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Hybrid atomistic-continuum multiscale method for fluid flow with density variation in microchannels

The miniaturization technology enables the design of compact heat exchangers and improves the performance of the device by increasing heat transfer area. However, reducing the characteristic dimensions of the system also gives rise to new physical phenomena related to the uid/solid molecular interactions. At the micro/nano scale, conventional hydrodynamics equations may be no longer valid and interface eects like velocity slip and temperature jump become signicant. New uid models and boundary conditions have been developed to account for these eects but they are still subject to numerous limitations [START_REF] Dadzie | Temperature jump and slip velocity calculations from an anisotropic scattering kernel[END_REF][START_REF] Struchtrup | Maxwell boundary condition and velocity dependent accommodation coecient[END_REF][START_REF] To | Boundary conditions for gas ow problems from anisotropic scattering kernels[END_REF]. For example, they require unknown input parameters such as the accommodation coecients and can not capture all the surface physic complexity like Knudsen layer, adsorption/desorption, evaporation/condensation, etc.

To enhance the description of the uid ow in channels with large aspect ratio, a hybrid numerical model coupling an atomistic approach and a continuum model has been recently developed to take into account the multiscale behaviour of the transfer phenomena [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF]. The Molecular Dynamics simulation method is used in molecular blocks distributed along the channel wall, while a Finite-Volume discretization is adopted in the ow bulk to solve the macroscopic transfer equations in the axial direction of the channel. The purpose of this paper is to extend our hybrid atomistic-continuum method recently proposed for incompressible and compressible uid ows to physical problems involving density variations.

Over the last decades, hybrid methods have been developed to combine the benets of dierent approaches to investigate uid ow problems in geometries with very dierent characteristic length scales. They allow a tailored approach to the consideration of both the small and the large length scales of the system, modelled with microscopic and macroscopic approaches respectively, for an optimal computational cost. The macroscopic part is modelled with continuum mechanics where fundamental physical laws such as the conservation of mass, the conservation of momentum, and the conservation of energy verify. The most commonly used model is the the Navier-Stokes and energy equations. However, if the wall eects are dominant or if the constitutive relation is unknown, the Navier-Stokes and energy equations are no longer practicable.

A microscopic model is then be used to describe the missing parts of the macroscopic approach, especially near the wall boundary. In most cases, molecular dynamics is used to describe the microscopic scale. However, its prohibitive cost allows only the simulation of domains of few nanometres over few picoseconds and it is more suitable for homogeneous systems via the use of periodic boundary conditions. In addition to the methodological and fundamental developments (see [START_REF] Mohamed | A review of the development of hybrid atomisticcontinuum methods for dense uids[END_REF], for a full literature review), they have been successfully applied to the study of micro-and nano channels of high aspect ratio (Borg et al., 2013b;[START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF], including condensation [START_REF] Sun | Molecular dynamics-continuum hybrid simulation for condensation of gas ow in a microchannel[END_REF], moving contact-line problem [START_REF] Hadjiconstantinou | Hybrid atomistic-continuum formulations and the moving contact-line problem[END_REF], ow around carbon nano tube [START_REF] Werder | Hybrid atomistic-continuum method for the simulation of dense uid ows[END_REF][START_REF] Dupuis | Coupling lattice boltzmann and molecular dynamics models for dense uids[END_REF], singularity of continuum model [START_REF] Nie | Hybrid continuum-atomistic simulation of singular corner ow[END_REF] as well as nanouidic networks of arbitrary complexity [START_REF] Stephenson | Multiscale simulation of nanouidic networks of arbitrary complexity[END_REF].

Three classes of methods exist in the literature. Historically, the rst one is the Domain Decomposition Method (DDM)

by [START_REF] O'connell | Molecular dynamics continuum hybrid computations: A tool for studying complex uid ows[END_REF]. The molecular dynamics approach is used to describe uid/walls interaction in micro channels while the incompressible Navier-Stokes equations are solved in the remote region. Primary variables or uxes are synchronized between the two approaches and an overlap region ensures their spatial continuity. Various approaches for applying macroscopic boundary conditions to microscopic simulations have been investigated [START_REF] Drikakis | Multiscale computational modelling of ow and heat transfer[END_REF]). To deal with non periodic conditions, a boundary volume force is generally added [START_REF] Zhou | A study on boundary force model used in multiscale simulations with non-periodic boundary condition[END_REF] to reduce the stratication issue at boundaries. Initially, the DDM dealt only with dynamical problems, but recent developments have incorporated the thermal eects [START_REF] Liu | A continuum atomistic simulation of heat transfer in micro-and nano-ows[END_REF].

A second approach is the Heterogeneous Multiscale Method (HMM) introduced by [START_REF] Ren | Heterogeneous multiscale method for the modeling of complex uids and micro-uidics[END_REF]. The domain is fully described by a macroscopic approach and microscopic simulations are used in dierent regions of the domain to locally estimate the needed quantities of the macroscopic solver. As for the DDM, the micro resolutions can be placed at the walls to estimate the slip properties but they also can be arranged in the core ow to assess macroscopic coecients as the viscosity or conductivity or to obtain the stress tensor if no constitutive law is assumed. Contrary to the DDM, it does not allow the temporal coupling between the time scales.

Recently, Borg et al. (2013b) and [START_REF] Patronis | Hybrid continuummolecular modelling of multiscale internal gas ows[END_REF]; [START_REF] Borg | A hybrid molecularcontinuum method for unsteady compressible multiscale ows[END_REF] developed the Internal-ow Multiscale Method (IMM) for incompressible and compressible ows respectively. Their approach is dedicated to ows in nano channels where wall eects are predominant. The hydraulic diameter of the channels is then limited to a few nanometres. An important point is that no constitutive law is assumed and the various algorithms implemented are based on the conservation of mass and the momentum. Furthermore, the microscopic region can always be chosen to keep periodic boundary conditions. On the other hand, the scheme is limited to dealing with the mass conservation and the heat transfer issue is totally neglected.

The IMM has also been used for complex geometries or nanouidic networks (Borg et al., 2013a;[START_REF] Stephenson | Multiscale simulation of nanouidic networks of arbitrary complexity[END_REF].

Given the small size of the systems, this method allows, at least in the simplest case, comparisons with pure molecular dynamics simulations. The fact of not requiring sliding properties, relationship on the stress tensor but also keeping periodic boundary conditions makes this approach simple to implement but in return it is dicult to deal with thermal problems.

In our approach, the domain decomposition approach is used, but similarly to the IMM and HMM methods, the vicinity of the wall is discretized in micro elements. In this way the large aspect ratio micro and nano channels can be simulated [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF]; the information transfer from microscopic elds to continuous eld is done by interpolations between the micro simulations. This approach keeps the benets of domain decomposition method, i.e. thermal eect can be simulated, for a limited computational cost: a wall of few millimetre length is substituted by some micro element simulation of nanometre length. Particular attention is paid to control the density in each micro simulation.

The paper is organized as follow. After this introduction, the hybrid and multiscale methods are detailed in Sec. 2. The results are detailed in Sec. 3. The hybrid method is rst validated for a single molecular block on the transient Couette and heat conduction problems. Next, we tackle the issue of the density variation in the simulation by proposing a special density control algorithm. The algorithm is then applied in hybrid multiscale simulations to solve uid ows and heat transfer in long narrow channels. Finally, some conclusions and remarks are given at the end of the paper.

