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Abstract. Adaptively Restrained Molecular Dynamics (ARMD) is a recently

introduced particles simulation method that switches positional degrees of freedom

on and off during simulation in order to speed up calculations. In the NVE ensemble,

ARMD allows users to trade between precision and speed while, in the NVT ensemble,

it makes it possible to compute statistical averages faster. Despite the conceptual

simplicity of the approach, however, integrating it in existing molecular dynamics

packages is non-trivial, in particular since implemented potentials should a priori be

rewritten to take advantage of frozen particles and achieve a speed-up. In this paper,

we present novel algorithms for integrating ARMD in LAMMPS, a popular multi-

purpose molecular simulation package. In particular, we demonstrate how to enable

ARMD in LAMMPS without having to re-implement all available force fields. The

proposed algorithms are assessed on four different benchmarks, and show how they

allow us to speed up simulations up to one order of magnitude.

Keywords : Algorithms, Adaptively Restrained Molecular Dynamics, Incremental force

computation, LAMMPS, Molecular Dynamics, Neighbor List

Submitted to: Modelling Simul. Mater. Sci. Eng.



Adaptively Restrained Molecular Dynamics in LAMMPS 2

1. Introduction

Molecular Dynamics (MD) simulations are widely used to understand complex systems,

including e.g. liquids, solids, biomolecules, etc. [1, 2, 3, 4]. By providing the positions

of particles as a function of time, in particular, MD simulations help rationalize the

behavior of complex systems [5, 6, 7, 8, 9]. Because MD involves integrating Newton’s

equations of motion using discrete time steps, however, and because time steps sizes are

typically small (for biological systems, for example, the time step size is usually a few

femtoseconds), MD has difficulty simulating the timescales over which many important

processes take place (like protein folding, rare events etc.) [10, 11].

Numerous attempts have been made to accelerate MD simulations, for example

by increasing the time step size or through the use of multiple time steps [12, 13], by

adding an external biased potential (metadynamics, umbrella sampling, etc.) [10, 11],

appropriately reducing the accuracy of the simulation (coarse-grain simulations and

multi-scale simulations) [14, 15, 16], and even building special-purpose supercomputers

for performing MD [17].

Adaptively Restrained Molecular Dynamics (ARMD) is a recent approach that

attempts to tackle the timescale issue by reducing the number of computations per time

step [18]. In ARMD, particles adaptively switch their positional degrees of freedom on

and off during the simulation, based on their instantaneous kinetic energy. Precisely,

particles whose kinetic energy is sufficiently large are considered active, and have normal

dynamics, while particles whose kinetic energy is below some threshold are restrained,

and stop moving completely. The status of particles evolve during simulation, and the

Adaptively Restrained Hamiltonian ensures that stable simulations can be performed,

and that statistics can be recovered [18]. Since inter-atomic forces typically depend upon

relative particle positions, only forces involving active particles need to be updated at

each time step [19]. This may result in significant speed-ups, depending on the chosen

simplification thresholds.

A typical MD step entails repetition of the following steps:

(i) Calculate the forces applied on particles

(ii) Update the particles momenta

(iii) Update the particles position

In these steps, the most intensive step is, by far, the force calculation. Inter-

atomic forces can be divided into two main classes: bonded and non-bonded forces.

Bonded forces include e.g. bonds, angles, and torsions. Non-bonded forces can be

further divided into two classes: long- and short-range forces. Long-range interactions

are often computed through Ewald summations [20, 21], while short-range interactions

are typically truncated (i.e. vanish after a specific cutoff distance rc), and computed

thanks to neighbor lists, i.e. lists of neighboring particles. These neighbor lists are

often build through a combination of cell lists and Verlet lists [22]. In the cell lists

method, all particles are binned into 3D cells of side length l ≥ rc according to their
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coordinates. Neighbors of particles in a given cell are only searched in the cell itself and

its 26 neighboring cells (instead of the whole simulation box). In the Verlet lists method,

each particle is associated to a list of neighboring particles within distance rs = rc + δ,

where δ is a buffering distance. This list is updated either every N time steps, or based

upon how far the particles have moved [23, 24]. Some short-range force calculations also

use Newton’s third law and store only half of the neighbor pairs.

