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Introduction

Molecular Dynamics (MD) simulations are widely used to understand complex systems, including e.g. liquids, solids, biomolecules, etc. [START_REF] Matsumoto | Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing[END_REF][START_REF] Benkabou | Atomistic study of zinc-blende CdS, CdSe, ZnS, and ZnSe from molecular dynamics[END_REF][START_REF] Curtin | Atomistic/continuum coupling in computational materials science[END_REF][START_REF] Schuh | Atomistic basis for the plastic yield criterion of metallic glass[END_REF]. By providing the positions of particles as a function of time, in particular, MD simulations help rationalize the behavior of complex systems [START_REF] Van Gunsteren | Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry[END_REF][START_REF] Elber | Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin[END_REF][START_REF] Levitt | Molecular dynamics of native protein[END_REF][START_REF] Amadei | Essential dynamics of proteins[END_REF][START_REF] Karplus | Molecular dynamics simulations of biomolecules[END_REF]. Because MD involves integrating Newton's equations of motion using discrete time steps, however, and because time steps sizes are typically small (for biological systems, for example, the time step size is usually a few femtoseconds), MD has difficulty simulating the timescales over which many important processes take place (like protein folding, rare events etc.) [START_REF] Hamelberg | Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules[END_REF][START_REF] Laio | Escaping free-energy minima[END_REF].

Numerous attempts have been made to accelerate MD simulations, for example by increasing the time step size or through the use of multiple time steps [START_REF] Humphreys | A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules[END_REF][START_REF] Streett | Multiple time-step methods in molecular dynamics[END_REF], by adding an external biased potential (metadynamics, umbrella sampling, etc.) [START_REF] Hamelberg | Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules[END_REF][START_REF] Laio | Escaping free-energy minima[END_REF], appropriately reducing the accuracy of the simulation (coarse-grain simulations and multi-scale simulations) [START_REF] Peter | Coarsegrained molecular dynamics simulations of membrane proteins and peptides[END_REF][START_REF] Clementi | Coarse-grained models of protein folding: toy models or predictive tools?[END_REF][START_REF] Tozzini | Coarse-grained models for proteins[END_REF], and even building special-purpose supercomputers for performing MD [START_REF] Shaw | Anton, a Special-purpose Machine for Molecular Dynamics Simulation[END_REF].

Adaptively Restrained Molecular Dynamics (ARMD) is a recent approach that attempts to tackle the timescale issue by reducing the number of computations per time step [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF]. In ARMD, particles adaptively switch their positional degrees of freedom on and off during the simulation, based on their instantaneous kinetic energy. Precisely, particles whose kinetic energy is sufficiently large are considered active, and have normal dynamics, while particles whose kinetic energy is below some threshold are restrained, and stop moving completely. The status of particles evolve during simulation, and the Adaptively Restrained Hamiltonian ensures that stable simulations can be performed, and that statistics can be recovered [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF]. Since inter-atomic forces typically depend upon relative particle positions, only forces involving active particles need to be updated at each time step [START_REF] Mael Bosson | Interactive physically-based structural modeling of hydrocarbon systems[END_REF]. This may result in significant speed-ups, depending on the chosen simplification thresholds.

A typical MD step entails repetition of the following steps:

