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MULTIPLE BRANCHES OF TRAVELLING WAVES FOR THE

GROSS-PITAEVSKII EQUATION

David Chiron1 and Claire Scheid2

Abstract. Explicit solitary waves are known to exist for the Kadomtsev-Petviashvili-I (KP-I) equa-
tion in dimension 2. We first address numerically the question of their Morse index. The results confirm
that the lump solitary wave has Morse index one and that the other explicit solutions correspond to
excited states. We then turn to the 2D Gross-Pitaevskii (GP) equation which in some long wave regime
converges to the (KP-I) equation. Numerical simulations already showed that a branch of travelling
waves of (GP) converges to a ground state of (KP-I), expected to be the lump. In this work, we perform
numerical simulations showing that other explicit solitary waves solutions to the (KP-I) equation give
rise to new branches of travelling waves of (GP) corresponding to excited states.

1991 Mathematics Subject Classification. 35B38, 35C07, 35J61, 35Q40, 35Q55.

January 23, 2018.

1. Motivations

1.1. (NLS) with nonzero condition at infinity

The nonlinear Schrödinger equation (NLS) with nonzero condition at infinity appears in a variety of physical
problems: condensed matter physics (see [34]), Bose-Einstein condensates and superfluidity (cf. [37], [1]), as
well as nonlinear Optics (see [26]). Depending on the physical problem, several nonlinearities may be of interest
(see the examples and references quoted in [12, 15]). The most popular one is of cubic type and leads to the
well-known Gross Pitaevskii (GP) equation for which NLS equation writes:

i
∂Ψ

∂t
+ ∆Ψ = Ψ(|Ψ|2 − 1). (GP)

In this work, we shall consider the GP equation in space dimension two and with the following condition at
infinity: |Ψ| → 1 as |x| → +∞. The GP equation is the Schrödinger flow associated with the Ginzburg-Landau
energy

E(u) =

∫
R2

|∇u|2 +
1

2

∫
R2

(|u|2 − 1)2.
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For a nowhere vanishing solution, GP can be recast into a hydrodynamical form, via the Madelung transform
Ψ =

√
ρeiϕ: 

∂tρ+ 2∇ · (ρ∇ϕ) = 0

∂tϕ+ |∇ϕ|2 + ρ− 1 =
∆
√
ρ

√
ρ
.

(1)

This is an incompressible irrotational Euler type system with an additional term called quantum pressure in
the right-hand side of the second, Bernoulli type, equation. Neglecting the quantum pressure and linearizing
around the constant state (ρ = 1, ϕ = 0) corresponding to the condition at infinity, one obtains the free wave
equation:  ∂ta+∇ · V = 0

∂tV + 2∇a = 0

with (a, V ) = (
√
ρ− 1,∇ϕ). This allows for the definition of the speed of sound cs =

√
2 (see [1,34] for details).

In this work, we furthermore focus on the travelling waves solutions. We consider the ansatz Ψ(t, (x1, x2)) =
u(x1 − ct, x2), with (t, x1, x2) ∈ R3, that is representing a wave travelling in the direction x1 with speed c. The
profile u of the travelling wave then solves:

ic∂x1
u−∆u+ u(|u|2 − 1) = 0. (TWc)

The condition at infinity is now u → 1, up to a phase change. Indeed, it was conjectured in [25] that u tends
to 1 at some algebraic rate, and this has been proved (if u has finite energy) in [23].

In addition to E, the momentum is also a conserved quantity, reflecting the invariance by space translation
of GP, that is also central to illustrate the qualitative behavior of the travelling waves solutions. For u tending
suitably to 1 at infinity, its first component reads

P (u) =

∫
R2

〈i(u− 1), ∂x1u〉,

with 〈·, ·〉 the real scalar product on C (the second component
∫
R2〈i(u− 1), ∂x2u〉 is also conserved but will be

useless for the travelling waves propagating in the x1 direction). The study of the behavior of the variations of
the energy E and the momentum P as the speed c varies is at the heart of the understanding of (among others)
the stability properties of the travelling wave solutions. Thus the Energy vs Momentum diagram given as a
speed parametrized curve is especially instructive. We refer to the pioneering work of C.A. Jones, P.H. Roberts
in two space dimensions and tridimensional axisymmetric for GP in [25] and to the more recent works of [12,15]
for more general non linearities. In all these studies, the computed solutions are critical points of the action
Fc = E − cP that are characterized as minimizers of some functional under a single constraint (for instance,
in [25], the energy is minimized at fixed momentum). Therefore a Morse index equal to one is expected, i.e. the
Hessian of Fc has only one negative eigenvalue. We recall in figure 1 the diagram for the case of 2D travelling
waves of GP (issued from [25]), and we shall call this branch the JR branch. Several mathematical results are
known about this JR branch: see [9], [6], [30] (in dimension larger than two) and [14].

In this paper, on the contrary to the previous mentioned references, we propose to numerically investigate
the possible existence of solutions to (TWc), which may be of Morse index > 1; that is excited states. We give
a positive answer to this question. As a matter of fact, we obtain that there exists at least 4 new branches of
travelling wave solutions in the Energy-Momentum diagram as depicted in figure 2 and in the Momentum-Speed
diagram in figure 3 (the blue branch corresponds to the blue one in figure 1 and is the JR branch). The variation
of P (or E) with respect to c is related to the concavity/convexity of the function P 7→ E (along the curve), in
view of the Hamilton group relation

c =
dE

dP
or

dE

dc
= c

dP

dc
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Figure 1. Energy-Momentum diagram for 2D travelling waves of GP: the Jones-Roberts branch

Figure 2. Energy-Momentum diagram with the multiple branches of 2D travelling waves of GP

along the curve (see [25]). It is highly plausible that there exist many other ones. To construct these new
branches, we strongly rely on the knowledge of the asymptotics c→ 0 and c→ cs.
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Figure 3. Momentum-Speed diagram with the multiple branches of 2D travelling waves of GP

1.2. Vortex asymptotics c ≈ 0.

A vortex is a particular stationary solution of the GP equation, see [21]. In polar coordinates it writes

Vn(x) = an(r)einθ, (2)

with n a given nonzero integer called the degree of the vortex. The modulus an solves the ODE

a′′n +
a′n
r
− n2

r2
an + an(1− a2

n) = 0, (3)

with an(0) = 0 and lim
r→+∞

an(r) = 1. We refer to [41], [24], [10] for the analysis of (3).

Quite often, we call vortex any zero of the wave function, and it is expected that the wave function is close
to some Vn near this zero. The vortex solution Vn is of infinite energy. However configurations involving several
vortices (with possibly different degrees) could lead to finite energy solutions. At small speeds c → 0, the
travelling waves of the JR branch for the GP equation exhibit two vortices: the first one is of degree +1 and is
located at z1 and the second one is of degree −1 and is located at z2, with z1 = −z2 ≈ (0, 1)/c, see figure 4 for
a plot. A good approximation of this travelling wave is then given by

uc(x) ≈ V1(x1, x2 − 1/c)V−1(x1, x2 + 1/c). (4)

The paper [9] provides a rigorous mathematical justification for the asymptotic limit c ≈ 0 for the travelling
waves of the JR branch.

Since the vortices are well separated when c → 0, an asymptotic description by the Kirchhoff energy, very
similar to what is known for classical incompressible fluids (see [27]), is possible. More precisely, assume that u
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Figure 4. Travelling wave of the JR branch for c = 0.2 with two (+1,−1) vortices

is a wave function involving p vortices (p > 2), each one located at zk and of degree nk, in the sense that

u(x) ≈
p∏
k=1

Vnk
(x− zk). (5)

We assume that the vortices are well separated, that is zk = Zk/c = c−1(Zk,1, Zk,2) ∈ R2, with the Zk’s such
that, as c → 0, |Zk| are of order one and |Zk − Zj | does not go to 0. We also assume that

∑p
k=1 nk = 0, in

order to have finite energy. Then, [31] (see also [7]) shows the following asymptotic expansion

E(u) = 2π|ln c|
p∑
k=1

n2
k +

p∑
k=1

γ(|nk|) + E (Z, n) + oc→0(1),

where γ(|n|) is the core energy of the vortex of degree n, n = (n1, . . . , np) ∈ Zp and where

E (Z, n)
def
= −2π

∑
j 6=k

njnk ln |Zj − Zk|

is the Kirchhoff interaction energy. The point vortex system obtained for the Euler incompressible equations,
which is the Hamiltonian flow associated the Kirchhoff energy E , may actually be derived for GP, see e.g., [19],
[31] and [7] for rigorous results.