Modelling and hybrid method

A channel of rectangular section of height 2H , depth l 2H and length L l is considered in this paper. The inner walls are made of platinum and argon in liquid or gaseous phase is injected through the inlet section. The walls, located at y = ±l/2, are thermally isolated whereas those at z = 0 and 2H are kept at the constant temperature T w . Considering the aspect ratio l/2H 1 and the adiabatic boundary conditions at y = ±l/2, it is relevant to adopt a two-dimensional model. Since the ow is symmetric about the mi-plane z = H, the simulation domain can be halved to reduce the computational cost.

Domain decomposition

The decomposition domain method herein above mentioned is adapted in this work to the study of high aspect ratio narrow channels. A Multi-DDM scheme using dierent molecular blocks is adopted (Fig. 1). The methodological and numerical aspects have been wildly detailed in [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF] and references herein; only the main features are recalled here. The rectangular geometry of the channel is divided into three sub-domains:

1. In the bulk of the channel, above the dashed line in Fig. 1, the uid ow and heat transfer are governed by the continuum theory. This region of length L, height H C and label (C) is devoted to simulating the uid at the macroscale.

2. In the molecular/atomistic regions, M i (i = 1, . . . , 4 in Fig. 1), the particle approach is used to model the uid/solid interactions at the micro-/nanoscales. Figure 2(a) is an enlargement of one of the numbered rectangular blocks drawn in Fig. 1.

3. The overlap region of height H O (Fig. 2(b)) is designed to enable the communication between the continuum domain and the dierent molecular blocks. The size of this overlap zone is 40% of H M,f such as H = H C + 0.6H M,f . It is divided into 4 sub-layers: two of them guarantee the exchanges between the continuum and molecular domains (C→M and M→C), a relaxation layer allows decoupling the dynamic between the two previous regions and a control layer serves as a buer region to minimize spurious eects caused by the upper specular wall. In this paper, the control layer is also used for controlling the number of atoms in the molecular block.

Molecular model

In each molecular block, the Lennard-Jones potential is used to describe the pair interactions argon/argon for uid/uid and argon/platinum for uid/wall interactions. Given two atoms of type α and β at distance r, the potential V αβ (r) of the pair reads

V αβ (r) = 4ε αβ σ αβ r 12 - σ αβ r 6 (1)
where the subscript αβ stands for f f (uid/uid) or f w (uid/wall). The parameters ε αβ and σ αβ are respectively the potential well-depth and the diameter. Taking argon as the reference material, the potential parameters for the couples Ar/Ar, Ar/Pt and their atomic masses m f and m w can be expressed in the reduced Lennard-Jones units: The solid walls are modelled with three layers of platinum atoms arranged in a FCC(111) lattice with density ρ w = 12.76.

ε f f = ε, σ f f = σ, m f = m, ε f w = 0.953 ε, σ f w = 0.906 σ, m w = 4.8833 m with ε = 1.656×10
Each solid atom is connected to its nearest neighbours with springs of stiness k = 3249.1 ε/σ 2 which generates the harmonic potential V ww (r) = kr 2 /2. Two extra layers of phantom atoms are added below the three layers in order to keep the wall stationary and to impose the desired temperature T w [START_REF] Maruyama | A study on thermal resistance over a solid-liquid interface by the molecular dynamics method[END_REF][START_REF] Maruyama | Molecular dynamics method for microscale heat transfer[END_REF].

With the potentials and the current positions r 1 , . . . , r N of all the N uid and solid atoms of the system being known, we are able to determine the force F i applied to any atom i and its acceleration ri according to Newton's second law:

m i ri (t) = F i (t) def = ∂ ∂r i
V tot (r 1 , . . . , r N )

(2)

where V tot denotes all the possible interactions (i.e. uid/uid, uid/wall or wall/wall):

V tot (r 1 , . . . , r N ) = 1 2 i,j =i V f f (||r i -r j ||) + 1 2 i,j =i V f w (||r i -r j ||) + 1 2 i,j =i V ww (||r i -r j ||) (3) 
A volumetric force F ext is also applied to the uid particles to model the pressure contribution ∂ x p coming from the continuum region and directed along x (direction vector e x ):

F ext = -m f ∂ x p/ρ e x .
The temporal integration of the motion equations is performed with the Velocity-Verlet algorithm. The microscopic time step is δt = 5 × 10 -3 . From a practical point of view, it is not necessary to treat all pair interactions: the Verlet list is adopted and the contributions of pairs in V tot with distances higher than the cut-o radius r c = 2.5 are neglected in the force computation [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Rapaport | The art of molecular dynamics simulation[END_REF].

Periodic boundary conditions are applied in xand y-directions leading to a zero mass ux in the vertical direction. In order to keep the wall at the desired temperature T w , a force F i,w is introduced in the equation of motion for the solid particles of the upper phantom layer. Using the Langevin thermostat [START_REF] Allen | Computer Simulation of Liquids[END_REF], this force reads

F i,w = -α w ṙi + R i,w (T w ) (4) 
with α w = 168.3 τ -1 and R i,w a random force vector. Each independent component of R i,w is sampled from a Gaussian distribution with a zero mean and a standard deviation 2α w m w k B T w /δt depending on the prescribed temperature T w .

In the C→M layer, both dynamic and temperature must be controlled in a way that the mean velocity ṙ (z) and the mean temperature m [ṙ(z) -ṙ (z)] 2 /3k B coincide with the local linear macroscopic approximation of the velocity u C→M (z)

and temperature T C→M (z) determined from the continuous model [START_REF] Sun | Multiscale study of liquid ow in micro/nanochannels: eects of surface wettability and topology[END_REF]. To this end, Newton's equations are rst solved with an additional force in the C→M layer so that the mean velocity of the uid atoms is constrained to the macroscopic velocity prole:

m f r i = F i (t) -F(t) + ξ m f δt (u C→M (z) -ṙ(t) (z)) (5) 
where φ denotes an averaged value of the variable φ and φ (z) refers to the variation of φ with respect to the zordinate [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF]. The intermediate acceleration r i computed previously is then corrected via a Langevin thermostat, to control the temperature:

m f ri (t) = m f r i (t) -m f α (ṙ i (t) -ṙ(t) (z)) + R i,f (T C→M ) (6) 
Like the solid thermostat, each independent component of the random force vector R i,f is sampled from a Gaussian distribution with a standard deviation build on the continuum temperature:

2αm f k B T C→M /δt.
The parameters in Eqs. ( 5) and ( 6) are α = 1 τ -1 and ξ = 5 × 10 -3 or 2 × 10 -2 depending on the uid is in a gaseous or liquid phase.

The coupling scheme is based on the exchange of the primary variables. For the molecular (M) to continuum (C) coupling, the macroscopic components u M →C = ṙ and T

M →C = m [ṙ -u M →C ]
2 /3k B are computed into the M→C layer centered around the lower boundary of the continuum region (Fig. 2(b)). By construction, this scheme guarantees the continuity of the primary variables, and also their respective uxes if the macroscopic properties are the same in the two domains (molecular and continuum) over the overlap region. The density stemming from the two models must also be identical. To this aim, a control method for the density is often required (see Sec. 3.2.2 for the algorithm presentation).

