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MULTIPLE BRANCHES OF TRAVELLING WAVES FOR THE

GROSS-PITAEVSKII EQUATION

David Chiron1 and Claire Scheid2

Abstract. Explicit solitary waves are known to exist for the Kadomtsev-Petviashvili-I (KP-I) equa-
tion in dimension 2. We first address numerically the question of their Morse index. The results confirm
that the lump solitary wave has Morse index one and that the other explicit solutions correspond to
excited states. We then turn to the 2D Gross-Pitaevskii (GP) equation which in some long wave regime
converges to the (KP-I) equation. Numerical simulations already showed that a branch of travelling
waves of (GP) converges to a ground state of (KP-I), expected to be the lump. In this work, we perform
numerical simulations showing that the other explicit solitary waves solutions to the (KP-I) equation
give rise to new branches of travelling waves of (GP) corresponding to excited states.

1991 Mathematics Subject Classification. 35B38, 35C07, 35J61, 35Q40, 35Q55.

May 19, 2017.

1. Motivations

1.1. (NLS) with nonzero condition at infinity

The nonlinear Schrödinger equation (NLS) with nonzero condition at infinity appears in a variety of physical
problems: condensed matter physics (see [28]), Bose-Einstein condensates and superfluidity (cf. [30], [1]), as
well as nonlinear Optics (see [22]). Depending on the physical problem, several nonlinearities may be of interest
(see the examples and references quoted in [11, 14]). The most popular one is of cubic type and leads to the
well-known Gross Pitaevskii (GP) equation for which NLS equation writes:

i
∂Ψ

∂t
+ ∆Ψ = Ψ(|Ψ|2 − 1). (GP)

In this work, we shall consider GP equation in space dimension two and with the following condition at infinity:
|Ψ| → 1 as |x| → +∞. The GP equation is the Schrödinger flow associated with the Ginzburg-Landau energy

E(u) =

∫
R2

|∇u|2 +
1

2

∫
R2

(|u|2 − 1)2.
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For a nowhere vanishing solution, GP can be recast into a hydrodynamical form, via the Madelung transform
Ψ =

√
ρeiϕ: 

∂tρ+ 2∇ · (ρ∇ϕ) = 0

∂tϕ+ |∇ϕ|2 + ρ− 1 =
∆
√
ρ

√
ρ
.

(1)

This is an incompressible irrotational Euler type system with an additional term called quantum pressure in
the right-hand side of the second, Bernoulli type, equation. Neglecting the quantum pressure and linearizing
around the constant state (ρ = 1, ϕ = 0) corresponding to the condition at infinity, one obtains the free wave
equation:  ∂ta+∇ · V = 0

∂tV − 2∇a = 0

with (a, V ) = (
√
ρ− 1,∇ϕ). This allows for the definition of the speed of sound cs =

√
2 (see [1,28] for details).

In this work, we furthermore focus on the travelling waves solutions. We consider the ansatz Ψ(t, (x1, x2)) =
u(x1 − ct, x2), with (t, x1, x2) ∈ R3, that is representing a wave travelling in the direction x1 with speed c. The
profile u of the travelling wave then solves:

ic∂x1u−∆u+ u(|u|2 − 1) = 0. (TWc)

The condition at infinity is now u → 1, up to a phase change. Indeed, it was conjectured in [21] that u tends
to 1 at some algebraic rate, and this has been proved (if u has finite energy) in [19].

In addition to E, the momentum is also a conserved quantity, reflecting the invariance by space translation
of GP, that is also central to illustrate the qualitative behavior of the travelling waves solutions. For u tending
suitably to 1 at infinity, its first component reads

P (u) =

∫
R2

〈i(u− 1), ∂x1
u〉,

with 〈·, ·〉 the real scalar product on C (the second component
∫
R2〈i(u− 1), ∂x2u〉 is also conserved but will be

useless for the travelling waves propagating in the x1 direction). The study of the behavior of the energy E and
the momentum P with speed c is at the heart of the understanding of (among others) the stability properties
of the travelling wave solutions. Thus the Energy vs Momentum diagram given as a speed parametrized curve
is especially instructive. We refer to the pioneering work of C.A. Jones, P.H. Roberts in two space dimensions
and tridimensional axisymmetric for GP in [21] and to the more recent works of [11, 14] for more general non
linearities. In all these studies, the computed solutions are critical points of the action Fc = E − cP that
are characterized as minimizers of some functional under a single constraint (for instance in [21], the energy is
minimized at fixed momentum). Therefore a Morse index of one is expected, i.e. the Hessian of Fc has only
one negative eigenvalue. We recall in figure 1 the diagram for the case of 2D travelling waves of GP (issued
from [21]), and we shall call this branch the JR branch. Several mathematical results are known about this JR
branch: see [8], [5], [25] (in dimension larger than two) and [13].