Despite the conceptual simplicity of the ARMD approach, however, only simple

implementations have been demonstrated so far [18, 25], and integrating it in an existing

molecular dynamics package (e.g LAAMPS, GROMACS, etc.) is non-trivial. Indeed,

the potentials implemented in these simulation packages should take into account the

fact that some particles are frozen in order to speed up force calculations [19], and this

would a priori require re-implementing all potentials.

In this paper, we present novel algorithms for integrating ARMD in LAMMPS,

a popular multi-purpose molecular simulation package, without having to modify the

available force fields. In particular, we introduce a novel method to compute neighbor

lists and short-range forces when performing ARMD simulations. This method is

independent of the underlying potential or force field, and may be used with any

pair potential. We validate these new algorithms by simulating several systems in the

NVE and NVT ensembles with the adaptively restrained version of LAMMPS. We show

that our algorithms, combined with the AR molecular dynamics methodology, makes it

possible to finely trade between precision and computational cost (in the NVE ensemble),

and speed up the calculation of statistical properties (in the NVT ensemble).

2. Methods

2.1. Adaptively Restrained Molecular Dynamics

For completeness, we provide a brief overview of the ARMD methodology. For more

details, we refer the reader to [18].

The time evolution of the system containing N particles may be derived from the

Hamiltonian function 1

H(q,p) =
1

2
pTM−1p + V (q) (1)

where q is a 3N -dimensional vector of coordinates, p is a 3N -dimensional vector of

momenta, M is a 3N × 3N mass matrix, and V (q) is the potential energy.

In Adaptively Restrained (AR) molecular dynamics, the 3N × 3N inverse mass

matrix M−1 is replaced by a 3N × 3N inverse inertia matrix Φ(q, p) which adaptively

enforces restraints during simulation [18]:

HAR(q,p) =
1

2
pTΦ(q,p)p + V (q). (2)

One possible choice for the inverse inertia matrix Φ(q,p) is a block-diagonal matrix

diag [Φ1(q1,p1), . . . ,ΦN(qN ,pN)] with

Φi(qi,pi) = m−1i [1− ρi(pi)]I3×3 (3)
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where I3×3 is the 3×3 identity matrix, mi, qi and pi are respectively the mass, position

and momentum of particle i, and ρi is its restraining function:

ρi(pi) =


1 if 0 ≤ Ki(pi) ≤ εri

0 if Ki(pi) ≥ εfi

s(Ki(pi)) ∈ [0, 1] elsewhere

(4)

In this definition, Ki(pi) = 1
2
m−1i pTi pi is the kinetic energy of particle i, εri is its

restrained-dynamics threshold, εfi is its full-dynamics threshold, and s is a C2 function

that smoothly interpolates between 0 and 1.

When ρi = 0, Φi = m−1i and particle i is active (the particle mass is unchanged).

When ρi = 1, Φi = 0 and particle i is restrained, i.e. will not move whichever force

is applied to it (the particle mass is infinite). When ρi ∈ (0, 1), particle i is in a

transition state. The restraining function ρi above depends upon the kinetic energy of

the particle. Precisely, particle i is restrained when its kinetic energy is smaller than the

restrained-dynamics threshold (εri ), and it is active if its kinetic energy is larger than

its full-dynamics threshold εfi . Particles with kinetic energies between εri and εfi are

considered as transition particles.

To integrate the equations of motion of a system in the NVE ensemble using the

AR Hamiltonian, we may use a modified Velocity Verlet algorithm which takes into

account the non-constant mass matrix:

(i) pi(t+ 1
2
∆t) = pi(t) + 1

2
fi(t)∆t

(ii) qi(t+ ∆t) = qi(t) +∇pi
HAR(t+ 1

2
∆t)∆t

(iii) fi(t+ ∆t) = −∇qi
V (q(t+ ∆t))

(iv) pi(t+ ∆t) = pi(t+ 1
2
∆t) + 1

2
fi(t+ ∆t)∆t

To perform simulation in the canonical ensemble (NVT), we use AR Langevin

dynamics [18, 26]:

dq = ∇pHAR(q,p)dt

dp = −∇qHAR(q,p)dt− γ∇pHAR(q,p)dt+

√
2γ

β
dW

(5)

where dWt is a 3N -dimensional Brownian motion and γ > 0 is the frictional constant.