Continuum approach

In the continuum region, the Navier-Stokes and energy equations [START_REF] Bird | Transport Phenomena[END_REF] are used, coupled with an equation of state linking the density, the pressure and the temperature:

                   ∂ρ ∂t + ∇ • (ρu) = 0 (7a) ∂ρu ∂t + ∇ • (ρu ⊗ u) = -∇p + ∇ • τ (7b) c p ∂ρT ∂t + ∇ • (ρuT ) = ∇ • (λ∇T ) - ∂ ln ρ ∂ ln T Dp Dt + τ : ∇u (7c) f eos (p, ρ, T ) = 0 (7d)
where u = ue x + we z , p and T are the two dimensional velocity, the pressure and the temperature elds; τ is the viscous stress tensor; ρ, µ, λ and c p are the uid density, the dynamic viscosity, the thermal conductivity and the specic heat.

The equation of state of [START_REF] Kolafa | The Lennard-Jones uid: An accurate analytic and theoretically-based equation of state[END_REF], tted from molecular dynamics simulations of a Lennard-Jones uid, is adopted. It provides an analytical expression built on the compressibility factor Z which is function of density and temperature:

f eos def = p -Z(ρ, T )ρRT (8)
with R the specic gas constant. When Z = 1, we recover the equation of state for ideal gases.

As mentioned in the previous section, the continuity of the momentum and energy uxes between the atomistic and continuum domains is ensured if the density ρ, the transport coecients µ, λ and the specic heat c p are identical in the overlap region.

Based on the macroscopic knowledge of the pressure and temperature, the density is calculated in the continuum domain by solving the non-linear equation (7d). The dynamic viscosity and the thermal conductivity are evaluated from the correlations by [START_REF] Galliéro | Molecular dynamics study of the lennard-jones uid viscosity: Application to real uids[END_REF] and [START_REF] Bugel | Thermal conductivity of the Lennard-Jones uid: an empirical correlation[END_REF], respectively. The specic heat at constant pressure c p and volume c v are related by classical thermodynamics laws:

c p -c v = T (∂p/∂T ) 2 ρ 2 (∂p/∂ρ) with c v = ∂U ∂T (9)
where U is the internal energy which consists of two contributions, one is provided by the ideal gas law and the second is a corrective term given by [START_REF] Kolafa | The Lennard-Jones uid: An accurate analytic and theoretically-based equation of state[END_REF]. The partial derivatives in Eq. ( 9) are computed from the analytical equation of state Eq. ( 8).

For the continuum domain, the lower boundary conditions are derived from the molecular blocks:

at z = z M →C : u(x) = u macro M →C (x)e x T (x) = T macro M →C (x)
where z M →C is the ordinate of the lower bound of the continuum domain which coincides with the centre of the M→C layer of the molecular region (Fig. 2(b)). The two terms u macro M →C (x) and T macro M →C (x) are piecewise linear functions. Denoting u macro

Mi→C

the mean velocity of particles in the M i →C layer of the i-th molecular block M i , the macroscopic velocity reads:

u macro M →C (x) = n b -1 i=1 u macro Mi→C + u macro Mi+1→C -u macro Mi→C x Mi+1→C -x Mi→C (x -x Mi→C ) × H(x, x Mi+1→C , x Mi→C ) (10) 
where x Mi→C (resp. x Mi+1→C ) is the abscissa of the centre of the M i →C (resp. M i+1 →C) layer, H(x, a, b) = H(a -x) × H(x -b) with H(x) the Heaviside step function, and n b is the number of molecular blocks. The same approximation is applied for the temperature prole T macro M →C (x). At the upper border z = H, either the velocity and the temperature are imposed or a symmetry condition is prescribed (∂ z u = w = 0 and ∂ z T = 0). Two types of conditions are considered for the inlet/outlet sections of the channel. A pressure drop may be imposed throughout the channel or the velocity and temperature proles may be assigned at the entrance. In each of these two cases, the uid ow and heat transfer are assumed fully developed at the outlet: ∂ x u = w = 0 and ∂ x T = 0. For purely hybrid simulations, namely with a single molecular block (n b = 1), Eq. ( 10) is no longer relevant. The velocity and temperature expressions are simply substituted by u macro M →C (x) = u macro M1→C and T macro M →C (x) = T macro M1→C . This conguration is suitable for the study of one-dimensional problems which permits us the validation of the hybrid method (Couette or Poiseuille ows in Sec. 3.1) and the study of the density coupling algorithm (Sec. 3.2).

The solutions of the Navier-Stokes and energy equations ( 7) are approximated with a second order Finite Volume scheme with collocated variables and unstructured meshes [START_REF] Chénier | Numerical results using a colocated nite-volume scheme on unstructured grids for incompressible uid ows[END_REF][START_REF] Chénier | Collocated nite volume schemes for the simulation of natural convective ows on unstructured meshes[END_REF][START_REF] Touazi | Simulation of natural convection with the collocated clustered nite volume scheme[END_REF]. The non-linear set of equations is solved iteratively with a Newton-Raphson algorithm.
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Validation, results and discussion

Validation of the velocity and temperature coupling

In this section, the hybrid approach is illustrated for a single molecular block on the transient Couette and conduction problems. For the Couette problem, the two walls at z = 0 and z = H are kept at the constant temperature T 1 = T 2 = T w = 1.25.

After the equilibration stage, the upper wall moves with a x-velocity u 0 = 1. For the thermal problem, both walls are xed. The initial temperature is uniform and set to T 1 = T 2 = 1 before the upper wall temperature being increased to T 2 = 1.5. 

H = H C + H M,f -H O = 222.74 with an overlap region H O = 40% H M,f
. The transverse dimensions of the molecular block are L x × L y = 9.8763 × 9.775. The molecular region contains N = 672 atoms of argon in gas phase, such as the density ρ = 0.05 is constant. The macroscopic coecients evaluated at T = 1.25 are µ = 0.15, λ = 0.62 and c p = 1.63.

The ratio between the continuum and molecular time steps is q = ∆t/δt = 400. The microscopic variables stemming from the molecular dynamics are averaged in 10 horizontal slices of height H M,f /10, during one macroscopic time step ∆t = qδt and for 64 independent initial microscopic states also called samples.

To limit the velocity and temperature jumps occurring at the uid-wall interface, the atomic wall is substituted by a stochastic wall model: when a particle crosses the plane at z = 0 (Fig. 1), it is re-inserted with a velocity whose the tangential and normal components are sampled from a Gaussian and Rayleigh distributions respectively, with zero mean values and standard deviations corresponding to the wall temperature T w [START_REF] Tehver | Thermal walls in computer simulations[END_REF][START_REF] Xu | Molecular dynamics simulation of micro-Poiseuille ow for liquid argon in nanoscale[END_REF]. At the top of the molecular region, atoms leaving the domain are reecting in a specular way by a ctive wall. An additional force, particularly useful for liquids, is applied to reduce the uid stratication at the vicinity of this upper border [START_REF] Werder | Hybrid atomistic-continuum method for the simulation of dense uid ows[END_REF] . 

Control of the density

The control method for the density is described in this section. The issue of the usefulness of a density control algorithm is rst discussed via simple examples. Then, two variations of a main algorithm are presented and their relative eciencies are studied on phase change problems.