In this paper, on the contrary to the previous mentioned references, we propose to numerically investigate
the possible existence of solutions to (TWc), which may be of Morse index > 1; that is excited states. We give
a positive answer to this question. As a matter of fact, we obtain that there exists at least 4 new branches of
travelling wave solutions in the Energy-Momentum diagram as depicted in figure 2 (the blue branch corresponds
to the blue one in figure 1 and is the JR branch). It is highly plausible that there exist many other ones. To
construct these new branches, we strongly rely on the knowledge of the asymptotics c→ 0 and c→ cs.
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Figure 1. Energy-Momentum diagram for 2D travelling waves of GP: the Jones-Roberts branch

Figure 2. Energy-Momentum diagram with the multiple branches of 2D travelling waves of GP
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Figure 3. Travelling wave of the JR branch for c = 0.2 with two (+1,−1) vortices ( [21])

1.2. Vortex asymptotics c ≈ 0.

A vortex is a particular stationary solution of the GP equation, see [18]. In polar coordinates it writes

Vn(x) = an(r)einθ, (2)

with n a given nonzero integer called the degree of the vortex. The modulus an solves the ODE

a′′n +
a′n
r
− n2

r2
an + an(1− a2

n) = 0, (3)

with an(0) = 0 and lim
r→+∞

an(r) = 1. We refer to [32], [20], [9] for the analysis of (3).

Quite often, we call vortex any zero of the wave function, and it is expected that the wave function is close
to some Vn near this zero. The vortex solution Vn is of infinite energy. However configurations involving several
vortices (with possibly different degrees) could lead to finite energy solutions. At small speeds c → 0, the
travelling waves of the JR branch for the GP equation exhibit two vortices: the first one is of degree +1 and is
located at z1 and the second one is of degree −1 and is located at z2, with z1 = −z2 ≈ (0, 1)/c, see figure 3 for
a plot. A good approximation of this travelling wave is then given by

uc(x) ≈ V1(x1, x2 − 1/c)V−1(x1, x2 + 1/c). (4)

The paper [8] provides a rigourous mathematical justification for the asymptotic limit c ≈ 0 for the travelling
waves of the JR branch.

Since the vortices are well separated when c → 0, an asymptotic description by the Kirchhoff energy, very
similar to what is known for classical incompressible fluids (see [23]), is possible. More precisely, assume that u
is a wave function involving p vortices (p > 2), each one located at zk and of degree nk, in the sense that

u(x) ≈
p∏
k=1

Vnk
(x− zk). (5)

We assume that the vortices are well separated, that is zk = Zk/c = c−1(Zk,1, Zk,2) ∈ R2, with the Zk’s such
that, as c → 0, |Zk| are of order one and |Zk − Zj | does not go to 0. We also assume that

∑p
k=1 nk = 0, in
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order to have finite energy. Then, [26] (see also [6]) shows the following asymptotic expansion

E(u) = 2π|ln c|
p∑
k=1

n2
k +

p∑
k=1

γ(|nk|) + E (Z, n) + oc→0(1),

where γ(|n|) is the core energy of the vortex of degree n, n = (n1, . . . , np) ∈ Zp and where

E (Z, n)
def
= −2π

∑
j 6=k

njnk ln |Zj − Zk|

is the Kirchhoff interaction energy. The point vortex system obtained for the Euler incompressible equations,
which is the Hamiltonian flow associated the Kirchhoff energy E , may actually be derived for GP, see e.g., [17],
[26] and [6] for rigourous results.

For a wave function u with such well separated vortices, the asymptotics for the momentum has been given
in [8]:

P (u) ≈ 2π

c

p∑
k=1

nkZk,2.

As a consequence, the corresponding action for u is given by

E(u)− cP (u) = 2π|ln c|
p∑
k=1

n2
k +

p∑
k=1

γ(|nk|) + F (Z, n) + oc→0(1),

where

F (Z, n)
def
= −2π

∑
j 6=k

njnk ln |Zj − Zk| − 2π

p∑
k=1

nkZk,2.

Since the first two terms in the expansion of the action do not depend on the positions Z of the vortices, it is
natural to think that if u is a travelling wave for GP with vortices as in (5), then (Z1, . . . , Zp) is a critical point
of the reduced action F , that is a solution to the nonlinear system

∀k ∈ [[1, p]], 2
∑

16j6p
j 6=k

nj
Zj − Zk
|Zj − Zk|2

=

(
0
1

)
, (6)

The proof that (6) is necessary may be found in [3] for the Ginzburg-Landau model (in a bounded domain and
a Dirichlet boundary condition). If the travelling wave has two (+1,−1) vortices (then p = 2) and, say n1 = 1,
n2 = −1, and we do not loose generality assuming Z1 + Z2 = 0, which freezes the translation invariance. The
equation (6) then reduces to

Z1

|Z1|2
=

(
0
1

)
,

and the solution is Z1 = (0, 1), which is the location of the vortices for the JR branch.

1.3. Transonic limit c ≈ cs

As c → cs, the travelling waves are expected to behave as rarefaction waves driven by the Kadomtsev-
Petviashvili I (KP-I) equation. Following [21], [22], we introduce the following scalings:

ε =
√
c2s − c2, z1

def
= εx1, z2

def
= ε2x2, (7)
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Figure 4. A rarefaction wave of the JR branch for c = 1.35 ( [21])

and the ansatz

u(x) =
(

1 + ε2Aε(z)
)

exp
(
iεϕε(z)

)
, (8)

where now, both ϕε and Aε tend to 0 at spatial infinity. Then, formal computations (see [21], [22]), assuming
that Aε → A and ϕε → ϕ in some suitable sense as ε → 0, that is c → cs, show that A must be a solution to
the solitary wave equation for the KP-I equation:

∂z1A− ∂3
z1A+ 12A∂z1A+ 2∂2

z2∂
−1
z1 A = 0 (9)

and

csA = ∂z1ϕ. (10)

As c ≈ cs travelling waves are expected to behave (in the good scaling) as the Lump, expected to be the ground
state. For mathematical results on the solitary waves of KP-I, see [15]. Complete justifications of the KP-I
solitary wave limit for the travelling waves of GP have been given in [4] and in [12] (for a general nonlinearity
and dimensions two and three). We refer to figure 4 for a plot of the travelling wave on the JR branch for

c = 1.35 ≈
√

2.

