m35φ̈+m36δ̈ = q34vxψ̇ + Fyf + Fyr(2)

Yaw motion:

m34v̇y +m44ψ̈ +m45φ̈+m46δ̈ = q44vxψ̇ + q45vxφ̇

+q46vxδ̇ + q47Fyf

+q48Fyr (3)

Roll motion:

m35v̇y +m45ψ̈ +m55φ̈+m56δ̈ = q51φ+ q52δ + q54vxψ̇

+q56vxδ̇ (4)

Steering motion:

m36v̇y +m46ψ̈ +m56φ̈+m66δ̈ = q52φ+ q62δ + q64vxψ̇

+q65vxφ̇+ q66δ̇

+q67Fyf + τ (5)

Tire’s motion:














Ḟ yf = q71vxφ+ q72vxδ + q73vy + q74ψ̇

+q76δ̇ + q77vxFyf
Ḟ yr = q81vxφ+ q83vy + q84ψ̇ + q76δ̇

+q88vxFyf

(6)

Please refer to Appendix for the expressions of the coef-
ficients mij and qij . Adding the two trivial expressions

φ̇ = φ̇ and δ̇ = δ̇ we get 8 dynamic equations and the
problem can be easily transformed under matrix formal-
ism. Lateral model of the scooter can be expressed by
the following Linear Parameter Varying (LPV) descriptor
system:

M ˙̃x = QV (vx)x̃+Rτ (7)

where x̃ = [φ, δ, vy, ψ̇, φ̇, δ̇, Fyf , Fyr]
T denotes the vector of

states. V (vx) is a parameter-varying matrix related to the
forward velocity vx, whereas M = [mij ]8∗8, Q = [qij ]8∗8
and R are time-invariant parameters. Equation (7) can be
transformed into:

˙̃x = Ã(vx)x̃+ B̃τ (8)

with Ã(vx) = M−1QV (vx) the state matrix and B̃ =
M−1R the input vector. To set the scooter parameters
given in Appendix and compute the terms qij and mij of
the model, a CAD model and static measurements were
performed. Vehicle, rider with equipment and additional
weight resulting from the top case including computer and
external battery to power it are considered around 200 kg.
Stability analysis shows that without controller the range
of stability defining by a negative real part of each pole is
included between 20 and 87 km/h where the wobble mode
appears. This large stability range can be explained by the
fact that the vehicle center of gravity is very low due the
three heavy NiCad batteries installed under the footrest.

As discussed previously, rider’s torque τ , considered as the
primary input of the model, applied on the handlebar is
very difficult to measure and our instrumentation architec-
ture does not allow to get this measure that is why rider’s
action is considered as an Unknown Input (UI). After hav-
ing studied possibilities and relevance of measured state



combinations in order to ensure observability properties,
it comes three pertinent measures: the steering angle δ
given by the steering encoder (fig. 1), the roll rate φ̇ and

the yaw rate ψ̇ given by the IMU placed approximately on
the center of gravity under the seat (fig. 1). Regarding the
chosen measures and observability conditions, the equation
(8) needs a transformation to get strong observability
property. The roll angle is now considered as a second UI
and the complete state-space representation for observer
design can be expressed as follows:

{

ẋ = A(vx)x+D(vx)d
y = Cx

(9)

with x the state vector without the roll angle φ, y =
[

δ ψ̇ φ̇
]T

the vector of measures, D(vx) =
[

B D̃(vx)
]

the UI matrix and d = [ τ φ ]
T

the UI vector. D̃(vx) is

the corresponding extract vector from Ã(vx) according to
the roll state. One can remark that the equation dim(y) >
dim(d) is verified.

4. OBSERVER DESIGN PROCEDURE

The present section is based on our recent previous work.
For details, please refer to Damon et al. (2016). In this
section the method to design the unknown input observer
considering the LPV model of the scooter (9) is summa-
rized. The approach considers Lyapunov theory associated
with LMI tools to guarantee the asymptotically conver-
gence toward zero of the state estimation errors.

Consider the following unknown input observer:
{

ż = N(vx, v̇x)z + L(vx, v̇x)y
x̂ = z −H(vx)y

(10)

Note that the matrices N(vx, v̇x), L(vx, v̇x) and H(vx)
are parameter varying and not fixed a priori which offers
a flexibility in the design as discussed in Ichalal and
Mammar (2015) and Ichalal et al. (2015), their structures
will be defined later. x̂ is the estimate vector of state.

Writing the state estimation error as follows:

e = x− x̂ (11)

its dynamics is expressed as follows:

ė=N(vx, v̇x)e+ [P (vx)A(vx) + Ṗ (vx, v̇x) (12)

−L(vx, v̇x)C −N(vx, v̇x)P (vx)]x+ P (vx)D(vx)d

with P (vx) = I +H(vx)C and I the identity matrix with
corresponding size.