Discussion about the density control relevance

The hybrid computations performed here concern academic problems. Let us consider a one-dimensional Poiseuille-like ow driven by a pressure gradient. The continuum part of the simulation is assumed incompressible with a uid density ρ = ρ target and a viscosity µ = µ(ρ target , T ref ). In the C→M layer, the velocity and temperature are exchanged from the continuum to the molecular domain. When activated, the particle density ρ C→M must be driven to the targeted value ρ target which is, in our case, identical to the average initial density ρ init of the molecular domain. T w = T ref [START_REF] Maruyama | Molecular dynamics method for microscale heat transfer[END_REF]. The uid ow is created by two values of the pressure gradient, ∆p/L x = g 0 and 4g 0 , with the control of the molecular density ρ C→M or by keeping the density number to its initial value ( ρ init = ρ target ). The value of g 0 is 7.77 × 10 -7 .

Figure 4 and Tab. 5 summarize the main results. When the pressure gradient is set to g 0 , the viscous heating is nearly negligible. It results that the density in the molecular region is expected not to vary noticeably with respect to its initial value. Thus, applying or not a control of the density in the C→M layer should be neutral. This analysis is conrmed by the drawings of the proles and the calculations of the mean and local values ρ and ρ C→M , with a management of the density or a xed number of uid particles. Indeed, in each cases, the density values in the control layer depart of about 0.5% from the target value ρ target (Tab. 5). These dierences are negligible since they are of the same order as the uncertainties stemming from the Molecular Dynamics computation and the numerical evaluation of the mean quantities. Notice that the insignicant increase in ρ C→M leads to a slight growth of 1.2% of the total number of the particles in the molecular domain.

Finally, as expected, applying an algorithm to locally control the density of the molecular region is clearly useless when the density in the molecular region remains nearly constant and uniform.

For larger pressure gradients which produce higher ow rates, the temperature variation due to the viscous heating entails a non constant density prole. In that case, keeping the number of particles constant in the whole molecular domain is no longer justied. As illustrated in Fig. 4 for a pressure gradient 4g 0 , the density proles increase of about 30% by getting closer to the wall. A control method in the C→M layer is here essential to ensure the continuity with continuum region; in its absence, a jump of nearly 10% in the density values is observed (Tab. 5). Keeping ρ C→M to ρ target (= ρ init ) implies to introduce or extract particles from the molecular domain. In our example, the number of molecules has been substantially

increased by 11% with respect to the initial value ρ init .

In this section, we have highlighted the importance of the control in problems where the density proles evolve noticeably, but smoothly. Other situations may lead to manage the continuity of the density variable, for example when the stratication of the uid near the wall is signicant or if a phase change occurs in the vicinity of the solid surface. The condensation and evaporation phenomena are exemplied in the next section. 

Algorithm and numerical studies

In the algorithm developed herein below, we assume that the density in the molecular domain is controlled by the continuum region, without feedback. This assumption is justied, for example in micro or nanochannel ows where the density eld results mainly from the inlet and outlet boundary conditions which are applied to create the motion at large scale.

Let's recall that transfer of information from the continuum to molecular domain takes place in the C→M layer. Because the control of the density requires to modify the number of particles, it is then essential that the insertion and removal of molecules preserves the average velocity and the temperature (velocity standard deviation) stemming from the continuum. The deviations with respect to the initial and targeted densities are also written down (ρ init = ρ target = 0.05).

Refer to Fig. 4 to look at the density proles in the molecular region.

However, this condition is dicult to full when using the constraint dynamics (Eq. ( 5)) with the Langevin thermostat (Eq. ( 6)), since any additional or removed molecule may disturb substantially the forces acting on particles. The approach taken in this work is to manage the density number, not in the C→M layer, but slightly above, in the control layer (Fig. 2(b)).

The general algorithm is nally divided into two main steps: a local evaluation of the average density over n molecular time iterations, followed by an instantaneous insertion or removal of particles in the control layer. This can be expressed as follows:

1. the averaged density ρ V,n in a sub-zone V of the molecular region is computed over the time interval [t -n × δt; t[; 2. at time t, the dierence between ρ V,n and the targeted density

ρ target is converted into a number of atoms |∆N | such that ∆N = int [(ρ target -ρ V,n ) V],
where int(x) returns the nearest integer of the real value x. Depending on the algebraic value ∆N , |∆N | atoms are inserted (∆N > 0) or removed (∆N < 0) in the control layer.

The calculation of ρ V,n is straightforward: averages over the space V, the number of time iterations n and the number of samples are used [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF]. Two sub-zones V have been tested to evaluate the density: the C→M layer, where the values of the horizontal velocity and temperature are passed from the continuum to molecular domain, and the control layer (Fig. 2(b)). The insertion of atoms (∆N > 0) rests on the USHER algorithm [START_REF] Delgado-Buscalioni | Usher: an algorithm for particle insertion in dense uids[END_REF]: to minimize the disturbances, each additional atom is randomly put into the control layer and then driven at a position where its potential energy is equal to a specied target. For dilute gases, the target value is set to 0, such that an atom is inserted in a zone without any interaction (the nearest atom is further away than the cut-o radius r c ). In that particular case, the USHER algorithm can be considered as a random insertion method since the descent step is seldom used. If ∆N < 0, the atoms with the smallest distances to the upper border are simply removed. Another simple molecule insertion process is proposed by [START_REF] Sun | A molecular dynamics study on heat and mass transfer in condensation over smooth/rough surface[END_REF]. The molecules are simply inserted at the centre of a tetrahedron formed by one molecule and its three nearest neighbours. Notice that the USHER algorithm could be substituted by the FADE algorithm [START_REF] Borg | The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations[END_REF] when the uid consists of complex molecules (polymer chains for example).

The behaviour of the coupling algorithm is studied both on condensation and evaporation problems, with argon in gaseous or liquid phase. The wall temperature is chosen such that the phase change occurs in the molecular domain only. Then, the characteristics of the liquid/gas interface are determined by applying a nonlinear least-square tting (Marquardt-Levenberg algorithm) on the density prole with the function

ρ(η) = a × tanh η -b c + d (11)
where 2|a| represents the jump of the density, b is the interface middle ordinate, 2c > 0 is a measure of its thickness and d = ρ(b) is the mean density between the phases (Fig. 5 for a graphical interpretation of these coecients).

The simulation parameters for the condensation problem are detailed as follows. The height of the molecular domain is H M,f = 139.21. The simulations are initialized with a density of gaseous argon ρ init = ρ target = 0.05 and a temperature equal to T init = T w = 1.1. The pressure gradient is set to ∂ x p = -3.11 × 10 -6 , and the horizontal velocity and the temperature in the C→M layer are kept at u C→M = 0.8 and T C→M = 1.12. After the initialization process, the wall temperature is decreased to T w = 0.925 and the steady state is sought.

Figure 6 shows the density in the molecular region, for the removal/insertion algorithm applied every n = 1, 10, 100, 1000 and 10000 time iterations. When both the evaluation and the density control are performed in the control layer (Fig. 6(a)), the interface position moves signicantly with the density update period. Although the gas density seems to turn out to be insensitive to the numerical parameter n, a thorough examination of its behaviour in the C→M layer (z/H M,f ∈ [0.8; 0.9]) shows that its prole is not truly uniform and dierent from the expected value ρ target (horizontal discontinuous line). Thus, this diculty in controlling the density may aect the correct position of the liquid-gas interface. These issues can be explained from the well known spurious stratication of the density which develops near the upper virtual border of the control layer (see the enlargement in Fig. 6(a)). It results a signicant gradient as well as a poor estimation of the density at z/H M,f = 0.9, the junction between the control layer and the C→M region. The variations of both the interface characteristics and the density MD simulation fit with Eq. ( 12) ρ C→M as a function of n, the number of time iterations between two successive removal/insertion steps, are illustrated in Tab. 6 (column labelled One layer (control layer)). Even if the scattering of the density in the C→M layer is small (≤ 1.4%), the relative dierence between ρ C→M and ρ target ranges from -0.4% to almost 6%, with a non monotonous variation with n.