1.4. Outline of the paper

As we have seen, the asymptotic behaviour c → 0 and c → cs are well understood for the travelling waves
of GP. The natural questions that arise are: if we know other solitary waves solutions to KP-I does this give
branches of travelling waves for GP at least for c → cs? and if we know some solution to (6), does this give
branches of travelling waves for GP at least for c → 0? We answer positively to these questions. Due to the
integrability of KP-I (in 2D), explicit solitary waves have been given in [27], yielding for GP the purple and green
branches in our Energy-Momentum diagram (figure 2). The black and the yellow branches are associated with
other solutions to (6), namely the configuration (−2,+2) located at Z1 = −Z2 = (0, 2) and the configuration
(−2,+2) located at Z1 = −Z2 = (0, 3). To the best knowledge of the authors, these questions have no theoretical
answer yet, and have not been investigated numerically.

In order to compute these new travelling waves, we will have to design a numerical framework to approximate
solutions of TWc. Accordingly, section 2 will be dedicated to set up the needed numerical tools. The strategy
follows closely [21] and [14]. Then, we will address in section 3 the question raised by the KP-I limit c → cs.



7

We first describe the considered excited solitary waves given in [27]. Along the way, we wonder about their
characteristics in the KP-I equation and propose to compute their numerical Morse index. We will thus consider
the linearized KP-I equation for which we will compute the discrete eigenvalues within the numerical framework
described in section 2. Finally, in section 4, we investigate the other vortex configurations (+2,−2) and (+3,−3).

2. Numerical tools

2.1. Discretization framework

First, we map R2 onto the square
[
−π

2
,
π

2

]2
using stretched coordinates as follows

R1x1 = tan(x̂1), R2x2 = tan(x̂2), (11)

where (x1, x2) ∈ R2, (x̂1, x̂2) ∈ [−π/2, π/2]2, and R1 and R2 > 0 are adapted to the lengthscales of the
solution we are interested in. This type of coordinates were used in [21] and we have used them in [14]. This
mapping avoids working on an unbounded computational domain, hence the introduction of artificial boundary
conditions. Another advantage of these stretched variables is that they allow to adapt to the typical lengthscales

of the asymptotic regimes c ≈ 0 or c ≈ cs. At the boundary of
[
−π

2
,
π

2

]2
, we impose a Dirichlet boundary

condition.
Any continuous problem is therefore first recast into this set of stretched variables and then solved numerically.

The computational domain (i.e. the square [−π/2, π/2]
2
) is discretized by a cartesian grid, with Nx̂1 ∈ N∗ points

in the direction x̂1 and Nx̂2
∈ N∗ points in the direction x̂2. A uniform discretization (i.e. N := Nx̂1

= Nx̂2
)

will be preferably chosen. We denote by h the size of the mesh (i.e. here h = π/N).
Each differential operator is expressed in the stretched coordinates (11) and then discretized within the Finite

Difference framework. We refer to [14] for further details. Two types of discrete problems have to be considered.
They are sketched in the two following subsections.

2.2. Discrete eigenvalue problems

First, we propose to compute the numerical Morse index of some explicit travelling wave solution of KP-I.
Therefore we discretize the linearized KP-I differential operator around the corresponding solution. This leads
to a discrete eigenvalue problem. More precisely, we have to solve a generalized eigenvalue problem of the
following type

Ahuh = λhBhuh, (12)

with Ah and Bh two symmetric matrices. We refer the reader to subsection 3.1 for more details. We use
the Scilab Software and its eigs function to compute the eigenvalues. The eigenvectors are computed using a
classical power iteration algorithm.

2.3. Numerical travelling wave solutions

The second type of problem consists in computing, for a given speed c > 0, the numerical solution of TWc.
We emphasize the dependence of the solution u in speed c in the equation TWc. This writes:

ic∂x1
u(c)−∆u(c) + u(c)(|u(c)|2 − 1) = 0. (13)

We shall impose the symmetries
u(x1, x2) = u(x1,−x2) = ū(−x1, x2). (14)

Our goal is thus to compute the solution of (13), u(c) at each speed c. To this end, we focus on continuation
type methods. We will either work with Newton’s method or a continuation method as in [16] and as recalled
in the following subsection. The main principle is to start from a solution for speed c and use it to compute the
solution at speed c+ δc for δc small.
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2.3.1. Newton’s method

We consider the continuous stretched formulation of (13) (i.e. in the system of coordinates (11)). Each
stretched differential operator is discretized with finite differences. This induces the discrete nonlinear system
for uc,h (the approximation of uc):

Tc,h(uc,h) = 0. (15)

Then the algorithm is simply:

• Initialization: ε > 0, c0 > 0, uc0,h given.
• Iteration: uc,h given, find uc+δc,h solution of Tc+δc,h(uc+δc,h) = 0 with Newton’s algorithm.

(a) Initialization: u0 = uc,h,

(b) Iteration: Do uk+1 = uk −DTc+δc,h(uk)−1.Tc+δc,h(uk), k ← k + 1, until
|Tc+δc,h(uk)|
‖∂hx1

uk‖
6 ε,

(c) kstop := k,
(d) uc+δc,h = ukstop

• c← c+ δc

Newton’s method has the advantage to be very efficient (when it converges) with a control over the residual
of the equation (typically, in the computations, we achieve ε = 10−8). However, Newton’s method can require
several iterations to converge (which in turn implies to solve the linear system several times in step (b)) and
can also fail to compute a solution especially in the transonic limit. So that the recourse to another method is
mandatory.