In order to decouple the state x and the unknown input
d from the state estimation error dynamics, the following
three conditions should be satisfied:

• N(vx, v̇x) must be Hurwitz

• P (vx)A(vx) + Ṗ (vx, v̇x)− L(vx, v̇x)C
−N(vx, v̇x)P (vx) = 0

• P (vx)D(vx) = 0

Note that the third condition admits a solution if and
only if rank(CD(vx)) = rank(D(vx)) which is satisfied
for vx 6= 0.

Under these three conditions (12) becomes:

ė = [P (vx)A(vx) + Ṗ (vx, v̇x)−K(vx, v̇x)C]e (13)

with K(vx, v̇x) = L(vx, v̇x) +N(vx, v̇x)H(vx)

Then the well known sector nonlinear approach Tanaka
and Wang (2001) is used to transform the problem into a
polytopic form:



















P (vx)A(vx) + Ṗ (vx, v̇x) =

r
∑

i=1

hi (vx, v̇x)Ai

K(vx, v̇x) =
r

∑

i=1

hi (vx, v̇x)Ki

(14)

With r = 4 the number of sub-models coming directly from
the two nonlinearities vx and v̇x. hi(.) are the membership
functions satisfying the convex sum property as explained
in Damon et al. (2016).

Let us consider the following quadratic Lyapunov function
to address the stability problem:

V (e) = eTXe, X = XT > 0 (15)

whose time derivatives V̇ (e) leads to:

V̇ (e) = eT
r

∑

i=1

hi (vx, v̇x)(A
T
i X +XAi

−XKiC − CTKT
i X)e (16)

Let us introduce the change of variables K̄i = XKi, i =
1, ..., 4. Since the weighting functions satisfy the convex
sum property, sufficient conditions ensuring V̇ (e(t)) < 0
are given by the following LMIs:

AT
i X +XAi − K̄iC − CT K̄T

i < 0, i = 1, ..., r (17)

with X = XT > 0.

Find gain matrices K̄i and matrix X satisfying (17) ensure
asymptotic convergence to zero of the state estimation
error. Since K(vx, v̇x) is defined by expression (14) it
can be reconstructed from Ki = X−1K̄i, i = 1, ..., r.
Then the observer can be completely defined by computing
N(vx, v̇x), L(vx, v̇x) and H(vx) (see Damon et al. (2016)
for more details).

The UIO allows to estimate the whole of state vector x
but does not give information about UI, that is why we
need to proceed into a reconstruction of the UI based on
estimated states and output derivatives. To estimate the
state and output time derivatives, a High-Order sliding
mode differentiator is used. For more detail on this type
of signal differentiation algorithm, please refer to Levant

(2003). It provides an estimation of the steering rate
ˆ̇
δ,

steering acceleration
ˆ̈
δ, yaw acceleration

ˆ̈
ψ, roll accelera-

tion
ˆ̈
φ from the measured states and the lateral speed

ˆ̇
v̂y

form the estimated states.

The roll angle reconstruction is based on the roll motion
equation (4) which leads to:

φ̂ = f1(
ˆ̇
v̂y,

ˆ̈
ψ,

ˆ̈
φ,

ˆ̈
δ, δ, ψ̇,

ˆ̇
δ, vx) (18)

And the rider’s torque reconstruction is based on the roll
steering equation (5) which leads to:



τ̂ = f2(
ˆ̇
v̂y,

ˆ̈
ψ,

ˆ̈
φ,

ˆ̈
δ, φ̂, δ, ψ̇, φ̇,

ˆ̇
δ, F̂ yf , vx)

5. EXPERIMENTAL RESULTS

This section aims to present experimental results to val-
idate the proposed Unknown Input Observer for lateral
and steering dynamics estimation.

Let us remind that the observer is only based on te
motorcycle model and are independent of the controller
which is the driver in real case. Even under this assumption
the UIO is able to estimate every lateral dynamic states
and reconstruct the rider’s torque.

A scenario realized on urban scenic road was performed
with normal riding behavior and good environmental con-
ditions. As said in previous section our instrumentation
architecture does not allow to measure the rider’s torque,
lateral tire forces, lateral speed and steering rate that is
why several figures below show only estimation for con-
cerned states. Roll angle and lateral acceleration given
by the IMU are the only two dynamic states which can
validate the roll and acceleration estimation given by the
observer.