If the evaluation of the density is not done in the control layer, but in the C→M layer (V = C→M), the results look much more satisfactory (Fig. 6(b)). In that case, ρ(z) is nearly uniform in V and well kept at ρ target , whatever the value of n.

These observations are conrmed by looking at the last set of columns Two layers (control and C→M layers) in Tab. 6. The location and thickness of the liquid/gas interface are quasi independent of the period n of the molecule number update, and the density deviates from less than 0.7% from the target value.

It is worth noticing that, when the evaluation and the control of the density takes place in separated regions, the insertion or removal of particles do not aect immediately the value of the density ρ C→M . Indeed, there exists a time delay corresponds to the time necessary to diuse the information from the control layer to the evaluation layer. This time scale is related to the self-diusion coecient D and the length scale of the control layer, ∆z. By assuming that the particles are inserted at an average distance ∆z/2 from the C→M layer, an approximation of this time delay is t D = (∆z) 2 /(4D).

Knowing that ∆z = 13.9 and D = 2.5425 σ 2 /τ for a Lennard-Jones uid at ρ = 0.055 and T = 1 [START_REF] Meier | Computer Simulation and Interpretation of the Transport Coecients of the Lennard-Jones Model Fluid[END_REF] Similar studies have been carried out for an evaporation problem. The molecular domain of height H M,f = 49.72 is initialized with liquid argon at ρ init = ρ target = 0.6 and a temperature T init = T w = 1. The pressure gradient is uniform, ∂ x p = -9.86 × 10 -5 , and the horizontal velocity and temperature in the C→M layer are controlled to u C→M = 0.53 and T C→M = T init . Then, the temperature of the platinum atoms is suddenly raised to evaporate the liquid in the vicinity of the wall. According to the phase diagram of Lennard-Jones uids [START_REF] Kolafa | The Lennard-Jones uid: An accurate analytic and theoretically-based equation of state[END_REF], the wall temperature is set to T w = 1.5 T C→M . However, the numerical simulations show that this temperature value does not produce the expected evaporation due to the thermal resistance at the argon/platinum interface. To circumvent this issue, the wall temperature could be heightened. In this work, we choose to minimize the interface eect by increasing the well-depth of the potential between the argon and platinum to ε f w = 6 ε.

The density proles in the molecular region are presented in Fig. 7 Evaporation problem. Same caption as Tab. 6 but with a tted interval for the function ρ(η) (Eq. 11) equal to 0.1 < η < 0.9. whole, as in the condensation problem, the evaluation of the average density in the C→M layer gives more robust results, i.e. results very few dependent on n-values. However, some additional comments can be made. When the algorithm for the control of density is applied on a single layer, the liquid/gas interface may disappear (Fig. 7 

(b)

Figure 7: Evaporation problem. Same caption as Fig. 6. The half error bars stand for the standard deviations calculated over 32 samples. Some quantities extracted from these curves are written out in Tab. 7. carefully at the encapsulated gure 7(b), we see that the density prole remains smooth between the evaluation C→M layer (0.8 < z/H M,f < 0.9) and the control layer (0.9 < z/H M,f < 1) for n 1000. This lower limit is slightly smaller than n D = 7200, the approximation of the time iteration delay necessary to diuse the sudden variation of the density number from the control to the evaluation layers. This order of magnitude is conrmed from the examination of Tab. 7 in which the interface thickness c obtained for n = 10000 departs of 4.8% from the solution computed with n = 100, and then of 1.8% only when n = 1000.

To conclude this section, only the algorithm with two separated layers for the evaluation of the molecular density and its control is really ecient to drive the density in the C→M layer. The obtained solutions are few sensitive to the period n between two successive density number update. However, a good indicative value of the lower bound for n may be given by the number of time molecular iterations based on the uid self-diusion coecient and the control layer half length.

Hybrid multiscale simulations

In this section, we return to our main problem involving uid ow and heat transfer in long narrow channels. The numerical simulations are carried out by the hybrid multiscale approach which presents the advantage of modelling both the small scales at the vicinity of the wall surface and the large scales generated by the pressure dierence between the inlet and outlet sections.

To this purpose, several molecular blocks are distributed all along the uid/wall interface. Since their number and positions aect signicantly both the CPU time and the accuracy of the solutions, preliminary works must be conducted to optimize, at a lower cost, the distribution of these molecular blocks. As presented in [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF], the Molecular Dynamics simulations are substituted by analytical functions which dene the temperature, velocity and density variables. These analytical expressions rest on approximations of the heat transfer and uid ow which must be adapted to the physics studied. They must also assure the continuity with the continuum region, namely the analytical function and the discrete solution stemming from the continuum region must be equal at the centre of the C→M layer. It is worth pointing out that the analytical functions may also be used to cleverly initialize the Molecular Dynamics in order to speed up the convergence.

Two congurations are studied. The rst one is a compressible gas ow where the density results mainly from the pressure drop, but also from the induced temperature eld. The second problem is related to a gas ow with condensation at the channel walls. In each of these congurations, the number and the position of the blocks will be rst dened by mean of the appropriate analytical functions, and then the hybrid multiscale simulations will be carried out.

Compressible ow

A compressible uid ow into a long narrow channel of height H = 203.42 and length L = 200 H is considered. The temperature at walls is set to T w = 1.5. The inlet uid is in gaseous phase at the same temperature as the wall T in = T w , the inlet density is ρ in = 0.3 that leads to the pressure p in = 0.22. The inlet/outlet pressure ratio is chosen as p in /p out = 2. The height of the molecular uid domain is one third of the continuum region (H C /H M,f = 3). The continuum region is divided into N x × N z = 1500 × 30 uniform rectangular cells. The Navier-Stokes and energy equations ( 7) are solved in the steady state, i.e. by cancelling out the temporal derivatives. For that specic problem, the cut-o radius in the molecular region is r c = 4.

The analytical approximations of the thermal and velocity proles in the dierent blocks are quite simple to obtain because the density and the pressure gradient are nearly constant in each cross-section. Given these remarks and assuming a fully developed stationary ow with constant properties in each of the M i blocks, the velocity function, u anal Mi (z), is a piece of a parabola arising from a no-slip Couette-Poiseuille ow, driven by the constant pressure gradient ∂ x p| C→M and velocity u anal Mi (z C→Mi ) = u C→Mi , both quantities transferred from the continuum domain. The temperature eld is a solution of Eq. ( 7c) with the same assumptions as previously. It is expressed as a fourth order polynomial, where the integration constants are dened using the wall temperature (T anal Mi (0) = T w ) and the coupling with the continuum domain