2.3.2. Continuation method

Inspired by [16], we formally differentiate (13) with respect to the speed c to obtain:

Υc

(
∂u

∂c
(c)

)
= i∂x1

u(c) (16)

where

Υc(v)
def
= ∆v − 2u(c)〈u(c), v〉+ (1− |u(c)|2)v − ic∂x1v (17)

is the linearized operator around u(c). Equation (16) is viewed as an Ordinary Differential Equation determin-

ing
∂u

∂c
, provided we may invert Υc. We refer the reader to [14] for a discussion on this topic.

We compute the associated discrete operator Υc,h (associated to Υc) in the stretched variables using the
Finite Difference framework proposed in subsection 2.1 and follow an iterative procedure.

• Initialization: c0 > 0, uc0,h given.
• Iteration: uc,h given, find uc+δc,h solution of (13).

(a) Compute ∂hc u := Υ−1
c,h

(
i∂hx1

uc,h
)

with ∂hx1
the finite difference discretization of ∂x1

in the stretched
variables. This requires to solve one linear system.

(b) Update the solution to uc+δc,h for the speed c+ δc, with uc+δc,h = uc,h + δc ∂hc u.
• c← c+ δc

At each step, one has to solve a linear system, and in the transonic limit, the latter can be hard to solve
(see the discussion in section 3.5. of [14]). Contrary to Newton’s method, step (a) requires only one system
resolution, but we do not have any control on the residual. However even if we do not impose a control on this
residual directly with the continuation method, it allows, with a good initial residual (i.e. at the beginning of
the iteration procedure), to compute an accurate solution everywhere and especially in regions where Newton’s
method may fail to converge. Since this numerical strategy has already been studied and validated in [14], we
choose not to give extensive details and refer the reader to the latter reference.
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Figure 5. Representation of the first Lump solitary wave W1 of KP-I.

3. Other branches of travelling wave solutions to GP with KP-I asymptotics

3.1. Explicit solitary waves solutions to KP-I and their numerical Morse index

3.1.1. Explicit solitary wave solutions to KP-I

We focus on the adimensionalized version of the solitary wave equation for KP-I given in (9):

∂z1W − ∂3
z1W +W∂z1W + ∂2

z2∂
−1
z1 W = 0. (SW)

from which A (as defined in section 1.3) is recovered through the scaling

A(z1, z2) =
1

12
W
(
z1,

z2√
2

)
. (18)

We know that equation SW is integrable in 2D and that there exist explicit solutions. The first and well known
one is the Lump solitary wave found in [24]. Its explicit expression is given as a z1-derivative of a rational
function as follows:

W1(z) = −12∂2
z1 ln

(
3 + z2

1 + z2
2

)
= −24

3− z2
1 + z2

2

(3 + z2
1 + z2

2)2
. (19)

This solution is expected to be the ground state of SW, though, to the best knowledge of the authors, no proof
is available. See figure 5 for a graphical representation. The rarefaction wave of the JR branch of travelling
waves for GP plotted in figure 4 is clearly related to the W1 lump through the ansatz (8) and the scaling (7).

Furthermore, other explicit solutions to this equation have been obtained by the Hirota method in [27]. The
expression of the second Lump solution is given by

W2(z) = 12∂2
z1 ln

(
(z2

1 + z2
2)3 + 25z4

1 + 90z2
1z

2
2 + 17z4

2 + 475z2
2 + 1875

)
. (20)

See figure 6 for a graphical representation. The third lump is given by
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Figure 6. Representation of the second Lump solitary wave W2 of KP-I.

Figure 7. Representation of the third Lump solitary wave W3 of KP-I.

W3(z) = 12∂2
z1 ln

(
(z2

1 + z2
2)6 + . . .+

159786550

3
z2

1 + . . .+
878826025

9

)
. (21)

See figure 7 for a graphical representation.
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The reader may notice the increasing degree of the polynomial appearing in the expressions, that makes
the computations harder and harder but theoretically feasible. One is expecting explicit solutions of higher
”degrees” by continuing the arguments and computations of [27].

On the mathematical level, the only result the authors know about multiplicity results for solitary waves to
the generalized KP-I equation (with nonlinearity W∂z1f(W)) is the paper [31], where the existence of at least
two solitary waves is shown with the help of Lusternik-Schnirelman category.

Before concentrating on the possible branches of travelling waves solutions associated with these explicit
KP-I solitary waves, we propose to study some of the properties of the latter through the computation of their
numerical Morse index.

3.1.2. Numerical Morse Index

In order to compute the Morse index associated to each explicit solitary wave, we study the linearized operator
around each explicit solution. The formal linearization of the SW equation around one explicit solutionW gives
the operator L :

L (w)
def
= w − ∂2

z1w +Ww + ∂2
z2∂
−2
z1 w. (22)

The eigenvalue problem then reads
L (w) = λw. (23)

In order to get rid of the non local term ∂−2
z1 w, let us suppose that w writes as

w = ∂z1Θ.