(i) Calculate the forces applied on particles (ii) Update the particles momenta (iii) Update the particles position In these steps, the most intensive step is, by far, the force calculation. Interatomic forces can be divided into two main classes: bonded and non-bonded forces. Bonded forces include e.g. bonds, angles, and torsions. Non-bonded forces can be further divided into two classes: long-and short-range forces. Long-range interactions are often computed through Ewald summations [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF][START_REF] Darden | Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems[END_REF], while short-range interactions are typically truncated (i.e. vanish after a specific cutoff distance r c ), and computed thanks to neighbor lists, i.e. lists of neighboring particles. These neighbor lists are often build through a combination of cell lists and Verlet lists [START_REF] Gonnet | A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics simulations[END_REF]. In the cell lists method, all particles are binned into 3D cells of side length l ≥ r c according to their coordinates. Neighbors of particles in a given cell are only searched in the cell itself and its 26 neighboring cells (instead of the whole simulation box). In the Verlet lists method, each particle is associated to a list of neighboring particles within distance r s = r c + δ, where δ is a buffering distance. This list is updated either every N time steps, or based upon how far the particles have moved [START_REF] Sutmann | Optimization of neighbor list techniques in liquid matter simulations[END_REF][START_REF] Fomin | Consideration of data load time on modern processors for the Verlet table and linked-cell algorithms[END_REF]. Some short-range force calculations also use Newton's third law and store only half of the neighbor pairs. Despite the conceptual simplicity of the ARMD approach, however, only simple implementations have been demonstrated so far [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF][START_REF] Trstanova | Estimating the speed-up for Adaptively Restrained Langevin Dynamics[END_REF], and integrating it in an existing molecular dynamics package (e.g LAAMPS, GROMACS, etc.) is non-trivial. Indeed, the potentials implemented in these simulation packages should take into account the fact that some particles are frozen in order to speed up force calculations [START_REF] Mael Bosson | Interactive physically-based structural modeling of hydrocarbon systems[END_REF], and this would a priori require re-implementing all potentials.

In this paper, we present novel algorithms for integrating ARMD in LAMMPS, a popular multi-purpose molecular simulation package, without having to modify the available force fields. In particular, we introduce a novel method to compute neighbor lists and short-range forces when performing ARMD simulations. This method is independent of the underlying potential or force field, and may be used with any pair potential. We validate these new algorithms by simulating several systems in the NVE and NVT ensembles with the adaptively restrained version of LAMMPS. We show that our algorithms, combined with the AR molecular dynamics methodology, makes it possible to finely trade between precision and computational cost (in the NVE ensemble), and speed up the calculation of statistical properties (in the NVT ensemble).

Methods

Adaptively Restrained Molecular Dynamics

For completeness, we provide a brief overview of the ARMD methodology. For more details, we refer the reader to [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF].

The time evolution of the system containing N particles may be derived from the Hamiltonian function 1

H(q, p) = 1 2 p T M -1 p + V (q) ( 1 
)
where q is a 3N -dimensional vector of coordinates, p is a 3N -dimensional vector of momenta, M is a 3N × 3N mass matrix, and V (q) is the potential energy.

In Adaptively Restrained (AR) molecular dynamics, the 3N × 3N inverse mass matrix M -1 is replaced by a 3N × 3N inverse inertia matrix Φ(q, p) which adaptively enforces restraints during simulation [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF]:

H AR (q, p) = 1 2 p T Φ(q, p)p + V (q). (2) 
One possible choice for the inverse inertia matrix Φ(q, p) is a block-diagonal matrix diag [Φ 1 (q 1 , p 1 ), . . . , Φ N (q N , p N )] with

Φ i (q i , p i ) = m -1 i [1 -ρ i (p i )]I 3×3 (3) 
where I 3×3 is the 3 × 3 identity matrix, m i , q i and p i are respectively the mass, position and momentum of particle i, and ρ i is its restraining function:

ρ i (p i ) =          1 if 0 ≤ K i (p i ) ≤ ε r i 0 if K i (p i ) ≥ ε f i s(K i (p i )) ∈ [0, 1] elsewhere (4) 
In this definition, K i (p i ) = 1 2 m -1 i p T i p i is the kinetic energy of particle i, ε r i is its restrained-dynamics threshold, ε f i is its full-dynamics threshold, and s is a C 2 function that smoothly interpolates between 0 and 1.

When

ρ i = 0, Φ i = m -1 i
and particle i is active (the particle mass is unchanged). When ρ i = 1, Φ i = 0 and particle i is restrained, i.e. will not move whichever force is applied to it (the particle mass is infinite). When ρ i ∈ (0, 1), particle i is in a transition state. The restraining function ρ i above depends upon the kinetic energy of the particle. Precisely, particle i is restrained when its kinetic energy is smaller than the restrained-dynamics threshold (ε r i ), and it is active if its kinetic energy is larger than its full-dynamics threshold ε f i . Particles with kinetic energies between ε r i and ε f i are considered as transition particles.