For a wave function u with such well separated vortices, the asymptotic for the momentum has been given
in [9]:

P (u) ≈ 2π

c

p∑
k=1

nkZk,2.

As a consequence, the corresponding action for u is given by

E(u)− cP (u) = 2π|ln c|
p∑
k=1

n2
k +

p∑
k=1

γ(|nk|) + F (Z, n) + oc→0(1),
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where

F (Z, n)
def
= −2π

∑
j 6=k

njnk ln |Zj − Zk| − 2π

p∑
k=1

nkZk,2.

Since the first two terms in the expansion of the action do not depend on the positions Z of the vortices, it is
natural to think that if u is a travelling wave for GP with vortices as in (5), then (Z1, . . . , Zp) is a critical point
of the reduced action F , that is a solution to the nonlinear system

∀k ∈ [[1, p]], 2
∑

16j6p
j 6=k

nj
Zj − Zk
|Zj − Zk|2

=

(
0
1

)
. (6)

The proof that (6) is necessary may be found in [4] for the Ginzburg-Landau model (in a bounded domain and
a Dirichlet boundary condition). If the travelling wave has two (+1,−1) vortices (then p = 2) and n1 = 1,
n2 = −1, we may without loss of generality freeze the translation invariance by assuming Z1 +Z2 = 0, and the
equation (6) then reduces to

Z1

|Z1|2
=

(
0
1

)
,

and the solution is Z1 = (0, 1), which is the location of the vortices for the JR branch.

1.3. Transonic limit c ≈ cs

As c → cs, the travelling waves are expected to behave as rarefaction waves driven by the Kadomtsev-
Petviashvili I (KP-I) equation. Following [25], [26], we introduce the following scalings:

ε =
√
c2s − c2, z1

def
= εx1, z2

def
= ε2x2, (7)

and the ansatz

u(x) =
(

1 + ε2Aε(z)
)

exp
(
iεϕε(z)

)
, (8)

where now, both ϕε and Aε tend to 0 at spatial infinity. Then, formal computations (see [25], [26]), assuming
that Aε → A and ϕε → ϕ in some suitable sense as ε → 0, that is c → cs, show that A must be a solution to
the solitary wave equation for the KP-I equation:

∂z1A− ∂3
z1A+ 12A∂z1A+ 2∂2

z2∂
−1
z1 A = 0 (9)

and
csA = ∂z1ϕ. (10)

As c ≈ cs travelling waves are expected to behave (in the good scaling) as the Lump, expected to be the ground
state. For mathematical results on the solitary waves of KP-I, see [16]. Complete justifications of the KP-I
solitary wave limit for the travelling waves of GP have been given in [5] and in [13] (for a general nonlinearity
and dimensions two and three). We refer to figure 5 for a plot of the travelling wave on the JR branch for

c = 1.35 ≈
√

2.

1.4. Outline of the paper

As we have seen, the asymptotic behaviour c → 0 and c → cs are well understood for the travelling waves
of GP. The natural questions that arise are: if we know other solitary waves solutions to KP-I does this give
branches of travelling waves for GP at least for c → cs? and if we know some solution to (6), does this give
branches of travelling waves for GP at least for c → 0? We answer positively to these questions. Due to the
integrability of KP-I in 2D, see for instance [39], explicit solitary waves have been given in [32], yielding for GP
the purple and green branches in our Energy-Momentum diagram (figure 2). The black and the yellow branches
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Figure 5. A rarefaction wave of the JR branch for c = 1.35

are associated with other solutions to (6), namely the configuration (−2,+2) located at Z1 = −Z2 = (0, 2) and
the configuration (−3,+3) located at Z1 = −Z2 = (0, 3). To the best knowledge of the authors, these questions
have no theoretical answer yet, and have not been investigated numerically.

In order to compute these new travelling waves, we will have to design a numerical framework to approximate
solutions of TWc. Accordingly, section 2 will be dedicated to set up the needed numerical tools. The strategy
follows closely [25] and [15]. Then, we will address in section 4 the question raised by the KP-I limit c → cs.
We first describe the considered excited solitary waves given in [32]; we will furthermore take advantage of the
fact that these waves belong to a larger family of solitary waves, as noticed in [22] (see also [20]), see section
3. Along the way, we wonder about their characteristics in the KP-I equation and propose to compute their
numerical Morse index. We will thus consider the linearised KP-I equation for which we will compute the
discrete eigenvalues within the numerical framework described in section 2. Finally, in section 5, we investigate
the other vortex configurations (+2,−2) and (+3,−3).

2. Numerical tools

2.1. Discretization framework

First, we map R2 onto the square [−π/2, π/2]
2

using stretched coordinates as follows

R1x1 = tan(x̂1), R2x2 = tan(x̂2), (11)

where (x1, x2) ∈ R2, (x̂1, x̂2) ∈ [−π/2, π/2]2, and R1 and R2 > 0 are adapted to the lengthscales of the
solution we are interested in. This mapping avoids working on an unbounded computational domain, hence
the introduction of artificial boundary conditions. This type of coordinates change has since a long time been
assessed in the area of general relativity through the approach of Penrose to conformally map infinite space-time
to a finite region through a mapping of the space-time metric [33]. The precise type of compactification that
we consider in this work has been successfully applied in the latter context in e.g [18] or in our precise context
in [25]. The authors also used them in [15] in order to compute branches of travelling waves solution of the

nonlinear Schrödinger equation for various type of nonlinearities. Finally, at the boundary of [−π/2, π/2]
2
, we

impose a Dirichlet boundary condition.
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Another advantage of these stretched variables is that they allow to adapt to the typical lengthscales of the
asymptotic regimes c ≈ 0 or c ≈ cs. Indeed the two parameters (R1 and R2) define the two lengthscales in the
two space variables. This is by adjusting these two parameters that we can check that the error at infinity is
always much smaller than at finite distance from the origin (see [15] for details). More precisely, as the speed
increases to cs, the region of interest (where the solution has significant variation) is expanding towards infinity.
Thus in order to ensure that we capture these variations with a good precision in the stretched variable, we
reduce the values of R1 and R2 as the speed increases.

Any continuous problem is therefore first recast into this set of stretched variables and then solved numerically.
The computational domain (i.e. the square [−π/2, π/2]

2
) is discretized by a cartesian grid, with N1 ∈ N∗ points

in the direction x̂1 and N2 ∈ N∗ points in the direction x̂2. A uniform discretization (i.e. N := N1 = N2) will
be preferably chosen. We denote by h the size of the mesh (i.e. here h = π/N).

Each differential operator is expressed in the stretched coordinates (11) and then discretized within the Finite
Difference framework. We refer to [15] for further details. Two types of discrete problems have to be considered.
They are sketched in the two following subsections.

2.2. Discrete eigenvalue problems

First, we propose to compute the numerical Morse index of some explicit travelling wave solution of KP-I.
Therefore we discretize the linearised KP-I differential operator around the corresponding solution. This leads
to a discrete eigenvalue problem. More precisely, we have to solve a generalized eigenvalue problem of the
following type

Ahuh = λhBhuh, (12)

with Ah and Bh two symmetric matrices. We refer the reader to subsection 3 for more details. We developed
a Python code and computed the eigenvalues and eigenvectors using Scipy modulus [36].

2.3. Numerical travelling wave solutions

The second type of problem consists in computing, for a given speed c > 0, the numerical solution of TWc.
We emphasize the dependence of the solution u in speed c in the equation TWc. This writes:

ic∂x1u(c)−∆u(c) + u(c)(|u(c)|2 − 1) = 0. (13)

We shall impose the symmetries

u(x1, x2) = u(x1,−x2) = ū(−x1, x2). (14)

Our goal is thus to compute the solution of (13), u(c) at each speed c. To this end, we will either work with
Newton’s method or a continuation method as in [17] and as recalled in the following subsection. The main
principle is to start from a solution for speed c and use it to compute the solution at speed c+ δc for δc small.

2.3.1. Newton’s method

We consider the continuous stretched formulation of (13) (i.e. in the system of coordinates (11)). Each
stretched differential operator is discretized with finite differences. This induces the discrete nonlinear system
for uc,h (the approximation of uc):

Tc,h(uc,h) = 0. (15)

Then the algorithm is simply:

• Initialization: ε > 0, c0 > 0, uc0,h given.
• Iteration: uc,h given, find uc+δc,h solution of Tc+δc,h(uc+δc,h) = 0 with Newton’s algorithm.