To stick with a variational formulation we then apply the operator ∂z1 to the equation (23). This gives, denoting

L1(Θ)
def
= −∂2

z1Θ + ∂4
z1Θ− ∂z1(W∂z1Θ)− ∂2

z2Θ, (24)

the following eigenvalue problem
L1(Θ) = −λ∂2

z1Θ. (25)

The latter has a variational formulation, that is L1 and ∂2
z1 are formally self-adjoint.

Furthermore, clearly, w1
def
= ∂z1W and w2

def
= ∂z2W belong to ker(L ), which means that for the lump W1 for

instance,

Θ1,1
def
= −24

z1

3 + z2
1 + z2

2

and

Θ1,2
def
= 48

z1z2

(3 + z2
1 + z2

2)2
.

belong to ker(L1). However, notice that in section 2.3, we impose the symmetries (14), so that the linear
operators used in the algorithms are invertible. In the sequel, we concentrate on the eigenvalue problem (25)
on the whole R2 without symmetry to characterize each explicit Lump solutions.

We follow the strategy of discretization explicited in section 2. In other words, we recast the continuous
equations in the set of stretched variables. Doing so, the variational structure of the equations is kept in a
weighted L2 space. We wish to preserve the symmetry of the variational operators. In the discrete setting, we
then use classical centered finite difference formula and discrete integration by parts.

We are thus led to the discrete generalized eigenvalue problem that corresponds to the discrete version of
(25): Find (λh, vh) such that

Ahvh = λhBhvh, (26)

with Ah and Bh two symmetric matrices.
We present in table 1 some of the eigenvalues we obtain (from the smaller ones) for the first three Lump

solitary waves presented in this work. For each case, we clearly distinguish between negative eigenvalues (in red)
and zero eigenvalues (with multiplicity, in blue) and positive ones (in black). As a consequence, we argue that
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W1 W2 W3

-2.3581 -3.5882 -4.5854
-0.0076 -2.5773 -3.4559
-0.0049 -0.8462 -2.6317
0.6737 -0.3303 -1.3209
0.8617 - 0.0177 -1.1986

- 0.0104 -0.7652
- 0.0047 -0.4805
- 0.0011 -0.3876
0.2625 -0.2253
0.4544 - 0.0309
0.5840 - 0.0186

- 0.0163
- 0.0091
- 0.0076
- 0.0016
0.1612
0.2817
0.3322

Table 1. First numerical eigenvalues for the first three lump solitary waves.

Lump solitary wave Numerical Morse index
W1 1
W2 4
W3 9

Table 2. Computation of the numerical Morse index.

the numerical Morse index for the first three lump solitary waves are as in table 2. One example of a typical
eigenvector is shown in Figure 8. We find a Morse index of 1 for the first Lump W1, as expected if it is indeed
a/the ground state for KP-I and then minimizes the energy at fixed momentum. From the above results, it is
natural to conjecture that the Morse index of the n-th Lump solitary wave Wn is n2.

Let us now concentrate on the Kernel. We plotted the eigenvector for W1 corresponding to the eigenvalue
−0.0076 and −0.0049. We verified that they are identified (as expected) to Θ1,1 and Θ1,2. However, we point
out that its determination is quite challenging, since we have to deal with the fact that the essential spectrum
of L1 is R+. Despite this fact, we conjecture that: the n-th Lump solitary wave Wn has a Kernel of dimension
2n.

We now continue with the study of multiple branches of travelling wave solution issued from the explicit
KP-I solitary waves.

3.2. The Energy-Momentum diagram for GP in 2D: the JR branch

We begin with the well known case of the JR branch of travelling waves obtained in [21], for which the
Energy-Momentum diagram is given in Figure 1. This branch is characterized by two vortices for c ≈ 0 and
by the KP-I asymptotic limit associated with the W1 Lump solitary wave when c ≈ cs. Actually, one may
obtain numerically this branch starting either from c ≈ cs and an approximate solution given by (8)-(10) with
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Figure 8. Representation of the third eigenvector corresponding to the third negative eigen-
value (λ3 = −0.846) of the second Lump W2.

A related to the Lump solitary wave W1 through (18), either from c ≈ 0 and an approximate solution given
by (4), provided we have an approximation of the vortex profile a1 (see subsection 4.1). For details, we refer
the reader to [21] and [14]. We give two types of representations of the travelling waves solutions on the JR
branch. In figure 9, we plot, for various speeds c, on the right-hand side, the 3d plot of the modulus of the
travelling wave in the domain {x1 > 0} (in the domain {x1 6 0}, it suffices to use the symmetry (14)) and on
the left-hand side the corresponding position on the Energy-Momentum diagram. Figure 10 contains contour
plot views on the whole plane R2. One clearly sees the evolution as the speed of the wave increases: for c ≈ 0,
we have two well-separated vortices at distance ≈ 1/c one from another; they get closer when c increases and
at some step merge, and for higher speeds, vorticity is lost; for c ≈ cs, the modulus is uniformly close to 1 and
the travelling wave is a rarefaction pulse as in figure 4.

On the numerical level, two approaches can be used to obtain this branch. The first one, used in [21], is based
on Newton’s algorithm (see subsection 2.3); the other one is based on the variational properties of the problem
and looks for finding (local) minimizers to suitable functionals (cf. [14]). The local minimizing technique has
many advantages over a continuation method; it is quick, systematic (relying on a heat flow technique) and
precise (see [14] for details). However, to try to catch numerically the other possible branches of solutions arising
from the second and third Lump as described in section 3.1, we can not rely on such a minimization procedure.
Therefore, we focus on continuation type methods as described in subsection 2.3.