(T anal Mi (z C→Mi ) = T C→Mi ).
Figure 8 presents the relative dierence between the solution computed with a specic block distribution and a reference solution carried out with just as many blocks as there are Finite Volume cells in x-direction (n b,max = N x ). As shown in Fig. 8(a) for n b equi-spaced blocks, the multiscale simulation converges with n b , on average at the rst order. In order to reduce the number of blocks without decreasing the accuracy of the solution, a geometric progression with a scale factor r b (r b = 0 and 1) is used to place them at the dierent abscissas x i :

x i = h 1 2 + L - h 1 + h Nx 2 1 -r i-1 b 1 -r n b -1 b , i = 1, . . . , n b (12) 
with h 1 and h Nx the sizes of the rst and last cells in x-direction. As shown in Fig. 8(b), the best value for the scale factor is close to r b = 1, namely equi-spaced blocks. In the hybrid multiscale simulations performed hereinbelow we have chosen n b = 8 molecular blocks with r b = 0.8. maybe for the density in the two sections closest to the channel entrance, x 1 /H ≈ 0 and x 2 /H ≈ 50: the molecular densities evaluated in the C→M layer is 0.8% smaller than expected. This value is in the order of magnitude of the errors found when the algorithm for the control of the density has been tested (see column di ρtarget for two layers in Tab. 6). The comparison between the multiscale hybrid (symbols) and the Finite Volume results (continuous line) shows a good agreement. The small deviations observed in the temperature and velocity proles are due to the thermal and velocity slips which are authorized 

Gas ow with condensation at the channel walls

The condensation problem of gaseous argon owing into a narrow channel of height H = 424.6 and L = 500 H is now considered. The temperature at wall is set to T w = 0.925. The gas enters the channel with a density ρ = 0.05, at the prescribed velocity u in (z) and temperature T in (z). These functions correspond to a fully developed solution of an incompressible uid ow with a maximal velocity u 0 = 2 and a wall temperature T w,0 = 1.1 > T w . By considering the viscous heating, the velocity and temperature proles in the inlet section read

u in (z)/u 0 = (z/H)(2 -z/H), T in (z) = T w,0 + µu 2 0 (1 -(1 -z/H) 4 )/3λ (13) 
The argon properties are evaluated at the temperature 1. The formulation of the analytical model devoted to approximate the heat transfer and uid ow in the molecular block M i is based on the following assumptions: the solution is stationary and fully developed, the physical properties are constant for each phase and the pressure gradient is uniform in each block section (dp/dx| C→Mi ). We also assume the continuity of the velocity and temperature at the liquid/gas interface. Contrary to the dynamical boundary condition where the uid adheres to the wall, a thermal jump is taken into account at the solid interface. To distinguish the dierent phases of the uid, the subscripts l and g are added to the liquid and gas quantities, respectively. By denoting the analytical thickness of the condensation lm as δ anal , the Navier-Stokes and energy equations reduce to for 0 ≤ z ≤ δ anal :

         - dp dx C→Mi + µ l d 2 u anal l dz 2 = 0 λ l d 2 T anal l dz 2 + µ l 2 u anal l du anal l dz = 0 , for δ anal ≤ z ≤ z C→Mi :          - dp dx C→Mi + µ g d 2 u anal g dz 2 = 0 λ g d 2 T anal g dz 2 + µ g 2 u anal g du anal g dz = 0 (14a)
with the set of boundary conditions at z = 0 :

   u anal l = 0 T anal l -T w = l s dT anal l dz , at z = z C→Mi : u anal g = u C→Mi T anal g = T C→Mi , at z = δ anal :                    u anal l = u anal g T anal l = T anal g = T l/g µ l du anal l dz = µ g du anal g dz λ l dT anal l dz = λ g dT anal g dz (14b)
From this set of equations (14a) and boundary conditions (14b), it is possible to express the condensation thickness δ anal as the solution of a non-linear equation f X (δ anal ) = 0, where X = {µ l , µ g , λ l , λ g , z C→Mi , dp/dx| C→Mi , u C→Mi , T C→Mi , T w , T l/g , l s } is a set of parameters. The conductivities (λ l , λ g ) and viscosities (µ l , µ g ) are constant, the ordinate z C→Mi is the centre of the layer C→M i , the pressure gradient dp/dx| C→Mi , the velocity u C→Mi and temperature T C→Mi are passed from the continuum region, the wall temperature T w is xed, and the phase change temperature T l/g and the thermal slip length l s (also known as the Kapitza length) have to be dened. The evaluation of T l/g deserves some comments. The saturation curve T l/g (p) can, a priori, be determined as soon as the equation of state is known. But, since the Lennard-Jones equation is a result of an analytical tting of numerous numerical experiments, the temperature T l/g (p) suers from some inaccuracies.

Moreover, this temperature is dened at the thermodynamic equilibrium, a condition which is not really fullled by our condensation problems, because of the large temperature gradients created by the viscous heating. Lastly, the solution of the non-linear equation f X (δ anal ) = 0 turns out to be very sensitive to the condensation temperature: +0.1% variation on T l/g increases δ anal by 6.5%. To overcome these issues, hybrid numerical simulations are carried out to calibrate T l/g , as well as the thermal slip length l s .

As an example, we present the density, velocity and temperature proles obtained for the hybrid simulation with ∂ x p| C→M = -3.11 × 10 -6 (Fig. 10). In the molecular region (empty symbols), the variations between the liquid and gas phase of the transport coecients µ and λ involve sudden changes in the velocity and temperature slopes. These discontinuities in the derivatives arise around z/H = 0.056, a numerical value which correspond to the mean thickness of the liquid lm, δ = 0.056H. Unlike the analytical model, the interface in the hybrid simulation is diuse: the variation of the density is spread over approximately 3% of z/H, from ρ l 0.61 to ρ g 0.05. By following the same approach as in Sec. 3.2.2, the density prole tted by an hyperbolic tangent function (Eq. ( 11)) in the range z/H ∈ [0.05; 0.15] provides an interface thickness 1.8% smaller than previously, about 0.055H. Once δ is known, the phase change temperature reads T l/g def = T (δ) = 1.04 T w .

From the hybrid simulation, the thermal slip length l s , dened by l s

def = [(T (z = 0) -T w )/∂ z T | z=0 ]
, is approximated by l s = 60.5. By setting the liquid and gas properties to (µ l ; µ g ) = (0.82; 0.15), (λ l ; λ g ) = (3.40; 0.62), and using the exchanged variables u C→M = 0.8 and T C→M = 1.11 for z C→M = 0.85H M,f , the solution of a non-linear equation f X (δ anal ) = 0 writes δ anal = 0.05486 H, namely 2% smaller than the measured quantity δ. Based on 6 hybrid simulations for the pressure gradients ∂ x p| C→M ∈ -{0.9; 1.0; 1.05; 1.1; 1.15; 1.2} × 3.11 × 10 -6 , laws of variation for the thermal slip length and the phase change temperature can be developed: l s ≈ 60.5 and T l/g ≈ 0.152 T C→M + 0.786. Once the whole parameters X of the analytical model ( 14) are known, the optimal block positioning can be carried out with the multiscale simulations. n b,max = N x analytical blocks, for an equi-spaced (left) and a non uniform (right) distributions of the analytical blocks.

Contrary to the compressible ow example (Sec. 3.3.1), where a quasi uniform distribution of blocks was satisfactory, a scale factor r b greater than 1 is now preferable in Eq. ( 12). A good compromise between the accuracy and the computation cost is n b = 10 and r b = 2: with that choice, the relative dierences for the velocity and temperature do not exceed 0.1%.