Discretization of the modified Langevin is done using second-order Trotter splitting [26].

The temperature of the AR system is given by:

T =
1

DKB

〈
N∑
i=1

(
pi ·

∂HAR

∂pi

)〉
(6)

where D is the number of degrees of freedom in the system and the dot represents the

dot product. In the version described above, the AR Hamiltonian is separable and the

temperature is unchanged [18].
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2.2. Molecular dynamics in LAMMPS

After setting up initial conditions, LAMMPS repeats the following steps:

Algorithm 1: LAMMPS integration step

1 if (UpdateNeeded) then

2 Build neighbor lists

3 end

4 Calculate forces

5 Update momenta

6 Update positions

where lines 1 − 2 ensure that neighbor lists are rebuilt periodically (e.g. every 20

time steps), and line 3 is the main step: calculating forces.

To calculate forces, LAMMPS provides force fields implementations with a list L

of particles for which forces should be computed, as well as the neighbor list NL(i) of

each particle i in L. LAMMPS may provide either full neighbor lists (FNLs) or half

neighbor lists (HNLs). In the FNL case, all neighbors of particle i are stored in NL(i).

In the HNL case, the neighbor pair (i, j) is stored in either NL(i) or NL(j). The HNL

case is used when the force calculation step may use Newton’s third law (fij = −fji) in

order to reduce the number of force calculations by half and speed up the simulation.

The force calculation algorithm is then:

Algorithm 2: ComputeForces(L,NL)

1 for (i ∈ L) do

2 for (j ∈ NL(i)) do

3 fij ← ComputeForce(i, j)

4 fi ← fi + fij
5 if (NewtonOn) then

6 fj ← fj − fij
7 end

8 end

9 end

where fij is the force applied to i by j, fi is the total force applied to i, and

NewtonOn is true when HNLs and Newton’s third law are used.

2.3. Adaptively Restrained Molecular Dynamics in LAMMPS

In AR molecular dynamics, a system of N particles can be represented as a combination

of NR restrained particles and NA = N − NR active or transitioning particles. At any

time-step, interactions between particles (i.e. inter-particle energies and forces) may

thus be categorized into two types:
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(i) Restrained interactions: interactions between restrained particles only.

(ii) Active interactions: interactions involving at least one active particle.

In most force fields, interactions only depend on relative particle positions. As a

result, at any time step, restrained interactions do not have to be updated, and only

active interactions must be recalculated (since active particles may have moved since the

previous time step). An ARMD integration step may thus rely on the same general steps

as in Algorithm 1, but efficient ARMD simulations require incremental force calculation

algorithms, i.e. force calculation algorithms that only update active interactions.

In order to enable AR molecular dynamics in LAMMPS without modifying the

source code of all force fields, our strategy is a) to pass modified information to

force fields implementations, unbeknownst to them, so that they only compute active

interactions, and b) to use these active interactions to incrementally update the total

forces applied to particles (which are required to update positions and momenta). We

note that modifying LAMMPS in such a way allows us to enable ARMD for force fields

that are not yet implemented, which is a significant advantage of the approach proposed

in this paper.

2.4. Active neighbor lists

Let C denote the complete list of particles, A denote the list of active (or transitioning)

particles, and R denote the list of restrained particles, so that C = A ]R.

Since we want force fields implementations to compute active interactions only, we

are going to pass them the list A of active particles instead of the complete list C.

Assuming we may use Newton’s third law, the list A is sufficient, since any force fij we

need to compute involves at least one active particle. However, we cannot just pass to

force fields the HNLs of active particles, since there would be a risk that these HNLs do

not contain all the neighbors for which we need to compute interactions‡. Conversely,

we should not pass the FNLs of active particles if we want to take advantage of Newton’s

third law. As a result, we introduce active neighbor lists (ANLs), i.e. neighbors lists

that are built in such a way that, when i is an active particle, ANL(i) contains j if a)

j is restrained or b) if j is active and ANL(j) does not contain i. If i is restrained,