3.3. New branch of travelling waves associated with the second lump W2.

Let us concentrate on the second Lump W2, that has the expression (20). We use the scalings (7) and
initialize a continuation method with c ≈ cs via the ansatz (8)-(10) and employing (20).

We plot the resulting Energy-Momentum diagram in Figure 11. The blue curve is the JR branch with the
transonic limit given by theW1 Lump (see subsection 3.2). The purple curve represents the Energy-Momentum
diagram obtained starting from the KP-I limit with the second Lump W2.

Figures 12 and 13 depict the evolution of the modulus of the numerical travelling wave solution for various
(decreasing) speeds. In figure 14, we give the corresponding contourplots. Similarly to the ground state branch,
the minimum value of the modulus of the solution decreases until vortices appear by pairs. For c = 0.73, we see
four vortices, and for c further decreasing, the local minimum of the modulus on the x2 axis decreases down to
zero and then two additional vortices appear: we end-up with six distinguishable vortices.
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(a)

(b)

(c)

Figure 9. Travelling wave solution of the JR branch for speeds: (A) c = 1; (B) c = 0.6; (C)
c = 0.2. On the left-hand side, position in the Energy-Momentum diagram (spotted with a
black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

Figure 10. Contourplots of the travelling waves of the JR branch: (A) c = 1.35; (B) c = 1;
(C) c = 0.6; (D) c = 0.2.

3.4. New branch of travelling waves associated with the third lump W3.

We now turn to the third Lump solitary wave W3 given by (21). Analogously, we make use of (7) and
initialize the continuation with c ≈ cs via the ansatz (8). We plot the resulting Energy-Momentum diagram in
Figure 15.

We obtain a third branch of travelling waves solutions. Figures 16 and 17 describe the evolution of the
modulus of the computed travelling wave solution that we compute. In a similar fashion, the modulus of the
minimum and local minima decrease as the speed decreases down to the speed ≈ 0.9 (see Figure 17 (A)). There
vortices appear and we observe the same kind of splitting phenomenon as for the branch associated with the
second Lump. At speed ≈ 0.685, ten vortices are clearly distinguishable.

3.5. Conclusion

Our numerical simulation put forward two new branches of travelling wave solutions corresponding to excited
states; these branches are distinct from the JR state branch and from each other. As can be checked in figures
10 (D), 14 (F) and 18 (F), we can conjecture that the branch associated with the n-th Lump solitary wave Wn
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Figure 11. Energy-Momentum diagram with the JR branch (blue) and the new branch asso-
ciated with the second Lump W2 (purple).

eventually exhibits 2(2n−1) vortices. For the branchW2 (resp. W3), we have been able to reach the speed 0.27
(resp. 0.685). Below these speeds, our algorithms stop converging.

4. Vortex branches

As motivated in subsection 1.4, we wonder whether (+2,−2) and (+3,−3) vortex configuration would gener-
ate a new branch of travelling waves solutions to GP or even connect to the branches obtained in the previous
section. These configurations can be designed and used as initializations in our algorithm for c ≈ 0.

4.1. Approximating the vortices

The strategy adopted in this work consists in first finding a Padé approximant for the vortex profile of degree
n, an (see section 1.2 for notations), with here n ∈ {1, 2, 3} from which one would create the ”two vortices”
configuration. A shooting method allows to compute an approximate numerical solution to (3) that will serve
as a reference solution, denoted aref

n . For this problem, in order to avoid the singularities of the ODE (3), it is
convenient to implement the shooting method on the function r 7→ an(r)/rn. Indeed, from [20], we know that

yn(r)
def
= an(r)/rn is an even power series of positive radius. The shooting parameter is then yn(0) and we have

y′n(0) = 0. For n = 1, we obtain y1(0) = aref
1
′
(0) ≈ 0.58318949586, which is slightly different from the value

≈ 0.5827811878 in [2].
Here we envisage two strategies for computing the Padé approximants. The first one is taken from [2] and

consists in looking for a Padé of the form

aPadé
1 (r)

def
= r

√
a0 + a1r2

1 + b1r2 + b2r4
. (27)

Since a1(r) → 1 for r → +∞, it is natural to set b2 = a1. To determine the other coefficients, we substitute
aPadé

1 in the equation (3) and Taylor expand the residual for r → 0. We obtain three algebraic equations by
cancelling the first coefficients of this Taylor expansion, and solve this system. We will refer to this method as
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(a)

(b)

(c)

Figure 12. Travelling wave solution of the branch associated with the second Lump W2 for
speeds: (A) c = 1.22; (B) c = 0.96; (C) c = 0.73. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a)

(b)

(c)

Figure 13. Travelling wave solution of the branch associated with the second Lump W2 for
speeds: (A) c = 0.57; (B) c = 0.41; (C) c = 0.27. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Contourplots of the travelling waves of the branch associated with the W2 Lump:
(A) c = 1.22; (B) c = 0.96; (C) c = 0.73; (D) c = 0.57; (E) c = 0.411; (F) c = 0.27.
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Figure 15. Energy-Momentum diagram with the JR branch (blue), the branch associated
with the second lump W2 (purple) and with the third Lump W3 (green).

Berloff’s Least square
L2 error 0.0250530 0.0028370
L∞ error 0.0097847 0.0013490

Table 3. Vortex of degree 1: L2 and L∞ errors between the Padé approximants and the
numerical solution obtained with the shooting method.