(a) Initialization: u0 = uc,h,

(b) Iteration: Do uk+1 = uk −DTc+δc,h(uk)−1.Tc+δc,h(uk), k ← k + 1, until
|Tc+δc,h(uk)|
‖∂hx1

uk‖
6 ε,

(c) kstop := k,
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(d) uc+δc,h = ukstop

• c← c+ δc

Newton’s method has the advantage to be very efficient (when it converges) with a control over the residual
of the equation (typically, in the computations, we achieve ε = 10−8). However, Newton’s method can require
several iterations to converge (which in turn implies to solve the linear system several times in step (b)) and
can also fail to compute a solution especially in the transonic limit. So that the recourse to another method is
mandatory.

2.3.2. Continuation method

Inspired by [17], we formally differentiate (13) with respect to the speed c to obtain:

Υc

(
∂u

∂c
(c)

)
= i∂x1

u(c) (16)

where

Υc(v)
def
= ∆v − 2u(c)〈u(c), v〉+ (1− |u(c)|2)v − ic∂x1

v (17)

is the linearised operator around u(c). Equation (16) is viewed as an Ordinary Differential Equation determining
∂u

∂c
, provided we may invert Υc. We refer the reader to [15] for a discussion on this topic.

We compute the associated discrete operator Υc,h (associated to Υc) in the stretched variables using the
Finite Difference framework proposed in subsection 2.1) and follow an iterative procedure.

• Initialization: c0 > 0, uc0,h given.
• Iteration: uc,h given, find uc+δc,h solution of (13).

(a) Compute ∂hc u := Υ−1
c,h

(
i∂hx1

uc,h
)

with ∂hx1
the finite difference discretization of ∂x1 in the stretched

variables. This requires to solve one linear system.
(b) Update the solution to uc+δc,h for the speed c+ δc, with uc+δc,h = uc,h + δc ∂hc u.

• c← c+ δc

At each step, one has to solve a linear system, and in the transonic limit, the latter can be hard to solve
(see the discussion in section 3.5. of [15]). Contrary to Newton’s method, step (a) requires only one system
resolution, but we do not have any control on the residual. However even if we do not impose a control on this
residual directly with the continuation method, it allows, with a good initial residual (i.e. at the beginning of
the iteration procedure), to compute an accurate solution everywhere and especially in regions where Newton’s
method may fail to converge. Since this numerical strategy has already been studied and validated in [15], we
choose not to give extensive details and refer the reader to the latter reference.

2.3.3. Strategy

To summarize, we adopted the following strategy to compute the solution u on a whole interval (c0, cf ) (c0,
cf ) of speeds c:

• Initialization: For the given initial speed c0, we provide an initial guess computed with either the ansatz
(4) in section 1.2 or (8) in 1.3.

• Iteration: From the solution obtained at speed c, we obtain a solution at speed c + δc, with δc small,
using either Newton’s method or the continuation method.

In what follows, we didn’t obtain better results with the continuation method compared to Newton’s method.
When Newton’s method fails to converge, the continuation methods allowed us to continue (for a very little
while) the iterations in speed c but at the price of a residual deterioration. All the computations have been
done using a code that we developed in the framework of Scilab software [38].
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Figure 6. Representation of the first Lump solitary wave W1 of KP-I.

3. Explicit solitary waves solutions to KP-I and their numerical Morse index

3.1. Explicit solitary wave solutions to KP-I

We focus on the adimensionalized version of the solitary wave equation for KP-I given in (9):

∂z1W − ∂3
z1W +W∂z1W + ∂2

z2∂
−1
z1 W = 0. (SW)

from which A (as defined in section 1.3) is recovered through the scaling

A(z1, z2) =
1

12
W
(
z1,

z2√
2

)
. (18)

We know that equation SW is integrable in 2D and that there exist explicit solutions. The first and well known
one is the Lump solitary wave found in [29]. Its explicit expression is given as a z1-derivative of a rational
function as follows:

W1(z) = −12∂2
z1 ln

(
3 + z2

1 + z2
2

)
= −24

3− z2
1 + z2

2

(3 + z2
1 + z2

2)2
. (19)

This solution is expected to be the ground state of SW, though, to the best knowledge of the authors, no proof
is available. See figure 6 for a graphical representation. The rarefaction wave of the JR branch of travelling
waves for GP plotted in figure 5 is clearly related to the W1 lump through the ansatz (8) and the scaling (7).

Furthermore, other explicit solutions to this equation have been obtained by the Hirota method in [32]. The
expression of the second Lump solution is given by

W2(z) = −12∂2
z1 ln

(
(z2

1 + z2
2)3 + 25z4

1 + 90z2
1z

2
2 + 17z4

2 + 475z2
2 + 1875

)
. (20)

See figure 7 for a graphical representation. This solitary wave was first observed numerically in [2]. The third
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Figure 7. Representation of the second Lump solitary wave W2 of KP-I.

lump is given by

W3(z) = −12∂2
z1 ln

(
(z2

1 + z2
2)6 + . . .+

159786550

3
z2

1 + . . .+
878826025

9

)
. (21)

See figure 8 for a graphical representation.
The reader may notice the increasing degree of the polynomial appearing in the expressions, that makes

the computations harder and harder but theoretically feasible. One is expecting explicit solutions of higher
”degrees” by continuing the arguments and computations of [32].

On the mathematical level, the only result the authors know about multiplicity results for solitary waves to
the generalized KP-I equation (with nonlinearity W∂z1f(W)) is the paper [40], where the existence of at least
two solitary waves is shown with the help of Lusternik-Schnirelman category.

Before concentrating on the possible branches of travelling waves solutions associated with these explicit
KP-I solitary waves, we propose to study some of the properties of the latter through the computation of their
numerical Morse index.

3.2. Numerical Morse Index

In order to compute the Morse index associated to each explicit solitary wave, we study the linearised operator
around each explicit solution. The formal linearisation of the SW equation around one explicit solutionW gives
the operator L :

L (w)
def
= w − ∂2

z1w +Ww + ∂2
z2∂
−2
z1 w. (22)

The eigenvalue problem then reads

L (w) = λw. (23)

In order to get rid of the non local term ∂−2
z1 w, let us suppose that w writes as

w = ∂z1Θ.
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Figure 8. Representation of the third Lump solitary wave W3 of KP-I.

To stick with a variational formulation we then apply the operator ∂z1 to the equation (23). This gives, denoting

L1(Θ)
def
= −∂2

z1Θ + ∂4
z1Θ− ∂z1(W∂z1Θ)− ∂2

z2Θ, (24)

the following eigenvalue problem
L1(Θ) = −λ∂2

z1Θ. (25)

The latter has a variational formulation, that is L1 and ∂2
z1 are symmetric.

Furthermore, clearly, w1
def
= ∂z1W and w2

def
= ∂z2W belong to ker(L ), which means that for the lump W1 for

instance,

Θ1,1 =W1 = −24
3− z2

1 + z2
2

(3 + z2
1 + z2

2)2

and

Θ1,2
def
= 48

z1z2

(3 + z2
1 + z2

2)2

belong to ker(L1). However, notice that in section 2.3, we impose the symmetries (14), so that the linear
operators used in the algorithms are invertible. It was recently shown in [28] that the Kernel of the linearization
near W1 is exactly two-dimensional, that is the only smooth solutions to LW1

(w) = 0 such that w → 0 at
infinity are those in Span(∂z1W1, ∂z2W1). In the sequel, we concentrate on the eigenvalue problem (25) on the
whole R2 without symmetry to characterize each explicit Lump solutions.

We follow the strategy of discretization explicited in section 2. In other words, we recast the continuous
equations in the set of stretched variables. Doing so, the variational structure of the equations is kept in a
discrete weighted L2 space.

In the discrete setting, we then use classical centered finite difference formula and discrete integration by
parts.