The velocity and temperature proles in dierent cross-sections corresponding to the molecular block abscissas, for the hybrid multiscale simulation, are presented in Fig. 12. The hot gas enters into the channel equipped with cold walls, condenses and generates a thin liquid lm along the uid/solid interface. The appearance of this condensate modies slightly the velocity eld in the vicinity of the wall. As assumed in the analytical model, the uid ow adheres to the wall. On the other hand, a signicant thermal slip in the order of 20% to 30% of the temperature dierence T (z = H) -T (z = 0) is observed. This temperature variation is due to the uid cooling by the cold wall.

While the Molecular Dynamics and the Finite Volume solutions are generally very close in the overlap region (see the encapsulated graphs in Fig. 12), noticeable gaps are evident on the thermal prole drawn for the rst abscissa x 1 (red symbols in Fig. 12(b)). Indeed, there is an inconsistency between the inlet temperature calculated at wall (see Eq. ( 13)) and the wall temperature. This problem translates into a condensate thickness visible in the rst molecular block, while the continuous temperature remains very close to thermal eld imposed at the entrance of the channel. This particular issue is not really surprising because the coupling between the molecular and continuum region is assumed unidimensional. In other words, the solution computed in the rst molecular block is never aected by the inlet boundary conditions. To avoid that, the simulation in the rst molecular block should be also coupled with the inlet solution (two dimensional coupling).

The condensate thicknesses obtained with the multiscale hybrid model and the analytical model are presented in Fig. 13 as a function of the block abscissas. Past a few channel heights, the result from the multiscale hybrid analytical model (black line) is in good agreement with that from atomisticcontinuum coupling model (blue line). The condensate thickness computed with the analytical model (red line), in which the thermal slip length l s and the phase change temperature T l/g were extracted from each molecular block of the multiscale hybrid numerical simulations, is also shown. The agreement with the numerical simulation is excellent. This shows that the analytical model ( 14) is capable to represent accurately the ow and heat transfer occurring in the molecular blocks. It is surprising to observe that the condensate lm thickness, calculated from the multiscale hybrid simulation, decreases as a function of x/H. Indeed, considering that the liquid wall temperature T (x, z = 0) decreases away from the inlet section (Fig. 12(b)), a thickening of the condensate would rather have been expected. To explain this counter intuitive behaviour, we must examine both the temperature jump T (x, z = 0) and the phase change temperature T l/g (x). Figure 14 presents the variation of T (x Mi , z = 0 + ) and T l/g (x Mi ) as a function of the temperature jumps T (x Mi , z = 0 + ) on each molecular block M i . The more the uid goes deeper in the channel, the more it accommodates to the wall temperature.

The decrease in the uid temperature, accompanied by a quicker decrease in the phase change temperature, is also observed.

Except for the rst block, the heat ux at the wall (∂T /∂z)| z=0 + is almost constant all along the channel (Fig. 12(b)), says q 0 . As it is reasonable to consider that the heat transfer coecient remains constant over the temperature range covered by T (x, z = 0 + ), namely λ = λ 0 , the decrease in the temperature dierence T l/g (x) -T (x, z = 0 + ) of the liquid leads necessarily to the decrease in the condensate lm thickness since δ(x) ≈ λ 0 (T l/g (x) -T (x, z = 0 + ))/q 0 .

Conclusion

The hybrid atomistic-continuum multiscale method presented in [START_REF] Vu | Multiscale modelling and hybrid atomistic-continuum simulation of nonisothermal ows in microchannel[END_REF] has been extended to deal with ows and heat transfer in long narrow planar channels, when the uid density is no longer uniform in the cross-sections. The principle of this method consists in domain decomposition, with the uid/solid interface discretized into a small number of molecular blocks. Each of them is connected to a continuous representation of the bulk through an overlap region which ensures the synchronization and the continuity of the macroscopic variables between the two domains.

In addition to the velocity and temperature coupling between the Finite Volume method and the Molecular Dynamics, a control algorithm of the molecular density has been developed. The adjustment of the parameters and the accuracy of this method have been studied for a Lennard-Jones uid on a single molecular block, for a uid ow subjected to phase change in the vicinity of the solid wall.

Then, the new hybrid atomistic/continuum multiscale method has been applied to simulate, rst a compressible gas ow, and then a condensation problem in long narrow channel. The inuence of the number of blocks and their distribution all along the channel wall has been studied at a low computation cost by substituting the numerous expensive molecular simulations, carried out with the hybrid multiscale method, for suitable analytical temperature and velocity functions. The converged numerical solutions have then served to initialize the molecular dynamics in the dierent molecular blocks. After this preliminary study, the real hybrid atomistic-continuum multiscale simulations have been carried out. The results issued from the present paper are shown to be satisfactory, capturing the phase change phenomenon, in particular the formation of liquid lm near the wall. Although improvements are still necessary, for example to manage automatically the molecular blocks, this numerical method currently devoted to solve the multiscale uid ow and heat transfer in long narrow channel seems really promising.
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Figure 3

 3 Figure3shows the numerical (symbols) and the analytical (lines) velocity and temperature proles for the transient Couette and thermal problems as a function of the time. The good connection between the mean molecular and continuum proles in the overlap region (z/H ∈ [0.375; 0.56]) and also the good agreement between the hybrid proles and the analytical solutions validate the coupling scheme for the velocity and the temperature. Note that the error bars can be reduced with the increasing of the number of independent samples.

Figure 4 :

 4 Figure 4: Density proles in the molecular region of a Poiseuille-like ow subjected to two pressure gradients ∆p/L x = g 0 and 4g 0 , with (open symbols) or without (lled symbols) the control of the density in the C→M layer. The encapsulated gure is an enlargement of the upper part of the overlap region. Numerical values are written out in Tab. 5.

Figure 5 :Figure 6 :

 56 Figure 5: Density of the liquid/gas interface. The blue symbols represent the local molecular density and the continuous line indicates the tted function. The meaning of the coecients a, b, c and d of the approximation function Eq. (11) are also given.

  for several n-values corresponding to dierent time periods of insertion/removal of particles in the control layer. The results presented in Fig. 7(a) (resp. Fig. 7(b)) are obtained for an evaluation of the density in the control layer (resp. C→M layer).

  (a) for n = 1).

  Figure 8: (a): Dierence in L 2 norm of velocity and temperature elds computed by the analytical model for n b block and for n b,max block. The encapsulated gure shows the log 10 of the dierence as a function of log 10 (n b ) and suggest a rst order convergence with the number of blocks. (b): Relative dierence between the velocity eld in the whole channel for a number of blocks n b positioned according to the scale factor r b and the reference solution with n b = N x . The encapsulated gure shows results for the temperature eld.

Figure 9

 9 Figure 9 gives the velocity, temperature and density proles in the x i cross-sections, for the hybrid multiscale solution and the Finite Volume approximation conducted on the whole uid domain [0; L]×[0; H], with H = H C +H M,f -H O (Fig. 2(b)). The length H M,f -H O of the molecular uid domain is substituted by a row of Finite Volume cells of same height. The continuity between the molecular (open circles) and continuous solutions (lled circles) in the overlap region is quite satisfying, except

Figure 9 :

 9 Figure 9: Proles of the horizontal velocity u (a), the temperature (b) and the density (c) at abscissas corresponding to the positions of the molecular blocks. Symbols show the hybrid multi scale simulation; empty and ll symbols plot the molecular and the continuum solutions, respectively; lines present the pure macroscopic solution without velocity and temperature slip at walls. Simulations are performed over 192 samples.