Berloff’s method, and this gives

aBe
1 (r)

def
= r

√
11
32 + 11

384r
2

1 + 1
3r

2 + 11
384r

4
= r

√
0.3437 + 0.0286r2

1 + 0.3333r2 + 0.0286r4
. (28)

The advantage of this method is that we do not need to solve numerically the ODE (3) by a shooting method.
The second method, referred to as the least square method, consist in fitting a Padé approximant to the numerical
data given by the numerical solution aref

1 obtained by the shooting method. In order to do so, we use a least
square method and obtain

als
1 (r)

def
= r

√
0.3350601 + 0.0494196r2

1 + 0.3725704r2 + 0.0494196r4
. (29)

We may notice that a1(r)/r → 0.58318949586 when r → 0. This has to be compared with
√

11/32 ≈ 0.5863020

and
√

0.3350601 ≈ 0.5788438. We may also compute the L2 and L∞ errors between aBe
1 (resp. als

1 ) and aref
1 (see

table 3). We see that aBe
1 gives a very good approximation, and that als

1 provides an excellent approximation.
We now focus on the degrees 2 and 3 that have not yet been addressed.

4.1.1. Vortex of degree 2

The solution obtained by the shooting method gives the approximate limit r−2aref
2 (r) → 0.153099102859

when r → 0. In [2], the coefficients of the Padé approximant have been computed (with Berloff’s method) and
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(a)

(b)

(c)

Figure 16. Travelling wave solution of the branch associated with the second Lump W3 for
speeds: (A) c = 1.34; (B) c = 1.24; (C) c = 1.04. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.



22

(a)

(b)

(c)

Figure 17. Travelling wave solution of the branch associated with the second Lump W3 for
speeds: (A) c = 0.91; (B) c = 0.84; (C) c = 0.685. On the left-hand side, position in the
Energy-Momentum diagram (spotted with a black point); on the right-hand side, modulus.
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(a) (b)

(c) (d)

(e) (f)

Figure 18. Contourplots of the travelling waves of the branch associated with the W3 Lump:
(A) c = 1.34; (B) c = 1.24; (C) c = 1.04; (D) c = 0.91; (E) c = 0.84; (F) c = 0.685.
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Figure 19. Profile of the degree 1 vortex a1 (continuous red line) and Padé approximants:
aBe

1 (28) in blue stars (left) and als
1 (29) in green squares (right)

Berloff’s Least square
L2 error 0.1721167 0.0066131
L∞ error 0.0619714 0.0084585

Table 4. Vortex of degree 2: L2 and L∞ errors between the Padé approximants and the
numerical solution obtained with the shooting method.

give the expression

aBe
2 (r)

def
= r2

√
0.02564396012 + 0.000626418393r2

1 + 0.1910941884r2 + 0.01969625361r4 + 0.000626418393r6
(30)

that yields r−2aBe
2 (r)→

√
0.02564396012 ≈ 0.160137316. Using the least square method, we obtain

als
2 (r)

def
= r2

√
0.0208654 + 0.0010475r2

1 + 0.1504765r2 + 0.0243630r4 + 0.0010475r6
, (31)

that gives the asymptotics r−2als
2 (r) →

√
0.0208654 ≈ 0.1444486. In figure 20, we plot aref

2 , aBe
2 , als

2 . We also
measure the L2 and L∞ errors between aBe

2 (resp. als
2 ) and aref

2 (see table 4). We notice a much better fit if one
uses the least square method. Notice for instance that aBe

2 reaches values larger than 1.
In order to improve the quality of the Padé approximation, one could imagine to consider a higher degree

Padé approximant, namely, for our problem, replacing in the square root the rational function by the quotient of
a polynomial of degree 4 by a polynomial of degree 8. With Berloff’s method, we obtain the following expression
for the Padé approximant of the vortex of degree 2 :

aBe
2bis(r)

def
= r2

√
0.0235754388705356 + 0.001903033787r2 + 0.00007439596524r4

1 + 0.2473877000r2 + 0.03223416114r4 + 0.002100897817r6 + 0.00007439596524r8
(32)
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Figure 20. Profile of the degree 2 vortex aref
2 (continuous red line) and Padé approximants:

aBe
2 (30) in blue stars (left); als2 (31) in green squares (right)

Berloff’s least square
L2 error 0.1721125 0.0040721
L∞ error 0.1225094 0.0079088

Table 5. Vortex of degree 2 and Padé approximants of higher degree: L2 and L∞ errors with
the numerical solution obtained with the shooting method.

and with the least square method

als
2bis(r)

def
= r2

√
0.02247580− 0.0016723r2 + 0.0002102r4

1 + 0.0477937r2 + 0.0242546r4 − 0.0008577r6 + 0.0002102r8
(33)

with the corresponding plots (see figure 21) and the errors given in table 5. Comparing with aBe
2 , it is noticeable

that the L2 error is almost the same and the L∞ error is multiplied by 2. If we compare als
2 with als

2bis, we may
notice that the errors are not significantly improved.

4.1.2. Vortex of degree 3

We explore the case of the degree 3 vortex in an analogous way. The approximate asymptotics given by
the numerical solution obtained by the shooting method reads now aref

3 (r)/r3 → 0.026183420716 when r → 0,

Berloff’s method gives aBe
3 (r)/r3 →

√
0.0007951684094 ≈ 0.028198731 and the expression

aBe
3 (r)

def
= r3

√
0.0007951684094 + 0.00000864664692r2

1 + 0.1358739820r2 + 0.009952997746r4 + 0.0005274760603r6 + 0.00000864664692r8
. (34)

The least square method gives als
3 (r)/r3 →

√
0.0007568 ≈ 0.0275100 and

als
3 (r)

def
= r3

√
0.0007568 + 0.0000041r2

1 + 0.1846304r2 + 0.0050719r4 + 0.0008052r6 + 0.0000041r8
(35)
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Figure 21. Profile of the degree 2 vortex aref
2 (continuous red line) and the Padé approximant

of higher degree aBe
2bis (30) (blue stars).