To integrate the equations of motion of a system in the NVE ensemble using the AR Hamiltonian, we may use a modified Velocity Verlet algorithm which takes into account the non-constant mass matrix:

(i) p i (t + 1 2 ∆t) = p i (t) + 1 2 f i (t)∆t (ii) q i (t + ∆t) = q i (t) + ∇ p i H AR (t + 1 2 ∆t)∆t (iii) f i (t + ∆t) = -∇ q i V (q(t + ∆t)) (iv) p i (t + ∆t) = p i (t + 1 2 ∆t) + 1 2 f i (t + ∆t)∆t
To perform simulation in the canonical ensemble (NVT), we use AR Langevin dynamics [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF][START_REF] Redon | Error Analysis of Modified Langevin Dynamics[END_REF]:

dq = ∇ p H AR (q, p)dt dp = -∇ q H AR (q, p)dt -γ∇ p H AR (q, p)dt + 2γ β dW (5) 
where dW t is a 3N -dimensional Brownian motion and γ > 0 is the frictional constant. Discretization of the modified Langevin is done using second-order Trotter splitting [START_REF] Redon | Error Analysis of Modified Langevin Dynamics[END_REF].

The temperature of the AR system is given by:

T = 1 DK B N i=1 p i • ∂H AR ∂p i ( 6 
)
where D is the number of degrees of freedom in the system and the dot represents the dot product. In the version described above, the AR Hamiltonian is separable and the temperature is unchanged [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF].

Molecular dynamics in LAMMPS

After setting up initial conditions, LAMMPS repeats the following steps: Algorithm 1: LAMMPS integration step To calculate forces, LAMMPS provides force fields implementations with a list L of particles for which forces should be computed, as well as the neighbor list N L(i) of each particle i in L. LAMMPS may provide either full neighbor lists (FNLs) or half neighbor lists (HNLs). In the FNL case, all neighbors of particle i are stored in N L(i).

In the HNL case, the neighbor pair (i, j) is stored in either N L(i) or N L(j). The HNL case is used when the force calculation step may use Newton's third law (f ij = -f ji ) in order to reduce the number of force calculations by half and speed up the simulation.

The force calculation algorithm is then:

Algorithm 2: ComputeF orces(L, N L) 1 for (i ∈ L) do 2 for (j ∈ N L(i)) do 3 f ij ← ComputeF orce(i, j) 4 f i ← f i + f ij 5 if (N ewtonOn) then 6 f j ← f j -f ij 7 end 8 end 9 end
where f ij is the force applied to i by j, f i is the total force applied to i, and N ewtonOn is true when HNLs and Newton's third law are used.

Adaptively Restrained Molecular Dynamics in LAMMPS

In AR molecular dynamics, a system of N particles can be represented as a combination of N R restrained particles and N A = N -N R active or transitioning particles. At any time-step, interactions between particles (i.e. inter-particle energies and forces) may thus be categorized into two types:

(i) Restrained interactions: interactions between restrained particles only.

(ii) Active interactions: interactions involving at least one active particle.

In most force fields, interactions only depend on relative particle positions. As a result, at any time step, restrained interactions do not have to be updated, and only active interactions must be recalculated (since active particles may have moved since the previous time step). An ARMD integration step may thus rely on the same general steps as in Algorithm 1, but efficient ARMD simulations require incremental force calculation algorithms, i.e. force calculation algorithms that only update active interactions.

In order to enable AR molecular dynamics in LAMMPS without modifying the source code of all force fields, our strategy is a) to pass modified information to force fields implementations, unbeknownst to them, so that they only compute active interactions, and b) to use these active interactions to incrementally update the total forces applied to particles (which are required to update positions and momenta). We note that modifying LAMMPS in such a way allows us to enable ARMD for force fields that are not yet implemented, which is a significant advantage of the approach proposed in this paper.

Active neighbor lists

Let C denote the complete list of particles, A denote the list of active (or transitioning) particles, and R denote the list of restrained particles, so that C = A R.