  25, a value close to T in (z = H/2): µ = 0.15, λ = 0.62 and c p = 1.63. The characteristics of the hybrid simulation are H M,f = 139.21 and H C /H M,f = 2.45. The continuum region is partitioned into a N x × N z = 48000 × 30 uniform rectangular mesh. The Navier-Stokes and energy equations (7) are solved in their incompressible steady form, by disregarding all the time derivatives and the pressure work term in the energy equation (7c), and keeping the density constant.

Figure 10 :

 10 Figure10: Proles of density and horizontal velocity (left axis) and temperature (right axis) for and hybrid simulation on a single block with ∂ x p| C→M = -3.11 × 10 -6 . Empty symbols stand for the molecular region while ll symbols and lines are the continuum solution. The encapsulated gure presents a zoom of the interface; linear or quadratic regression are performed over the velocity and temperature proles to approach the interface position δ.

Figure 11

 11 Figure11illustrates the velocity and temperature relative dierences committed between the multiscale models using n b and

  Figure 12: (a): Horizontal velocity u/u 0 proles in slices corresponding to the molecular blocks positions in the channel. Generally, the velocity in the overlap region and the continuum model are in good agreement. A zoom of the overlap region is plotted in the encapsulated gure for the 5-th block to illustrate the coupling. (b): Same as Fig. 12(a) for the temperature eld T /T w . Simulations are performed over 192 samples.

  Figure 14:Variations of the temperature jump T (x, z = 0 + ) and phase change temperature T l/g (x) as a function of T (x, z = 0 + ). The block index increases from right to left.

  B = 120 K and ε/ m = 158.03 m/s, respectively. With these basic reference scales, the density, pressure, viscosity, conductivity and specic heat are m/σ 3 , Figure1: Sketch of a hybrid multiscale domain of height H and length L. The continuum region (height H C ) is governed by the Navier-Stokes and energy equations. An atomistic description is used to model the wall and the adjacent uid in the numbered rectangular blocks of height H M = H M,w + H M,f (Fig.2(a)). Molecular block of simulation of total height H M = H M,f + H M,w , where H M,f is the uid height and H M,w the wall thickness. The bluish top surface stands for a specular wall. (b) Overlap region of length H O which ensures the communication between the molecular domain of dimensions L M × H M and the continuum domain, here partially covered by a mesh of triangles. The M→C and C→M layers enable the transfer of the macroscopic or averaged variables, between the molecular and continuum parts. The intermediary layer of size 3∆z/2 is a buer zone between the two previous layers.

								Symmetry (or wall)
			z	Inlet		H M	H C		H M,f	Outlet	H
					1			2		3	4
					x				Wall
									L
			z		y	H M	H M,f H M,w	H O	C Continuum Domain, H	M Molecular Block, H	L M	Control layer, ∆z C→M, ∆z 3∆z/2 M→C, ∆z
					x				
						(a)				(b)
	Figure 2: (a) The control layer is a buer zone which is also used for inserting or removing particles in the molecular domain. The value
	∆z is typically 10% of H M,f . Blue symbols are Finite Volume nodes (triangles at the boundary and lled circle in the core
	domain). The black square in the dotted rectangle is a Finite Volume node on which the averaged values in the M→C layer
	are calculated. Reciprocally, Finite Volume extrapolations for the temperature and velocity are expressed at the centre of
	the C→M layer (second black square) in order to drive the microscopic quantities to their macroscopic counterparts.
	ε/σ 3 ,	√	mε/σ 2 , k B	√	mε/σ 2 and k B / m, respectively. Later in this paper, variables will be given, unless otherwise stated, in
	Lennard-Jones reduced units.				

-21 J, σ = 3.405 Å and m = 6.633×10 -26 kg. The reference scales for time, temperature and velocity are τ = mσ 2 /ε = 2.155 × 10 -12 s, ε/k

Table 5 :

 5 Average densities over the entire molecular region, ρ , and the C→M layer, ρ C→M , with or without the control of the density.

	Pressure gradient ∆p/L x	7.77 × 10 -7	31.1 × 10 -7
	Control	without	with	without	with
	ρ	ρ init	0.0506	ρ init	0.0554
	( ρ -ρ init )/ρ init	0%	1.2%	0%	11%
	ρ C→M	0.0497	0.0502	0.0457	0.0502
	( ρ C→M -ρ target )/ρ target	-0.5%	0.4%	-8.5%	0.4%

Table 6 :

 6 t D which Condensation problem with the evaluation of the density control applied in one or two dierent layers. Ordinate (b) and half thickness (c) of the approximated interface ρ(η) (Eq. (11) with a tted interval 0.05 ≤ η ≤ 0.3), averaged values of the density ( ρ C→M ) in the C→M layer, relative dierence between the measured and the targeted density values (di ρtarget = ρ C→M /ρ target -1), and relative standard deviation of ρ (z) in the C→M layer (σ ρ C→M / ρ C→M ), as a function of n, the number of time iterations between two successive removal/insertion steps. The two last lines give the averages and the relative standard deviations over all the n-values, for b, c and ρ C→M .

			One layer (control layer)		Two layers (control and C→M layers)
		Interface		Density		Interface		Density	
	n	b	c	ρ C→M di ρtarget	σ ρ C→M ρ C→M	b	c	ρ C→M di ρtarget	σ ρ C→M ρ C→M
	1	0.147	0.0240	0.05031	0.6%	1.4%	0.126	0.0264	0.05024	0.5%	1.3%
	10	0.135	0.0243	0.04978	-0.4%	1.2%	0.125	0.0269	0.05024	0.5%	0.9%
	100	0.159	0.0247	0.05270	5.4%	0.4%	0.123	0.0259	0.05023	0.5%	0.6%
	1000	0.173	0.0289	0.05293	5.9%	0.4%	0.126	0.0262	0.05025	0.5%	0.4%
	10000	0.168	0.0287	0.05165	3.3%	0.9%	0.125	0.0267	0.05034	0.7%	0.7%
	•	0.156	0.0261	0.05147	-	-	0.125	0.0264	0.05026	-	-
	σ • / •	10%	9.5%	2.7%	-	-	1%	1.5%	0.1%	-	-

Table 7 :

 7 Table7indicates, for each of the plotted proles, the ordinate and half-thickness of the approximated liquid/gas interface, the averaged value of the density in the C→M layer, its relative dierence with the targeted density value and the spatial scattering of the density in the C→M layer. On the

			One layer (control layer)		Two layers (control and C→M layers)
		Interface		Density		Interface		Density	
	n	b	c	ρ C→M di ρtarget	σ ρ C→M ρ C→M	b	c	ρ C→M di ρtarget	σ ρ C→M ρ C→M
	1	0.328	-0.424	0.674	12%	1.4%	0.447	-0.197	0.598	-0.3%	3.9%
	10	0.264	-0.425	0.628	4.4%	0.5%	0.434	-0.195	0.599	-0.2%	1.7%
	100	0.422	-0.197	0.603	0.7%	0.5%	0.444	-0.175	0.599	-0.2%	0.4%
	1000	0.462	-0.157	0.596	-0.5%	0.5%	0.448	-0.170	0.599	-0.2%	0.5%
	10000	0.471	-0.147	0.595	-0.8%	0.5%	0.446	-0.167	0.599	-0.2%	0.5%
	•	0.389	-0.270	0.619	-	-	0.435	-0.181	0.599	-	-
	σ • / •	23%	53%	5%	-	-	1%	8%	0.1%	-	-
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