We are thus led to the discrete generalized eigenvalue problem that corresponds to the discrete version of
(25): Find (λh, vh) such that

Ahvh = λhBhvh, (26)
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with Ah and Bh two symmetric matrices. In particular, the eigenvectors we represent are the Θ’s.
We present in table 1 some of the eigenvalues we obtain (from the smaller ones) for the first three Lump

solitary waves presented in this work. For each case, we clearly distinguish between negative eigenvalues (in

W1 W2 W3

-2.3539 -3.5842 -4.5767
-2.5724 -3.4423

-1.67e-04 -0.8433 -2.6165
-1.08e-04 -0.3267 -1.3121

-1.1904
0.677780 -8.775e-03 - 0.7577
0.865454 -5.521e-03 - 0.4686

-2.592e-03 -0.3815
-5.57e-04 -0.2185

0.2681 -6.908e-03
0.4564 -4.342e-03
0.5872 -2.793e-03
0.7915 -1.535e-03
0.8005 -1.518e-03
0.8229 -0.223e-03
0.9819
0.9846 0.1796
0.9912 0.2868
0.9965 0.3405

Table 1. First numerical eigenvalues for the first three lump solitary waves. The discretization
parameters have been set to R1 = R2 = 0.2 and N = 1000.

red), zero eigenvalues (with multiplicity, in blue) and positive ones (in black). We also provide some eigenvectors
(see figure 9 for W1, figures 10 for W2 and figures 11 for W3). The computation was done using N = 1000
points and the numerical eigenvectors have been normalized in the `∞-norm.

Concerning the Kernel, we plotted in figure 9 the eigenvectors for W1 corresponding to the eigenvalues
−1.67e− 04 and −1.08e− 04. We verified that they are identified (as expected) to Θ1,1 and Θ1,2. This is what
was expected from [28]. Furthermore, we point out that the generalized eigenvalue problem L1(Θ) = −λ∂2

z1Θ
is equivalent to the original one L (w) = λw, provided we work in the suitable energy space as described in [16].
In particular, the continuous spectrum is [1,+∞[. On the discrete level, we can indeed check that −0.3267 and
0.2681 (for W2) and −0.2185 and 0.1796 (for W3) are indeed eigenvalues since, when the meshsize tends to 0,
we can observe convergence to well-localized in space eigenvectors (see figures 10 and 11). In contrast and as
expected, when λ > 1, we observed that eigenvectors are oscillating and not well-localized: see figure 12.

From the results in table 1, it follows that the Morse index and the dimension of the Kernel of the linearised
operator L are as given in table 2. We find a Morse index equal to 1 for the first Lump W1, as expected if
it is indeed a/the ground state for KP-I and then minimizes the energy at fixed momentum. From the above
results, it is natural to conjecture that the Morse index of the n-th Lump solitary wave Wn is n2 and that: the
linearised operator L around the n-th Lump solitary wave Wn has a Kernel of dimension 2n. This conjecture
will be supported by arguments that will be given in the next section.
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Figure 9. Normalized eigenvectors for W1, contourplot.

Lump solitary wave Numerical Morse index Dimension of the Kernel
W1 1 2
W2 4 4
W3 9 6

Table 2. Computation of the numerical Morse index and of the dimension of the Kernel.
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Figure 10. Some normalized eigenvectors for W2, contourplot.

3.3. Parameter dependent families of multi Lump solutions

In [22], the authors study steady states to KP-I and show that the Lump solitary wave W2 actually belongs
to a two parameters family of solitary waves (the translations being removed) thus showing the degeneracy of
W2. We corrected a small misprint in the formula given in [22] and provide a complete degeneracy result for
W2 in the Proposition 1 below. The family is parametrized by the vectorial parameter α = (α1, α2) ∈ R2.

Proposition 1. For any α = (α1, α2) ∈ R2, we define φα2 for z = (z1, z2) ∈ R2, by

φα2 (z)
def
= (z2

1 + z2
2)3 + 25z4

1 + 90z2
1z

2
2 + 17z4

2 + α1z
3
1 − 3α2z

2
1z2 − 3α1z1z

2
2 + α2z

3
2

− 125z2
1 + 475z2

2 − α1z1 − 5α2z2 + α2
1/4 + α2

2/4 + 1875. (27)

For all α ∈ R2, the function φα2 is positive on R2, and one can define Wα
2

def
= −12∂2

z1 lnφα2 . Then, Wα
2 is a

solution to SW. Moreover, we have that

(a) the only polynomial functions φ of degree 6, positive, such that −12∂2
1 lnφ is a (nonsingular) solution

to SW are exactly those of the form µφα2 (z1 − z0
1 , z2 − z0

2) for some (z0
1 , z

0
2) ∈ R2, µ > 0 and α ∈ R2;

(b) for any α ∈ R2, the family of rational functions (∂z1Wα
2 , ∂z2Wα

2 , ∂α1Wα
2 , ∂α2Wα

2 ) is linearly indepen-
dent,

(c) W(0,0)
2 = W2, and in particular the Kernel of the linearised operator near W2 is at least of dimension

4.
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Figure 11. Some normalized eigenvectors for W3, contourplot.

Figure 12. Normalized eigenvector for W2 corresponding to the eigenvalue λ = 1.001.
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The misprint in [22] only concerns the terms α2
1/4 + α2

2/4. We also provide in appendix A the method that
we used to obtain the formula and the positivity of φα2 . For some of the pure algebraic computations, we used
Maple Software.

Let us point out that the degeneracy result of item (c) follows from item (b) and is in accordance with the
results obtained in the previous section.

Figure 13. Solitary wave solution Wα
2 for : (A) α = (0, 100); (B) α = (0, 1000); (C) α =

(0, 7000) On the left-hand side, surfacic plot; on the right-hand side, contourplot.
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Figure 14. Solitary wave solution Wα
2 for : (A) α = (100, 0); (B) α = (1000, 0); (C) α =

(7000, 0). On the left-hand side, surfacic plot; on the right-hand side, contourplot.

In figures 13 and 14, we represent for different values of the parameter α the graph of Wα
2 and its corre-

sponding contour plot. As was observed in [22], the solution Wα
2 evolves, when the free parameter α is large,

to three well separated W1 Lumps. In other words, W2 may be seen as some kind of superposition of three
W1 Lumps. This observation is in agreement with the computation of the Morse index for several values of the
parameters.
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(a)

(b)

Figure 15. (A) Representation of the evolution of several eigenvalues ofWα
2 , with α = (α1, 0),

with respect to α1; (B) Zoom for α1 large and in the vicinity of zero. The numerical parameters
have here been set to R1 = R2 = 0.05 and N = 1500.

We represent in figure 15, the evolution of the eigenvalues for several parameters α of the form (α1, 0), with
α1 > 0. Here we choose to focus on one direction of variation for the parameter α and positive values of the
parameter α1. Other cases gave the same qualitative behavior and, thus, interpretation. We start from the
situation α = (0, 0), with 4 negative numerical eigenvalues and a Kernel of dimension 4, and as α1 becomes large
the largest negative eigenvalue goes to zero, and the smallest positive one also. So that, for α1 → +∞, there
is asymptotically 3 negative eigenvalues corresponding to the 3 well-separated W1 Lumps, with the negative
eigenvalue ≈ −2.3539 of W1 and a Kernel of dimension 6 (that is 3 times the dimension of the Kernel of one
individual W1 Lump). To support this analysis, we show on figure 16 the set of first normalized eigenvectors
for parameter α = (7000, 0).

The first normalized vector in figure 16 corresponding to the numerical eigenvalue−2.656372 is localized in the
region of the (z1, z2)-plane of one of the asymptoticW1 Lump, and furthermore resemble the eigenvector for the
negative eigenvalue associated with W1 (see figure 9). The reader could furthermore convince himself that the
difference between the second eigenvector (for the numerical eigenvalue ≈ −2.234496) and the third eigenvector
(for the numerical eigenvalue ≈ −2.146401) gives a vector that is localized around another asymptoticW1 Lump
solution that resemble the eigenvector for W1 negative eigenvalue. Analogous conclusion would hold for the
sum. In figure 15, one notices that the smallest (negative) eigenvalue converges rather slowly to the negative
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Figure 16. Normalized eigenvectors for α = (7000, 0). The numerical parameters have here
been set to R1 = R2 = 0.05 and N = 1500.

eigenvalue ≈ −2.3539 of W1, which is not surprising since the distance between the three W1 Lumps is of the
order of |α|1/3. Finally, at least at the numerical level, it seems that the family is iso-spectral.

These multiplicity results have been extended in [20], where, for each N ∈ N∗, a set of rational singular
solutions to KP-II is given; the denominator has degree N(N + 1) and involves 2N free parameters. The
computations also work for KP-I, leading to the existence of such parameter solutions for the latter equation.
In Proposition 2 below, we provide an explicit expression of a three parameters family of solutions to which W3
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belongs to. This second family of solutions is indeed a 4-parameters dependent family that we express in terms
of the vector β ∈ R4. The expression has been obtained following the same lines as for W2 (see appendix A).