Fig. 2 shows the riding scenario and is composed of straight
lines, narrow and big turns. One can remark that there is
no restriction about forward speed expect vx = 0.
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Fig. 2. Riding scenario
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Fig. 3. Measured states
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Fig. 4. State’s estimations
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Fig. 5. Estimated rider’s torque
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Fig. 6. Validated dynamic states

The measures needed by the observer are given in fig. 2.
They come from the encoder for the steering angle and
from the IMU for the yaw and roll rate.

Fig. 4 shows the estimation of the lateral dynamic states
whereas fig. 5 presents the results of the estimated rider’s
torque.

Lateral acceleration: blue measure, red estimated with sum
force ay = (Fyf + Fyr)/M and orange estimated with

lateral motion ay = v̇y + ψ̇vx

This last figures demonstrate the ability of the UIO
observer to perfectly estimate the lateral dynamic states
and to reconstruct the roll angle and the rider’s torque on a
real driving scenario realized with normal riding behavior.



6. CONCLUSION

In this paper we have discussed the necessity to validate
observers with real instrumented vehicle. This article deals
with off-line validation of the proposed UIO in Damon
et al. (2016) to estimate lateral motorcycle dynamic states
and to reconstruct unknown inputs during real riding
scenarios. A light scooter equipped with sensors are in-
troduced and an acquisition architecture is proposed. The
motorcycle model used for observer design is derived from
the well-known two-bodies Sharp’s model. A CAD model
of the scooter combined with geometric measurements
provide needed parameters. Then, a test endorse the theo-
retical results by showing the performances of the UIO in
a real scenario. Next step is to perform on-line estimation
and to use the estimated variables for detecting critical
situations such as a dangerous roll angle for example.

7. APPENDIX

Variables, matrices and notations

vx, vy longitudinal and lateral speeds
φ, ψ, δ roll, yaw and steer angles
τ rider torque
Fyf , Fyr lateral forces

ẋ, ẍ time derivatives of the var x
x̂ estimate of a variable x
xT transpose of vector or matrix x
xf , xr denotes front and rear

Ã(vx), A(vx) state matrices

B̃, B input vectors

D̃(vx), D(vx) unknown input matrix
C observation matrices

Motorcycle parameters

g [9.81] m/s gravity
ǫ [0.4014] rad caster angle
η [0.0783] m mechanical trail
K [15] N.m/(rad/s) steering damper
Zf [-854.8] N front vertical load
Crxz [1.6] kg/m rear frame inertia product
Mf , Mr [15,190] kg body mass
j, h [0.41,0.5] m geometric dimensions (*)
k, e [0.75,0.0051] m geometric dimensions (*)
lf , lr [0.82,0.48] m geometric dimensions (*)
Rf , Rr [0.207,0.215] m wheel radius
ify , iry [0.40,0.48] kg/m wheel inertia around Y
Ifx, Irx [2.5,21] kg/m body inertia around X
Ifz , Irz [0.2,9] kg/m body inertia around Z
Cf1, Cr1 [12571,13040] N/rad tire cornering stiffness
Cf2, Cr2 [483.8,374.4] N/rad tire camber stiffness
σf , σr [0.25,0.25] m tire relaxation coefficient

(*) For more details please refer to Sharp (1971).

Matrices terms mij and qij i, j = 1..8

m33 = Mf + Mr, m34 = Mfk, m35 = Mf j + Mrh,
m36 = Mf e, m44 = Mfk

2 + Irz + Ifxsin
2(ǫ) + Ifzcos

2(ǫ),
m45 =Mf jk−Crxz+(Ifz−Ifx)sin(ǫ)cos(ǫ), m46 =Mf ek+
Ifzcos(ǫ),m55 =Mf j

2+Mrh2+Irx+Ifxcos
2(ǫ)+Ifzsin

2(ǫ),
m56 =Mf ej + Ifzsin(ǫ), m66 = Ifz +Mf e

2

q34 = −Mf − Mr, q44 = −Mfk, q45 = ify/Rf + iry/Rr,
q46 = sin(ǫ)ify/Rf , q47 = lf , q48 = −lr, q51 = (Mf j +
Mrh)g, q52 = Mf eg − ηZf , q54 = −Mf j −Mrh − ify/Rf −

iry/Rr, q56 = −cos(ǫ)ify/Rf , q62 = (Mf eg − ηZf )sin(ǫ),
q64 = −Mf e− sin(ǫ)ify/Rf , q65 = cos(ǫ)ify/Rf , q66 = −K,
q67 = −η, q71 = Cf2/σf , q72 = (Cf2sin(ǫ) + Cf1cos(ǫ))/σf ,
q73 = −Cf1/σf , q74 = −lfCf1/σf , q76 = ηCf1/σf , q77 =
−1/σf , q81 = Cr2/σr, q83 = −Cr1/σr, q84 = lrCr1/σr,
q88 = −1/σr
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