ANL(i) is empty. The ANLs can thus be seen as HNLs for active-active neighbors (if

both i and j are active, either ANL(i) contains j or ANL(j) contains i), and FNLs for

active-restrained neighbors (if i is active, ANL(i) contains all the restrained neighbors

of i). We may thus use the following algorithm to build the ANLs:

When we initialize the simulation (before the first time step), we first build the

ANLs from the FNLs thanks to Algorithm 3. During the main loop, however, we

‡ Consider e.g. the case of four particles 1, . . . , 4 that are all neighbors to each other, where

HNL(1) = {2, 3, 4}, HNL(2) = {3, 4}, HNL(3) = {4} and HNL(4) = ∅, and assume that particles

1 and 4 are active. If a force field implementation only receives HNL(1) and HNL(4), it will only

compute active interactions f12 = −f21, f13 = −f31, and f14 = −f41 (thanks to HNL(1)), and will

compute neither f42 = −f24 nor f43 = −f34, since neither HNL(1) nor HNL(4) signal that particles 2

and 3 are neighbors of particle 4.
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Algorithm 3: BuildANL(i)

1 for (j ∈ FNL(i)) do

2 if (j ∈ R) or (i /∈ ANL(j)) then

3 ANL(i)← ANL(i) ∪ j
4 end

5 end

incrementally update the ANLs based on the list SA of particles switching to an active

(or transitioning) state, and the list SR of particles switching to a restrained state.

Precisely, if A and R represent the state distribution of the simulation at time step n,

then SA and SR are the lists of particles switching between time steps n and n+ 1. We

update the ANLs in two steps:

Step 1: clearing ANLs of particles that become restrained

When a particle i switches from active to restrained, we need to empty ANL(i).

However, we need to retain interactions with any neighboring particle j that remains

active, i.e. insert i in ANL(j). In the first step of the ANL lists update, we thus go

through each particle i in SR and clear ANL(i) using Algorithm 4.

Algorithm 4: ClearANL(i)

1 for (j ∈ ANL(i)) do

2 if (j ∈ A) and (j /∈ S) then

3 ANL(j)← ANL(j) ∪ i
4 end

5 end

6 ANL(i)← ∅

Step 2: building ANLs of particles that become active

When a particle i switches from restrained to active, we need to build ANL(i). In the

second step of the ANL lists update, we thus go through each particle i in SA and build

ANL(i) using Algorithm 3.

2.5. Incremental force updates

As noted before, in order to achieve a speed-up through AR molecular dynamics, we

need to be able to incrementally update the total forces applied on particles, i.e. avoid

recomputing all total forces.
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Let I denote the list of involved particles, i.e. the list of particles involved in active

interactions (either because they are active particles, or because they are neighbors of

active particles): I = A ∪ (∪i∈AANL(i)). The list I may be incrementally updated at

each time step while updating the ANLs.

We may use A and the ANLs to incrementally update the total forces of particles

in I:

(i) Compute forces f+old between particles in I using current positions.

(ii) Subtract f+old from the total forces f .

(iii) Update the positions of active particles.

(iv) Compute forces f+new between particles in I using the new positions.

(v) Add f+new to the total forces f .

Algorithm 5 shows the pseudo-code of the initialization step (before the first time

step), and Algorithm 6 gives the pseudo-code for performing an AR molecular dynamics

step in LAMMPS.

Algorithm 5: AR-LAMMPS initialization step

1 for (i ∈ L) do

2 fi ← 0

3 f+i ← 0

4 ANL(i)← ∅
5 end

6 Construct all FNLs

7 f ← ComputeForces(C,FNL)

8 Build A, R, I

9 for (i ∈ A) do

10 BuildANL(i)

11 end

3. Results and discussion

In order to validate our new algorithms and their implementation in LAMMPS, we

performed ARMD simulations on a set of toy models that were general enough to

model typical simulations, while simple enough to allow for detailed analysis. For some

benchmarks, in particular, we chose test cases that were similar to earlier ones [18]

to demonstrate that speed-ups were still achievable despite computational overheads

that may result from integration in a MD package not initially designed for adaptively

restrained simulation.
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Algorithm 6: AR-LAMMPS integration step