Since we want force fields implementations to compute active interactions only, we are going to pass them the list A of active particles instead of the complete list C. Assuming we may use Newton's third law, the list A is sufficient, since any force f ij we need to compute involves at least one active particle. However, we cannot just pass to force fields the HNLs of active particles, since there would be a risk that these HNLs do not contain all the neighbors for which we need to compute interactions ‡. Conversely, we should not pass the FNLs of active particles if we want to take advantage of Newton's third law. As a result, we introduce active neighbor lists (ANLs), i.e. neighbors lists that are built in such a way that, when i is an active particle, AN L(i) contains j if a) j is restrained or b) if j is active and AN L(j) does not contain i. If i is restrained, AN L(i) is empty. The ANLs can thus be seen as HNLs for active-active neighbors (if both i and j are active, either AN L(i) contains j or AN L(j) contains i), and FNLs for active-restrained neighbors (if i is active, AN L(i) contains all the restrained neighbors of i). We may thus use the following algorithm to build the ANLs:

When we initialize the simulation (before the first time step), we first build the ANLs from the FNLs thanks to Algorithm 3. During the main loop, however, we ‡ Consider e.g. the case of four particles 1, . . . , 4 that are all neighbors to each other, where HN L(1) = {2, 3, 4}, HN L(2) = {3, 4}, HN L(3) = {4} and HN L(4) = ∅, and assume that particles 1 and 4 are active. If a force field implementation only receives HN L(1) and HN L(4), it will only compute active interactions f 12 = -f 21 , f 13 = -f 31 , and f 14 = -f 41 (thanks to HN L(1)), and will compute neither f 42 = -f 24 nor f 43 = -f 34 , since neither HN L(1) nor HN L(4) signal that particles 2 and 3 are neighbors of particle 4.

Algorithm 3: BuildAN L(i)

1 for (j ∈ F N L(i)) do 2 if (j ∈ R) or (i / ∈ AN L(j)) then 3 AN L(i) ← AN L(i) ∪ j 4 end 5 end
incrementally update the ANLs based on the list S A of particles switching to an active (or transitioning) state, and the list S R of particles switching to a restrained state. Precisely, if A and R represent the state distribution of the simulation at time step n, then S A and S R are the lists of particles switching between time steps n and n + 1. We update the ANLs in two steps:

Step 1: clearing ANLs of particles that become restrained When a particle i switches from active to restrained, we need to empty AN L(i).

However, we need to retain interactions with any neighboring particle j that remains active, i.e. insert i in AN L(j). In the first step of the ANL lists update, we thus go through each particle i in S R and clear AN L(i) using Algorithm 4.

Algorithm 4: ClearAN L(i)

1 for (j ∈ AN L(i)) do 2 if (j ∈ A) and (j / ∈ S) then 3 AN L(j) ← AN L(j) ∪ i 4 end 5 end 6 AN L(i) ← ∅
Step 2: building ANLs of particles that become active When a particle i switches from restrained to active, we need to build AN L(i). In the second step of the ANL lists update, we thus go through each particle i in S A and build AN L(i) using Algorithm 3.

Incremental force updates

As noted before, in order to achieve a speed-up through AR molecular dynamics, we need to be able to incrementally update the total forces applied on particles, i.e. avoid recomputing all total forces.

Let I denote the list of involved particles, i.e. the list of particles involved in active interactions (either because they are active particles, or because they are neighbors of active particles): I = A ∪ (∪ i∈A AN L(i)). The list I may be incrementally updated at each time step while updating the ANLs.

We may use A and the ANLs to incrementally update the total forces of particles in I:

(i) Compute forces f + old between particles in I using current positions. (ii) Subtract f + old from the total forces f . (iii) Update the positions of active particles.

(iv) Compute forces f + new between particles in I using the new positions. (v) Add f + new to the total forces f . Algorithm 5 shows the pseudo-code of the initialization step (before the first time step), and Algorithm 6 gives the pseudo-code for performing an AR molecular dynamics step in LAMMPS.