Proposition 2. For any β = (β1, β2, β3, β4) ∈ R4, we define φβ3 for (z1, z2) ∈ R2, by

φβ3 (z)
def
= (z2

1 + z2
2)6 + 2(z2

1 + z2
2)3(49z4

1 + 198z2
1z

2
2 + 29z4

2)

+ β1(z9
1 − 6z5

1z
4
2 − 8z3

1z
6
2 − 3z1z

8
2)− β2(3z8

1z2 + 8z6
1z

3
2 + 6z4

1z
5
2 − z9

2)

+ 735z8
1 + 18620z6

1z
2
2 + 37450z4

1z
4
2 + 35420z2

1z
6
2 + 4335z8

2

+ β1(300z5
1z

2
2 + 200z3

1z
4
2 − 484z1z

6
2) + β2(60z2

1z
5
2 + 40z4

1z
3
2 − 404z6

1z2)

+ β3(z7
1 − 9z5

1z
2
2 − 5z3

1z
4
2 + 5z1z

6
2) + β4(z7

2 − 9z2
1z

5
2 − 5z4

1z
3
2 + 5z6

1z2)

+ (75460/3 + 3β2
1/20 + 7β2

2/20)z6
1 + (220500 + 9β2

1/4− 3β2
2/4)z4

1z
2
2

+ (−14700− 3β2
1/4 + 9β2

2/4)z2
1z

4
2 + (798980/3 + 7β2

1/20 + 3β2
2/20)z6

2

+ β1β2(6z5
1z2/5 + 6z1z

5
2/5− 4z3

1z
3
2) + (13β3 − 102β1)z5

1 + (105β4 − 9170β2)z4
1z2

+ (2440β1 − 230β3)z3
1z

2
2 + (13000β2 − 190β4)z2

1z
3
2 + (45β3 − 2690β1)z1z

4
2 + (42β2 − 7β4)z5

2

+ (−5187875/3 + β3β1/2− β4β2/2− 69β2
1/4 + 107β2

2/4)z4
1

+ (16391725/3− β3β1/2 + β4β2/2 + 139β2
1/4− 21β2

2/4)z4
2 + (β1β4 − 88β2β1 + β2β3)z3

1z2 (28)

+ (565950 + 3β2
1/2− 21β2

2/2)z2
1z

2
2 + (β1β4 − 104β2β1 + β2β3)z1z

3
2

− (β3
1/20 + 245β3 + β2

2β1/20 + 13720β1/3)z3
1 + (84280β2/3− β2β

2
1/20− β3

2/20− 245β4)z3
2

+ (76860β2 + 3β2β
2
1/20 + 3β3

2/20− 665β4)z2
1z2 + (3β3

1/20 + 535β3 + 3β2
2β1/20 + 14460β1)z1z

2
2

+ (−20β3β1 + 159786550/3 + 3137β2
2/4 + 2205β2

1/4 + β2
3/4 + β2

4/4− 25β4β2)z2
1

+ (β2
3/4− 35β3β1 + 300896750/3− 171β2

2/4 + 4121β2
1/4 + β2

4/4− 10β4β2)z2
2

+ (3β1β4 − 278β2β1 + 3β2β3)z1z2

+ (−β3β
2
1/20 + 12005β3/3 + β2

2β3/20− 131β2
2β1/20 + 708295β1/3 + β2β1β4/10 + 49β3

1/20)z1

+ (β2β1β3/10− 151β2β
2
1/20 + 18865β4/3− 2584505β2/3− β2

2β4/20 + 29β3
2/20 + β2

1β4/20)z2

− 213β4β2/2 + 878826025/9 + 3β2
3/4 + β2

2β
2
1/200− 57β3β1/2

+ 3β2
4/4 + 57227β2

2/12 + β4
1/400 + β4

2/400 + 15043β2
1/12.

We define P3
def
= {β ∈ R4 s.t. infz∈R2 φβ3 (z) > 0}. P3 is an open set containing β = (0, 0, 0, 0). For all β ∈ P3,

one defines Wβ
3

def
= −12∂2

z1 lnφβ3 . Then Wβ
3 is a solution to SW. Moreover, we have that

(a) the only polynomial functions φ of degree 12, positive, such that −12∂2
1 lnφ is a (nonsingular) solution

to SW are exactly those of the form µφβ3 (z1 − z0
1 , z2 − z0

2) for some (z0
1 , z

0
2) ∈ R2, µ > 0 and β ∈ P3.

(b) for any β ∈ R4, the family of rational functions (∂1Wβ
3 , ∂2Wβ

3 , ∂β1
Wβ

3 , . . . , ∂β4
Wβ

3 ) is linearly indepen-
dent.

(c) W(0,0,0,0)
3 =W3. In particular, the Kernel of the linearised operator near W3 is of dimension at least 6.

Let us point out that item (c) is in accordance with the results obtained in the previous section. In Figure

17, we pick two relevant values of the parameter β and represent the corresponding solution Wβ
3 . Similar

behaviour (as in the case of Wα
2 ) appears: the solution Wβ

3 evolves, when the free parameter β is large, to
six well separated W1 lumps. This observation is in agreement with the results of the computation the Morse
index for several values of the parameters, where we observe the same qualitative behaviour as for Wα

2 . In all
cases, we start from the situation β = (0, 0, 0, 0), with 9 negative eigenvalues and a kernel of dimension 6, and
as β becomes large the three largest negative eigenvalue goes to zero, and the three smallest positive one also.
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(a)

(b)

Figure 17. Solitary wave solution Wβ
3 for : (A) β = (10, 100, 10, 0); (B) β = (10, 2000, 10, 0).

On the left-hand side, surfacic plot; on the right-hand side, contourplot.

So that, for |β| → +∞, there is asymptotically 6 negative eigenvalues (corresponding to the 6 W1 Lumps, with
the eigenvalue ≈ −2.3539) and a Kernel of dimension 12 (that is 6 times the dimension of the Kernel of one
individual W1 Lump). We also observed the same behaviour as β becomes large regarding to the localization
of the eigenvectors around the regions where the 6 the asymptotic Lumps W1 seem to localize as in the case of
Wα

2 . We thus do not reproduce the plots and analysis here.
We now continue with the study of multiple branches of travelling wave solution to GP issued from the

explicit KP-I solitary waves. We shall actually focus only on the solutions W2 and W3 exhibited in section 3.1.

The analogous question for the whole parameter dependent family of solutions Wα
2 and Wβ

3 presented in this
section is out of the scope of this article, but will be investigated in the future. Indeed, whereas for W2 and W3

the Kernel can be removed thanks to the imposed symmetries, the question of the degeneracy for the parameter
dependent solutions will deserve a specific study.
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4. Other branches of travelling wave solutions to GP with KP-I asymptotics

4.1. The Energy-Momentum diagram for GP in 2D: the JR branch

We begin with the well known case of the JR branch of travelling waves obtained in [25], for which the
Energy-Momentum diagram is given in Figure 1. This branch is characterized by two vortices for c ≈ 0 and
by the KP-I asymptotic limit associated with the W1 Lump solitary wave when c ≈ cs. Actually, one may
obtain numerically this branch starting either from c ≈ cs and an approximate solution given by (8)-(10) with
A related to the Lump solitary wave W1 through (18), either from c ≈ 0 and an approximate solution given
by (4), provided we have an approximation of the vortex profile a1 (see subsection 5.1). For details, we refer
the reader to [25] and [15]. We give two types of representations of the travelling waves solutions on the JR
branch. In figure 18, we plot, for various speeds c, on the right-hand side, the 3d plot of the modulus of the
travelling wave in the domain {x1 > 0} (in the domain {x1 6 0}, it suffices to use the symmetry (14)) and on
the left-hand side the corresponding position on the Energy-Momentum diagram. Figure 19 contains contour
plot views on the whole plane R2. One clearly sees the evolution as the speed of the wave increases: for c ≈ 0,
we have two well-separated vortices at distance ≈ 1/c one from another; they get closer when c increases and
at some step merge, and for higher speeds, vorticity is lost; for c ≈ cs, the modulus is uniformly close to 1 and
the travelling wave is a rarefaction pulse as in figure 5.

On the numerical level, two approaches can be used to obtain this branch. The first one, used in [25], is based
on Newton’s algorithm (see subsection 2.3); the other one is based on the variational properties of the problem
and looks for finding (local) minimizers to suitable functionals (cf. [15]). The local minimizing technique has
many advantages over a continuation method; it is quick, systematic (relying on a heat flow technique) and
precise (see [15] for details). However, to try to catch numerically the other possible branches of solutions arising
from the second and third Lump as described in section 3, we can not rely on such a minimization procedure.
Therefore, we focus on continuation type methods as described in subsection 2.3.