1 Update momenta

2 Update A, R

3 if (UpdateNeeded) then

4 Construct all FNLs and empty all ANLs

5 for (i ∈ A) do

6 BuildANL(i)

7 end

8 end

9 else

10 Build SA and SR
11 for (i ∈ SR) do

12 ClearANL(i)

13 end

14 for (i ∈ SA) do

15 BuildANL(i)

16 end

17 end

18 Update I

19 f+ ← ComputeForces(A,ANL)

20 for i ∈ I do

21 fi ← fi − f+i
22 f+i ← 0

23 end

24 Update positions

25 f+ ← ComputeForces(A,ANL)

26 for i ∈ I do

27 fi ← fi + f+i
28 f+i ← 0

29 end

3.1. Systems of Lennard-Jones particles

We simulated three systems with different numbers (500, 4,000 and 108,000) of Lennard-

Jones particles using an AR integrator in the NVE ensemble. All simulations were

performed in reduced, Lennard-Jones units using our version of LAMMPS. Particles

were generated along a fcc lattice of density 0.8442, and initial velocities were assigned

according to the Boltzmann distribution. For all simulations, we used a time-step of

0.005. Interactions beyond distance 2.5σ were ignored. Periodic boundary conditions

were applied in all three directions. We chose values of εr and εf in order to achieve

specific ratios of restrained particles.
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We ran one reference simulation and one ARMD simulation for all three systems.

Reference simulations were performed with the original LAMMPS neighbor list and

force update algorithms, whereas ARMD used ANLs and incremental force update

algorithms. To determine the resulting speed-ups, we compared the average times spent

in each integration steps. Figure 1 shows the achieved speed-ups with respect to the

percentage of restrained particles in the system. Figure 1 shows that, in order to have

a speed-up for systems containing 500 and 4000 particles, at least 60% of the particles

should be restrained. A 1.6X to 2.8X speed-up was observed when 80% to 90% particles

were restrained. For the system containing 108,000 particles, we observed a speed-up

when at least 50% of the particles were restrained, and a 2.5X to 4.2X speed-up was

observed when 80% to 90% of the particles were restrained. One reason for achieving

higher speed-ups in larger systems is the number of force calculations performed per

time step. Smaller systems contain relatively fewer force calculations per time-step, and

reducing them does not have much influence on the overall speed-up. For larger systems,

force calculations constitute the major part of the time-step cost, and reducing them

can significantly speed-up the simulation. Figure 2 shows that, even for AR simulations,

the total adaptive energy of the system is constant§.
In order to study the structural properties of the system, we also performed NVT

simulations of all three systems using two different sets of AR parameters. We computed

the radial distribution function (RDF) of the systems using classical MD and ARMD.

Figure 3 shows that the RDFs obtained by both methods coincide.

3.2. Collision cascade

We performed this benchmark to show that AR molecular dynamics simulations in the

NVE ensemble allow us to finely trade between precision and speed. In this benchmark,

a high-velocity particle collides with an initially static 2D system containing 7290

particles. Interactions among particles are computed using a Lennard-Jones potential.

We simulated this system for different values of AR parameters εr and εf , and various

ratios
εf
εr

. All simulations were performed for 7000 steps with a time step size equal to

0.0003 (LJ units). We also performed a reference MD simulation of the same system

using a Verlet integrator. To measure the deviation between ARMD simulations and

the reference simulation, we extracted the last configuration of each ARMD simulation

and computed the Root Mean Square Deviation (RMSD) with the last configuration of

the reference simulation. In order to measure the speed-up achieved by AR simulations

relatively to the classical simulation, we ran all simulations ten times and calculated the

average computational cost of each time step.

Figure 4 illustrates the obtained speed-up as a function of AR parameters. We

observed the highest speed-up (8.0 times) with εf = 3∗εr. As the ratio of εf/εr increases,

speed-up does not vary that much. For most values of AR parameters, we achieved 7 to

§ Note that different AR parameters generate different Hamiltonians, so that identical initial conditions

result in different total adaptive energies.
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Figure 1. Speed-up achieved with ARMD as a function of the percentage of restrained

particles.

Figure 2. ARMD simulation of 108,000 LJ particles with different AR parameters.

The total energy remain constant irrespective of the AR parameters.
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Figure 3. AR molecular dynamics preserves the radial distribution function in the

NVT ensemble (108,000 LJ particles).