Algorithm 5: AR-LAMMPS initialization step

1 for (i ∈ L) do 2 f i ← 0 3 f + i ← 0 4 AN L(i) ← ∅ 5 end 6 Construct all FNLs 7 f ← ComputeF orces(C, F N L) 8 Build A, R, I 9 for (i ∈ A) do 10 BuildAN L(i) 11 end

Results and discussion

In order to validate our new algorithms and their implementation in LAMMPS, we performed ARMD simulations on a set of toy models that were general enough to model typical simulations, while simple enough to allow for detailed analysis. For some benchmarks, in particular, we chose test cases that were similar to earlier ones [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF] to demonstrate that speed-ups were still achievable despite computational overheads that may result from integration in a MD package not initially designed for adaptively restrained simulation. 

f i ← f i -f + i 22 f + i ← 0 23 end 24 Update positions 25 f + ← ComputeF orces(A, AN L) 26 for i ∈ I do 27 f i ← f i + f + i 28 f + i ← 0 29 end

Systems of Lennard-Jones particles

We simulated three systems with different numbers (500, 4,000 and 108,000) of Lennard-Jones particles using an AR integrator in the NVE ensemble. All simulations were performed in reduced, Lennard-Jones units using our version of LAMMPS. Particles were generated along a fcc lattice of density 0.8442, and initial velocities were assigned according to the Boltzmann distribution. For all simulations, we used a time-step of 0.005. Interactions beyond distance 2.5σ were ignored. Periodic boundary conditions were applied in all three directions. We chose values of r and f in order to achieve specific ratios of restrained particles.

We ran one reference simulation and one ARMD simulation for all three systems. Reference simulations were performed with the original LAMMPS neighbor list and force update algorithms, whereas ARMD used ANLs and incremental force update algorithms. To determine the resulting speed-ups, we compared the average times spent in each integration steps. Figure 1 shows the achieved speed-ups with respect to the percentage of restrained particles in the system. Figure 1 shows that, in order to have a speed-up for systems containing 500 and 4000 particles, at least 60% of the particles should be restrained. A 1.6X to 2.8X speed-up was observed when 80% to 90% particles were restrained. For the system containing 108,000 particles, we observed a speed-up when at least 50% of the particles were restrained, and a 2.5X to 4.2X speed-up was observed when 80% to 90% of the particles were restrained. One reason for achieving higher speed-ups in larger systems is the number of force calculations performed per time step. Smaller systems contain relatively fewer force calculations per time-step, and reducing them does not have much influence on the overall speed-up. For larger systems, force calculations constitute the major part of the time-step cost, and reducing them can significantly speed-up the simulation. Figure 2 shows that, even for AR simulations, the total adaptive energy of the system is constant §.

In order to study the structural properties of the system, we also performed NVT simulations of all three systems using two different sets of AR parameters. We computed the radial distribution function (RDF) of the systems using classical MD and ARMD. Figure 3 shows that the RDFs obtained by both methods coincide.

Collision cascade

We performed this benchmark to show that AR molecular dynamics simulations in the NVE ensemble allow us to finely trade between precision and speed. In this benchmark, a high-velocity particle collides with an initially static 2D system containing 7290 particles. Interactions among particles are computed using a Lennard-Jones potential. We simulated this system for different values of AR parameters r and f , and various ratios f r . All simulations were performed for 7000 steps with a time step size equal to 0.0003 (LJ units). We also performed a reference MD simulation of the same system using a Verlet integrator. To measure the deviation between ARMD simulations and the reference simulation, we extracted the last configuration of each ARMD simulation and computed the Root Mean Square Deviation (RMSD) with the last configuration of the reference simulation. In order to measure the speed-up achieved by AR simulations relatively to the classical simulation, we ran all simulations ten times and calculated the average computational cost of each time step.