4.2. New branch of travelling waves associated with the second lump W2

Let us concentrate on the second Lump W2, that has the expression (20). We use the scalings (7) and
initialize a continuation method with c ≈ cs via the ansatz (8)-(10) and employing (20).

We plot the resulting Energy-Momentum diagram in Figure 20. The blue curve is the JR branch with the
transonic limit given by theW1 Lump (see subsection 4.1). The purple curve represents the Energy-Momentum
diagram obtained starting from the KP-I limit with the second Lump W2.

Figures 21 and 22 depict the evolution of the modulus of the numerical travelling wave solution for various
(decreasing) speeds. In figure 23, we give the corresponding contourplots. Similarly to the ground state branch,
the minimum value of the modulus of the solution decreases until vortices appear by pairs. For c = 0.73, we see
four vortices, and for c further decreasing, the local minimum of the modulus on the x2 axis decreases down to
zero and then two additional vortices appear: we end-up with six distinguishable vortices.

4.3. New branch of travelling waves associated with the third lump W3

We now turn to the third Lump solitary wave W3 given by (21). Analogously, we make use of (7) and
initialize the continuation with c ≈ cs via the ansatz (8). We plot the resulting Energy-Momentum diagram in
Figure 24.

We obtain a third branch of travelling waves solutions. Figures 25 and 26 describe the evolution of the
modulus of the computed travelling wave solution that we compute. In a similar fashion, the minimum and
local minima of the modulus decrease as the speed decreases down to the speed ≈ 0.9 (see Figure 26 (A)). Then,
vortices appear and we observe the same kind of splitting phenomenon as for the branch associated with the
second Lump. At speed ≈ 0.685, ten vortices are clearly distinguishable.
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(a)

(b)

(c)

Figure 18. Travelling wave solution of the JR branch for speeds: (A) c = 1; (B) c = 0.6; (C)
c = 0.2. On the left-hand side, position in the Energy-Momentum diagram (spotted with a
black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

Figure 19. Contourplots of the travelling waves of the JR branch: (A) c = 1.35; (B) c = 1;
(C) c = 0.6; (D) c = 0.2.

4.4. Conclusion

Our numerical simulation put forward two new branches of travelling wave solutions corresponding to excited
states; these branches are distinct from the JR state branch and from each other. As can be checked in figures
19 (D), 23 (F) and 27 (F), we can conjecture that the branch associated with the n-th Lump solitary wave Wn

eventually exhibits 2(2n − 1) vortices. One can check that the degree of these vortices are ±1 by considering
the phase of the solution. The precise charge of each vortex is given in figure 28. In particular, we notice that
for the JR branch as well as for the branches associated with the W2 and the W3 Lumps, the total charge in
the upper half-space is always equal to one. This is in agreement with the fact that the number of vortices is
of the form twice an odd integer.

For the W2 branch (resp. W3 branch), we have been able to reach the speed 0.27 (resp. 0.685). Below
these speeds, our algorithms stop converging. In particular, we can not claim that the branch would continue
up to small speeds solutions with well-separated vortices as for the JR branch. As a consequence, for the two
endpoint travelling waves (for speeds 0.27 and 0.685), the term vortex only means a zero of the wave function,
and we do not claim any approximation by the vortices V±1 (which is valid only for small c). Another argument
suggesting that it is not reasonnable to expect travelling waves with small speeds for the branches associated
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Figure 20. Energy-Momentum diagram with the JR branch (blue) and the new branch asso-
ciated with the second Lump W2 (purple).

to W2 and W3 is that there is no solution to the nonlinear system (6), that is no critical point to the Kirchhoff
action F , with the symmetries we have imposed and six or ten (or even four) vortices.

5. Vortex branches

As motivated in subsection 1.4, we wonder whether (+2,−2) and (+3,−3) vortex configuration would gener-
ate a new branch of travelling waves solutions to GP or even connect to the branches obtained in the previous
section. These configurations can be designed and used as initializations in our algorithm for c ≈ 0.

5.1. Approximating the vortices

The strategy adopted in this work consists in first finding a Padé approximant for the vortex profile of degree
n, an (see section 1.2 for notations), with here n ∈ {1, 2, 3} from which one would create the ”two vortices”
configuration. A shooting method allows to compute an approximate numerical solution to (3) that will serve
as a reference solution, denoted aref

n . For this problem, in order to avoid the singularities of the ODE (3) (the
term r 7→ −n2an/r

2 in the ODE is the source of problems), it is convenient to implement the shooting method

on the function r 7→ an(r)/rn. Indeed, from [24], we know that yn(r)
def
= an(r)/rn is an even power series of

positive radius (thus the singularity is removed). Therefore, we apply the shooting method on the ODE for
yn given by: y′′n + (2n + 1)y′n/r = yn(r2ny2

n − 1), where we impose y′n(0) = 0 and the shooting parameter is

simply yn(0). For n = 1, we obtain y1(0) = aref
1
′
(0) ≈ 0.58318949586, which is slightly different from the value

≈ 0.5827811878 in [3].
Here we envisage two strategies for computing the Padé approximants. The first one is taken from [3] and

consists in looking for a Padé of the form

aPadé
1 (r)

def
= r

√
a0 + a1r2

1 + b1r2 + b2r4
. (29)

Since a1(r) → 1 for r → +∞, it is natural to set b2 = a1. To determine the other coefficients, we substitute
aPadé

1 in the equation (3) and Taylor expand the residual for r → 0. We obtain three algebraic equations by
cancelling the first coefficients of this Taylor expansion, and solve this system. We will refer to this method as
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(a)

(b)

(c)

Figure 21. Travelling wave solution of the branch associated with the second Lump W2 for
speeds: (A) c = 1.22; (B) c = 0.96; (C) c = 0.73. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a)

(b)

(c)

Figure 22. Travelling wave solution of the branch associated with the second Lump W2 for
speeds: (A) c = 0.57; (B) c = 0.41; (C) c = 0.27. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

(e) (f)

Figure 23. Contourplots of the travelling waves of the branch associated with the W2 Lump:
(A) c = 1.22; (B) c = 0.96; (C) c = 0.73; (D) c = 0.57; (E) c = 0.411; (F) c = 0.27.
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Figure 24. Energy-Momentum diagram with the JR branch (blue), the branch associated
with the second lump W2 (purple) and with the third Lump W3 (green).

Berloff’s Least square
L2 error 0.0250530 0.0028370
L∞ error 0.0097847 0.0013490

Table 3. Vortex of degree 1: L2 and L∞ errors between the Padé approximants and the
numerical solution obtained with the shooting method.

Berloff’s method, and this gives

aBe
1 (r)

def
= r

√
11
32 + 11

384r
2

1 + 1
3r

2 + 11
384r

4
= r

√
0.3437 + 0.0286r2

1 + 0.3333r2 + 0.0286r4
. (30)

The advantage of this method is that we do not need to solve numerically the ODE (3) by a shooting method.
The second method, referred to as the least square method, consist in fitting a Padé approximant to the numerical
data given by the numerical solution aref

1 obtained by the shooting method. In order to do so, we use a least
square method and obtain

als
1 (r)

def
= r

√
0.3350601 + 0.0494196r2

1 + 0.3725704r2 + 0.0494196r4
. (31)

We may notice that a1(r)/r → 0.58318949586 when r → 0. This has to be compared with
√

11/32 ≈ 0.5863020

and
√

0.3350601 ≈ 0.5788438. We may also compute the L2 and L∞ errors between aBe
1 (resp. als

1 ) and aref
1

(see table 3). On figure 29, we see that aBe
1 gives a very good approximation, and that als

1 provides an excellent
approximation.

We now focus on the degrees 2 and 3 that have not yet been addressed.

5.1.1. Vortex of degree 2

The solution obtained by the shooting method gives the approximate limit r−2aref
2 (r) → 0.153099102859

when r → 0. In [3], the coefficients of the Padé approximant have been computed (with Berloff’s method) and
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(a)

(b)

(c)

Figure 25. Travelling wave solution of the branch associated with the third Lump W3 for
speeds: (A) c = 1.34; (B) c = 1.24; (C) c = 1.04. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a)

(b)

(c)

Figure 26. Travelling wave solution of the branch associated with the third Lump W3 for
speeds: (A) c = 0.91; (B) c = 0.84; (C) c = 0.685. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

(e) (f)

Figure 27. Contourplots of the travelling waves of the branch associated with the W3 Lump:
(A) c = 1.34; (B) c = 1.24; (C) c = 1.04; (D) c = 0.91; (E) c = 0.84; (F) c = 0.685.