8 times speed-up. One reason for the smaller speed-up when the ratio between εf and

εr increases is the larger number of particles belonging to the transition region, since

updating positions of transitioning particles is more computationally involved than for

particles belonging to other regions.

Figure 5 shows how ARMD deviates from standard MD when the AR parameters

vary. From figure 5, we can infer that different AR parameters might result in the

same RMSD, and that the relationship between the RMSD and the AR parameters

may sometimes be non-trivial (such as the RMSD behavior when εf = 3 ∗ εr). Figure 6

represents the speed-up as a function of the average percentage of restrained particles.

The speed-up is highly correlated with the average number of restrained particles, and

thus to values of εr. In this benchmark, we obtained an eight times speed-up when

more than 98% of the particles were restrained, while still obtaining a RMSD from the

reference simulation of 0.07 σ.

From this benchmark, it is evident that the achievable speed-up is related to the

average number of restrained particles, which in turn is a function of εr. Higher εr and

εf values lead to higher speed-ups and, in general, higher RMSD values.

3.3. Toy model of an ion passing through a membrane channel

In order to mimic the biological process of an ion passing through a membrane channel,

we created a 2D toy model. In biology, channels are usually proteins that are immersed

in biological membranes. These proteins either have a channel or pore, or act as a gate
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Figure 7. Collision Cascade: ARMD simulations collision cascade of the same system

with different AR parameters. Particles are colored according to the displacement from

their initial positions. AR simulations in the NVE ensemble make it possible to finely

trade between speed-up and precision.

controlling the passage of small molecules across the membrane. The movement of the

small molecules is often driven by an electrochemical gradient across the membrane. In

this toy model, the membrane and ions were represented with Lennard-Jones particles,

and we applied an external force in the Y direction to model an electrochemical gradient

across the membrane. Figure 8 represents the toy model. We divided the system into

three types of particles:

(i) Type 1: particles that represents an ion. The initial velocity of these particles is

set in the Y direction only (red color particles in Figure 8).

(ii) Type 2: channel particles, i.e. particles in close proximity to the passing ion (green

particles in Figure 8).
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Figure 8. Toy model of an ion passing through a channel (12,141 particles). This

system contains 3 types of particles. The red particle is always active, green particles

are less restrained compared to violet particles.

(iii) Type 3: membrane particles (violet particles in Figure 8).

In this system, containing 12,141 particles, Type 1 particles enter into the pore

formed by Type 2 particles, and Type 2 particles either accelerate or decelerate Type

1 particles. Since we were interested in the motion of Type 1 particles (e.g. the speed

at which they traverse the channel), we did not apply any restraint on these particles

(εr = εf = 0). For Type 2 particles, we set εf to two, four, six, eight and ten times

of εr values. For Type 3 particles, AR parameters were five times larger than Type 2

particles. Each simulation was performed for 150,000 steps, with a time step equal to

0.0001.

In order to verify the properties of the system, we also ran a reference MD simulation

using with a Verlet integrator. For speed-up measurement, we ran each simulation 10

times and computed the average time spent in each integration step. We measured

the speed-up with respect to the reference simulation. We computed the probability

density of type 1 particle along the Y direction (the channel axis) [27]. Figure 9 shows

the obtained speed-up with respect to the εr values of Type 2 particles. We achieved a

10X speed-up with εf = 2∗ εr, and a 6-7X speed-up with other ratios of AR parameters.

Higher speed-ups were observed with lower ratios of εf/εr, which we also observed in

the collision cascade example. Figure 10 shows the probability density of an ion inside

the toy system. From Figure 10, we can infer that, except for the largest ratio in

AR parameters (εf/εr = 10), all other simulations retain the same distribution as the

reference simulation, hence the same ion circulation dynamics, while still allowing for

large speed-ups.