Figure 22. Profile of the degree 3 vortex a3 and Padé approximants: aBe
3 (34) in blue stars

(left); als
3 (35) in green squares (right)

We plot these approximations in figure 22 and the errors in table 6.
Same remarks as for the degree 2 vortex hold.
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Berloff’s Least square
L2 error 0.3215535 0.0062027
L∞ error 0.1063004 0.0094989

Table 6. vortex of degree 3: L2 and L∞ errors with the numerical solution obtained with the
shooting method.

Figure 23. Initialization for the (+2,−2) configuration. Modulus on the left and contourplot
on the right.

4.1.3. Two vortices configurations

The travelling vortex solution with small speed that we would like to use consists in two vortices of degrees
+n and −n at large distance from each other (in a similar way as in the degree one case, see [14] for details).
A good approximation of this solution for c small would be given by

uapp
±n vortices(x1, x2) = an(|(x1, x2−c−1)|)

(
x1 + i(x2 − c−1)

|(x1, x2 − c−1)|

)n
×an(|(x1, x2+c−1)|)

(
x1 − i(x2 + c−1)

|(x1, x2 + c−1)|

)n
. (36)

We use this expression in order to initialize our continuation algorithm with small speeds.

4.2. (+2,−2) vortex configuration

The (+2,−2) configuration depicted in Figure 23 is obtained by using (36) and the Padé approximant
defined in the previous section with the least square method. It is not a travelling wave solution for GP, but
has nevertheless allowed us to achieve a numerical solution. Let us mention that the relative residual obtained
with the least square Padé approximant is better than Berloff’s.

We obtain a new branch of travelling wave solutions using our algorithm. It is remarkable that as the speed
decreases the ±2 vortices split into two ±1 vortices. The distance between two +1 vortices (resp. two −1
vortices) is significantly smaller than the distance between vortices of degree +1 and −1.

Theses solutions are clearly qualitatively different from those on the branches obtained in section 3.
The complete Energy-Momentum diagram augmented with the (+2,−2) branch (in black) is plotted on

Figure 25.
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(a)

(b)

(c)

Figure 24. Travelling wave associated with the (+2,−2) configuration for speeds: (A) c = 0.1;
(B) c = 0.3; (C) c = 0.386. On the left-hand side modulus; on the right-hand side contourplot.

4.3. (+3,−3) vortex configuration

We depict the (+3,−3) configuration for two different speeds in Figures 26 and 27. This time, the initial
vortex of degree three splits into three vortices of degree one, in a same way as in the previous subsection. We
have then obtained all the branches of the Energy-Momentum diagram of Figure 2.
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Figure 25. Energy-Momentum diagram with the additional branch (in black) associated with
the (+2,−2) vortex configuration.

Figure 26. Initialization for the (+3,−3) configuration. Modulus on the left and contourplot
on the right.

5. Conclusion

We have investigated the existence of travelling waves for the two dimensional GP equation. Besides the
well-known Jones-Roberts branch, our numerical approach shows the existence of at least four other branches
of travelling waves. Two of them are related to the KP-I limit c→ cs through the existence (see [27]) of explicit
solitary waves for KP-I different from the Lump (the latter being probably the ground state). The last two
branches are associated with critical points of the Kirchhoff action involving vortices of degree larger than one.

In a future work, we wish to investigate the dynamical stability issues concerning these travelling waves. The
travelling waves on the Jones-Roberts branch are orbitally stable (see [13]), and this is related to the concavity
of the curve P 7→ E combined with the fact that the Hessian of the action d2(E − cP ) has exactly one negative
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(a)

(b)

Figure 27. Travelling wave associated with the (+3,−3) configuration for speeds: (A) c = 0.3;
(B) c = 0.507. On the left-hand side modulus; on the right-hand side contourplot.

eigenvalue. The situation is actually not very clear for our new branches since there are presumably many
negative eigenvalues. We also hope to be able to give some rigourous existence results for these branches.

We are convinced that these new branches also exist in space dimension three, in an axisymmetric setting.
For the JR branch, the three dimensional case has already been studied in [21] (see [5,7,10,13,25] for rigourous
mathematical results). In the vortex limit c→ 0, the travelling wave is a vortex ring of large radius. The three
dimensional analog of our branch with (+2,−2) or (+3,−3) vortices would then be travelling waves with two
or three parallel vortex rings at small distance one from another. This should probably be related to travelling
vortex knots in Bose condensates as studied in [29] when the poloidal radius is rather small.

Acknowledgements: This work is supported by the ANR project BoND (Bond-ANR-13-BS01-0009-02). We
would like to thank Fabrice Béthuel for having raised to D.C. the question of existence of travelling waves to
GP with vortices of degree higher than one. At that time, we were looking for solutions with two vortices, one
of degree +2 and one of degree −2.
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[7] F. Béthuel, G. Orlandi, and D. Smets. Vortex rings for the Gross-Pitaevskii equation. J. Eur. Math. Soc. (JEMS), 6(1):17–94,

2004.
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