34

Figure 28. The charges of the vortices for the endpoint solution of the (A) W2-branch for
c = 0.27; (B) W3-branch for c = 0.780.

Figure 29. Profile of the degree 1 vortex a1 (continuous red line) and Padé approximants:
aBe

1 (30) in blue stars (left) and als
1 (31) in green squares (right)

give the expression

aBe
2 (r)

def
= r2

√
0.02564396012 + 0.000626418393r2

1 + 0.1910941884r2 + 0.01969625361r4 + 0.000626418393r6
(32)

that yields r−2aBe
2 (r)→

√
0.02564396012 ≈ 0.160137316. Using the least square method, we obtain

als
2 (r)

def
= r2

√
0.0208654 + 0.0010475r2

1 + 0.1504765r2 + 0.0243630r4 + 0.0010475r6
, (33)
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Figure 30. Profile of the degree 2 vortex aref
2 (continuous red line) and Padé approximants:

aBe
2 (32) in blue stars (left); als

2 (33) in green squares (right)

Berloff’s Least square
L2 error 0.1721167 0.0066131
L∞ error 0.0619714 0.0084585

Table 4. Vortex of degree 2: L2 and L∞ errors between the Padé approximants and the
numerical solution obtained with the shooting method.

that gives the asymptotic r−2als
2 (r) →

√
0.0208654 ≈ 0.1444486. In figure 30, we plot aref

2 , aBe
2 , als

2 . We also
measure the L2 and L∞ errors between aBe

2 (resp. als
2 ) and aref

2 (see table 4). We notice a much better fit if one
uses the least square method. Notice for instance that aBe

2 reaches values larger than 1.
In order to improve the quality of the Padé approximation, one could imagine to consider a higher degree

Padé approximant, namely, for our problem, replacing in the square root the rational function by the quotient of
a polynomial of degree 4 by a polynomial of degree 8. With Berloff’s method, we obtain the following expression
for the Padé approximant of the vortex of degree 2 :

aBe
2bis(r)

def
= r2

√
0.0235754388705356 + 0.001903033787r2 + 0.00007439596524r4

1 + 0.2473877000r2 + 0.03223416114r4 + 0.002100897817r6 + 0.00007439596524r8
(34)

and with the least square method

als
2bis(r)

def
= r2

√
0.02247580− 0.0016723r2 + 0.0002102r4

1 + 0.0477937r2 + 0.0242546r4 − 0.0008577r6 + 0.0002102r8
(35)

with the corresponding plots (see figure 31) and the errors given in table 5. Comparing with aBe
2 , it is noticeable

that the L2 error is almost the same and the L∞ error is multiplied by 2. If we compare als
2 with als

2bis, we may
notice that the errors are not significantly improved.
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Figure 31. Profile of the degree 2 vortex aref
2 (continuous red line) and the Padé approximant

of higher degree aBe
2bis (32) (blue stars).

Berloff’s least square
L2 error 0.1721125 0.0040721
L∞ error 0.1225094 0.0079088

Table 5. Vortex of degree 2 and Padé approximants of higher degree: L2 and L∞ errors with
the numerical solution obtained with the shooting method.

5.1.2. Vortex of degree 3

We explore the case of the degree 3 vortex in an analogous way. The approximate asymptotic given by
the numerical solution obtained by the shooting method reads now aref

3 (r)/r3 → 0.026183420716 when r → 0,

Berloff’s method gives aBe
3 (r)/r3 →

√
0.0007951684094 ≈ 0.028198731 and the expression

aBe
3 (r)

def
= r3

√
0.0007951684094 + 0.00000864664692r2

1 + 0.1358739820r2 + 0.009952997746r4 + 0.0005274760603r6 + 0.00000864664692r8
. (36)

The least square method gives als
3 (r)/r3 →

√
0.0007568 ≈ 0.0275100 and

als
3 (r)

def
= r3

√
0.0007568 + 0.0000041r2

1 + 0.1846304r2 + 0.0050719r4 + 0.0008052r6 + 0.0000041r8
(37)

We plot these approximations in figure 32 and the errors in table 6. Same remarks as for the degree 2 vortex
hold.
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Figure 32. Profile of the degree 3 vortex a3 and Padé approximants: aBe
3 (36) in blue stars

(left); als
3 (37) in green squares (right)

Berloff’s Least square
L2 error 0.3215535 0.0062027
L∞ error 0.1063004 0.0094989

Table 6. vortex of degree 3: L2 and L∞ errors with the numerical solution obtained with the
shooting method.

5.1.3. Two vortices configurations

The travelling vortex solution with small speed that we would like to use consists in two vortices of degrees
+n and −n at large distance from each other (in a similar way as in the degree one case, see [15] for details).
A good approximation of this solution for c small would be given by

uapp
±n vortices(x1, x2) = an(|(x1, x2−c−1)|)

(
x1 + i(x2 − c−1)

|(x1, x2 − c−1)|

)n
×an(|(x1, x2+c−1)|)

(
x1 − i(x2 + c−1)

|(x1, x2 + c−1)|

)n
. (38)

We use this expression in order to initialize our continuation algorithm with small speeds.

5.2. (+2,−2) vortex configuration

The (+2,−2) configuration depicted in Figure 33 is obtained by using (38) and the Padé approximant
defined in the previous section with the least square method. It is not a travelling wave solution for GP, but
has nevertheless allowed us to achieve a numerical solution. Let us mention that the relative residual obtained
with the least square Padé approximant is better than Berloff’s.

We obtain a new branch of travelling wave solutions using our algorithm, which are represented in figure 34.
It is remarkable that as the speed increases the ±2 vortices split into two ±1 vortices. The distance between
two +1 vortices (resp. two −1 vortices) is significantly smaller than the distance between vortices of degree +1
and −1. As for the W2 and the W3 branches, our numerical methods no longer converge for c > 0.386. These
solutions are clearly qualitatively different from those on the branches obtained in section 4. The complete
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Figure 33. Initialization for the (+2,−2) configuration. Modulus on the left and contourplot
on the right.

Energy-Momentum diagram augmented with the (+2,−2) branch (in black) is plotted on Figure 35.

5.3. (+3,−3) vortex configuration

We depict the (+3,−3) configuration for two different speeds in Figures 36 and 37. This time, the initial
vortex of degree three splits into three vortices of degree one, in a same way as in the previous subsection. We
have then obtained all the branches of the Energy-Momentum diagram of Figure 2. Here again, our numerical
methods no longer converge for c > 0.507. In figure 37 (B), we see two rather large regions in the half-plane
{x1 > 0}, near the points (3,+6) and (3,−6), where the wave function has small modulus. In view of the
evolution as c increases, we can think that each of these regions contains exactly one zero of the travelling wave,
respectively of charge +1 and −1, and one point of local minimum for the modulus.

6. Conclusion

We have investigated the existence of travelling waves for the two dimensional GP equation. Besides the
well-known Jones-Roberts branch, our numerical approach shows the existence of at least four other branches
of travelling waves. Two of them are related to the KP-I limit c → cs through the existence (see [32]) of
explicit solitary waves for KP-I different from the Lump (the latter being probably the ground state). The
last two branches are associated with critical points of the Kirchhoff action involving vortices of degree larger
than one. Furthermore, we also took advantage of the fact that the solitary waves exhibited in [32] belong to
a family of lumps solitary waves to KP-I with free parameters and study their spectral properties. The study
of their persistence as travelling waves to GP (as we did in this paper for the solutions exhibited in [32]) is a
very interesting question, beyond the scope of this work, especially because the degeneracy (that we managed
to kill in this work by using symmetries) will be a delicate issue to solve. This will be the subject of further
investigation.

In a future work, we also wish to investigate the dynamical stability issues concerning these travelling waves.
The travelling waves on the Jones-Roberts branch are orbitally stable (see [14]), and this is related to the
concavity of the curve P 7→ E combined with the fact that the Hessian of the action d2(E− cP ) has exactly one
negative eigenvalue. The situation is actually not very clear for our new branches since there are presumably
many negative eigenvalues. We also hope to be able to give some rigorous existence results for these branches.