3.4. Toy model of a solvated polymer

In order to demonstrate how ARMD may be used to estimate the statistical properties

of a system in the NVT ensemble, we performed a simulation of a polymer in a cubical

solvent box. The toy polymer contains a chain of 8 identical particles with mass 10

grams/mole. The solvent box (length 50 Å) contains 4,000 Lennard-Jones particles with

mass 2.9 grams/mole. A harmonic potential was used for bonded interactions (bond,

angle and dihedral terms), and a Lennard-Jones potential (cut-off 12.5 Å) was used for
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Figure 9. Toy model of an ion passing through a channel (12,141 particles). Speed-up

as a function of the restrained parameter εr for Type 2 particles.

non-bonded interactions. The system was initially minimized and then simulated in

the NVT ensemble using a 1fs time step. Initial velocities were generated using the

Maxwell-Boltzmann distribution at a given temperature. Periodic boundary conditions

were employed in all three directions. Since we wanted to compute statistic averages of

the polymer, we did not apply any restraint on it (εr = εr = 0), while solvent particles

were restrained with εr = 0.25Kcal/mol and εf = 2.50Kcal/mol.

We simulated this system for different temperatures (300K, 400K, 500K, 600K

and 700K). Figure 11 shows that the system takes few time steps to reach the desired

temperature. For each temperature and combination of AR parameters, we observed

an equilibrium in the number of active particles. The AR parameters also influence the

time needed to reach this equilibrium and the desired temperature (Figures 12, 13, 14

and 15).

In order to verify statistical averages, we compared the radial distribution function

(RDF) obtained by 10 ns of ARMD simulation with the one obtained by molecular

dynamics, in the NVT ensemble at 300 K temperature, with the aforesaid parameters.

On average, 36% of the particles were active during the ARMD simulation. Figure 16

shows that the RDF obtained by ARMD matches the one obtained with MD, indicating



Adaptively Restrained Molecular Dynamics in LAMMPS 17

MD

Figure 10. Toy model of an ion passing through a channel (12,141 particles).

Differences in the ion probability density along the channel axis from the reference

MD. Different plots represent different ratios of AR parameters.

that position-dependent statistical averages are not modified [18].

In order to understand the effect of the number of active particles on temperature in

ARMD, we performed three simulations with varying εr and εf values at 300K. Figure 17

shows that different εr and εf values lead to different numbers of active particles for the

desired temperature. Figure 17 and table 1 illustrate how fluctuations in temperature

are also related to the number of active particles, and fluctuations of the number of

active particles: higher percentages of restrained particles lead to higher temperature

fluctuations.

In the NVT ensemble, the overall achievable speed-up when computing a statistical

average depends both on the instantaneous computational speed-up that can be achieved

at each time step, and the modification of the variance caused by the AR Hamiltonian

[25]. We refer the reader to Artemova and Redon [18] for an example analysis of the

speed-up that can be achieved in the NVT ensemble.
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Figure 11. Variation of temperature with respect to the number of active particles.
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Figure 12. Equilibrium period for the number of active particles.
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Figure 13. Equilibrium period for the instantaneous temperature.

Figure 14. Time evolution of the number of active particles.
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Figure 15. Instantaneous temperature of the system with different AR parameters.
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Figure 16. Radial distribution functions of polymer obtained with ARMD and with

MD
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εr εf % < Nres > avg. Temp. (k) St.dev.

0.25 2.50 63.5 301.94 12.302217

1.3 4.5 90.0 299.501 22.913903

3.5 4.69 98.8 302.456 78.788141

Table 1. Table represents the average and standard deviation in temperature obtained

by 3 different ARMD simulations with different AR parameters.

Figure 17. Temperature profile of the system with respect to the number of active

particles with variation in εr and εf values.

4. Conclusion

We have presented novel algorithms enabling the use of AR molecular dynamics

simulations with the LAMMPS software package, and we have demonstrated how

ARMD makes it possible to speed up simulations.

We would now like to investigate extensions of this work in several directions.

First, the current method needs to incrementally update forces twice (to subtract old

contributions and then add new contributions). As a result, with this force update

algorithm, ARMD requires about at least 60% restrained particles to achieve a speed-

up. We thus need to explore the possibility of developing other force update algorithms.

Second, we have described serial algorithms, even though LAMMPS may take advantage

of parallelization (e.g. OpenMP and MPI) to speed up calculations for large systems. We

need to extend our algorithms to this case (and potentially take care of load balancing

issues). We also need to extend our force update algorithms to long-range interactions.

Finally, we want to apply our methods to processes that we believe should strongly

benefit from the ARMD methodology, i.e. systems where precise information should be
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obtained on a specific part of the system.
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