We are convinced that these new branches also exist in space dimension three, in an axisymmetric setting.
For the JR branch, the three dimensional case has already been studied in [25] (see [6, 8, 11,14,30] for rigorous



39

(a)

(b)

(c)

Figure 34. Travelling wave associated with the (+2,−2) configuration for speeds: (A) c = 0.1;
(B) c = 0.3; (C) c = 0.386. On the left-hand side modulus; on the right-hand side contourplot.

mathematical results). In the vortex limit c→ 0, the travelling wave is a vortex ring of large radius. The three
dimensional analogue of our branch with (+2,−2) or (+3,−3) vortices would then be travelling waves with two
or three parallel vortex rings at small distance one from another. This should probably be related to travelling
vortex knots in Bose condensates as studied in [35] when the poloidal radius is rather small.
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Figure 35. Energy-Momentum diagram with the additional branch (in black) associated with
the (+2,−2) vortex configuration.

Figure 36. Initialization for the (+3,−3) configuration. Modulus on the left and contourplot
on the right.
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(a)

(b)

Figure 37. Travelling wave associated with the (+3,−3) configuration for speeds: (A) c = 0.3;
(B) c = 0.507. On the left-hand side modulus; on the right-hand side contourplot.

Appendix A. On the derivation of the formulas (27) and (28)

As in [32], we apply the Hirota method and look for a solution to

∂z1W − ∂3
z1W +W∂z1W + ∂2

z2∂
−1
z1 W = 0 (SW)

under the form W = −12∂2
1 lnφ. This puts (SW) in bilinear form:

φ(∂2
z1φ+ ∂2

z2φ− ∂
4
z1φ) = (∂z1φ)2 + (∂z2φ)2 + 3(∂2

z1φ)2 − 4∂z1φ∂
3
z1φ. (39)

We look for polynomial solutions φ to (39). If φ has degree d, then, in (39), φ∆φ and (∂z1φ)2 + (∂z2φ)2 have

degree 6 2d− 2 whereas φ∂4
z1φ and 3(∂2

z1φ)2 − 4∂z1φ∂
3
z1φ have degree 6 2d− 4. We decompose φ =

∑d
j=0 φ̇j ,

where φ̇j is homogeneous of degree j, insert this into (39) and cancel out the terms of homogeneous degree

2d− 2 to 0 one by one. By considering the terms of homogeneous degree 2d− 2, we obtain the equation for φ̇d:

φ̇d∆φ̇d = (∂z1 φ̇d)
2 + (∂z2 φ̇d)

2. (40)

It turns out that for even d, (z2
1 +z2

2)d/2 is a solution to (40). Actually, one can check that the only homogeneous
solutions to (40) of degree d are multiples of (z2

1 +z2
2)d/2. The lump solitary wavesW2 andW3 we are interested
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in correspond to the cases d = 6 and d = 12 (and more generally, as mentioned in [32], the case d = m(m+ 1)
for m a positive integer). When j decreases from d − 1 to 0, since the equation is polynomial in φ and its
derivatives, we obtain linear equations of the form

φ̇d∆φ̇j + φ̇j∆φ̇d − 2∂z1 φ̇d∂z1 φ̇j − 2∂z2 φ̇d∂z2 φ̇j

= (z2
1 + z2

2)d/2−1

[
(z2

1 + z2
2)∆φ̇j + d2φ̇j − 2d(z1∂z1 + z2∂z2)φ̇j

]
= Ṡj , (41)

where the source term Ṡj depends on φ̇d, . . . , φ̇j+1 and contains only the terms of degree d − 2 + j of the

complete source term Sj (including the contributions of φ̇d, . . . , φ̇j+1). When we solve this equation, it may
happen that there is a nontrivial kernel, which produces free parameters. Moreover, we have to impose that the
source term belongs to the image of the operator on the left-hand side (in particular, it has to be factorizable
by (z2

1 + z2
2)d/2−1), which produces some constraints on the free parameters.

For instance, for d = 6, we obtain S5 = 144z6
1z

2
2 − 72z4

1z
4
2 + 144z2

1z
6
2 + 180z8

1 + 180z8
2 = 36(z2

1 + z2
2)2(5z4

1 −
6z2

1z
2
2 + 5z4

2), Ṡ5 = 0, and φ̇5 = τ1(z5
1 + z4

1z2 + 2z3
1z

2
2 + 2z2

1z
3
2 + z1z

4
2 + z5

2) + τ2(z4
1z2 + 2z2

1z
3
2 + z5

2) for some

parameters τ1, τ2 ∈ R. This kernel was expected since the two space derivatives ∂1φ̇6 and ∂2φ̇6 are linearly
independent solutions to the homogeneous equation (41). In the following, we shall remove the invariance by

translation by imposing τ1 = τ2 = 0. Then, we obtain S4 = Ṡ4 = S5 = 36(z2
1 + z2

2)2(5z4
1 − 6z2

1z
2
2 + 5z4

2)

and φ̇4 = α4z
4
1 + α3z

3
1z2 + 90z2

1z
2
2 + α3z1z

3
2 + (42 − α4)z4

2 for some constants α3, α4. Then, for j = 3,

we obtain Ṡ3 = 0 and φ̇3 = α1z
3
1 − 3α2z

2
1z2 − 3α1z1z

2
2 + α2z

3
2 for some parameters α1, α2. When j = 2,

we obtain −Ṡ2 = −4α2
4z

6
1 + 132z6

1α4 − α2
3z

6
1 − 36α3z

5
1z2 − 108α4z

4
1z

2
2 − 12α2

4z
4
1z

2
2 − 3α2

3z
4
1z

2
2 + 5400z4

1z
2
2 −

648α3z
3
1z

3
2 − 32400z2

1z
4
2 + 1116α4z

2
1z

4
2 − 3α2

3z
2
1z

4
2 − 12α2

4z
4
2z

2
1 − 36α3z1z

5
2 − 9000z6

2 + 204α4z
6
2 − 4α2

4z
6
2 −α2

3z
6
2 . It

turns out that Ṡ2 is not factorizable by (z2
1 + z2)2 unless (α3, α4) = (0, 25). Under this constraint, we obtain

Ṡ2 = −800(z2
1 + z2

2)2(z2
1 − 8z2

2) and φ̇2 = −125z2
1 + 475z2

2 . For j = 1, we have Ṡ1 = −24(z2
1 + z2

2)2(α1z1 + 5α2z2)

and φ̇1 = −α1z1 − 5α2z2. Finally, Ṡ0 = 9(z2
1 + z2

2)2(7500 + α2
1 + α2

2) and φ̇0 = α2
1/4 + α2

2/4 + 1875, which gives
S−1 = 0, that is we have a solution to (39).

The computations for d = 12 are similar.

In order to show that for any α ∈ R2 and z ∈ R2, we have φα2 (z) > 0, we first write

α1z
3
1 − 3α1z1z

2
2 − α1z1 + α2

1/4 = (α1/2 + z3
1 − 3z1z

2
2 − z1)2 − z6

1 + 6z4
1z

2
2 − 9z2

1z
4
2 + 2z4

1 − 6z2
1z

2
2 − z2

1

and symmetrically, by exchanging the indices 1 and 2 to infer

φα2 (z) = (z2
1 + z2

2)3 + 27z4
1 + 78z2

1z
2
2 + 19z4

2 + (α1/2 + z3
1 − 3z1z

2
2 − z1)2 + (α2/2 + z3

2 − 3z2
1z2 − z2)2

− z6
1 − z6

2 − 3z4
1z

2
2 − 3z2

1z
4
2 − 126z2

1 + 474z2
2 + 1875

= 27z4
1 + 78z2

1z
2
2 + 19z4

2 + (α1/2 + z3
1 − 3z1z

2
2 − z1)2 + (α2/2 + z3

2 − 3z2
1z2 − z2)2

− 126z2
1 + 474z2

2 + 1875.

The result follows from the lower bound 27z4
1 − 126z2

1 > −147.
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[5] F. Béthuel, P. Gravejat, and J-C. Saut. On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves.

Dynamics of PDE, 5(3):241–280, 2008.
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[14] D. Chiron and M. Mariş. Traveling Waves for Nonlinear Schrödinger Equations with Nonzero Conditions at Infinity. Arch.
Rational Mech. Anal., 226(1):143–242, 2017.

[15] D. Chiron and C. Scheid. Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension two.

Journal of Nonlinear Science, 26(2):171–231, 2016.
[16] A. de Bouard and J.-C. Saut. Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. H. Poincaré Anal.
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