Figure 4 illustrates the obtained speed-up as a function of AR parameters. We observed the highest speed-up (8.0 times) with f = 3 * r . As the ratio of f / r increases, speed-up does not vary that much. For most values of AR parameters, we achieved 7 to 8 times speed-up. One reason for the smaller speed-up when the ratio between f and r increases is the larger number of particles belonging to the transition region, since updating positions of transitioning particles is more computationally involved than for particles belonging to other regions. Figure 5 shows how ARMD deviates from standard MD when the AR parameters vary. From figure 5, we can infer that different AR parameters might result in the same RMSD, and that the relationship between the RMSD and the AR parameters may sometimes be non-trivial (such as the RMSD behavior when f = 3 * r ). Figure 6 represents the speed-up as a function of the average percentage of restrained particles. The speed-up is highly correlated with the average of restrained particles, and thus to values of r . In this benchmark, we obtained an eight times speed-up when more than 98% of the particles were restrained, while still obtaining a RMSD from the reference simulation of 0.07 σ.

From this benchmark, it is evident that the achievable speed-up is related to the average number of restrained particles, which in turn is a function of r . Higher r and f values lead to higher speed-ups and, in general, higher RMSD values.

Toy model of an ion passing through a membrane channel

In order to mimic the biological process of an ion passing through a membrane channel, we created a 2D toy model. In biology, channels are usually proteins that are immersed in biological membranes. These proteins either have a channel or pore, or act as a gate controlling the passage of small molecules across the membrane. The movement of the small molecules is often driven by an electrochemical gradient across the membrane. In this toy model, the membrane and ions were represented with Lennard-Jones particles, and we applied an external force in the Y direction to model an electrochemical gradient across the membrane. Figure 8 represents the toy model. We divided the system into three types of particles:

(i) Type 1: particles that represents an ion. The initial velocity of these particles is set in the Y direction only (red color particles in Figure 8).

(ii) Type 2: channel particles, i.e. particles in close proximity to the passing ion (green particles in Figure 8). (iii) Type 3: membrane particles (violet particles in Figure 8).

In this system, containing 12,141 particles, Type 1 particles enter into the pore formed by Type 2 particles, and Type 2 particles either accelerate or decelerate Type 1 particles. Since we were interested in the motion of Type 1 particles (e.g. the speed at which they traverse the channel), we did not apply any restraint on these particles ( r = f = 0). For Type 2 particles, we set f to two, four, six, eight and ten times of r values. For Type 3 particles, AR parameters were five times larger than Type 2 particles. Each simulation was performed for 150,000 steps, with a time step equal to 0.0001.

In order to verify the properties of the system, we also ran a reference MD simulation using with a Verlet integrator. For speed-up measurement, we ran each simulation 10 times and computed the average time spent in each integration step. We measured the speed-up with respect to the reference simulation. We computed the probability density of type 1 particle along the Y direction (the channel axis) [START_REF] Bransburg-Zabary | A Fast in Silico Simulation of Ion Flux through the Large-Pore Channel Proteins[END_REF]. Figure 9 shows the obtained speed-up with respect to the r values of Type 2 particles. We achieved a 10X speed-up with f = 2 * r , and a 6-7X speed-up with other ratios of AR parameters. Higher speed-ups were observed with lower ratios of f / r , which we also observed in the collision cascade example. Figure 10 shows the probability density of an ion inside the toy system. From Figure 10, we can infer that, except for the largest ratio in AR parameters ( f / r = 10), all other simulations retain the same distribution as the reference simulation, hence the same ion circulation dynamics, while still allowing for large speed-ups.

Toy model of a solvated polymer

In order to demonstrate how ARMD may be used to estimate the statistical properties of a system in the NVT ensemble, we performed a simulation of a polymer in a cubical solvent box. The toy polymer contains a chain of 8 identical particles with mass 10 grams/mole. The solvent box (length 50 Å) contains 4,000 Lennard-Jones particles with mass 2.9 grams/mole. A harmonic potential was used for bonded interactions (bond, angle and dihedral terms), and a Lennard-Jones potential (cut-off 12.5 Å) was used for non-bonded interactions. The system was initially minimized and then simulated in the NVT ensemble using a 1f s time step. Initial velocities were generated using the Maxwell-Boltzmann distribution at a given temperature. Periodic boundary conditions were employed in all three directions. Since we wanted to compute statistic averages of the polymer, we did not apply any restraint on it ( r = r = 0), while solvent particles were restrained with r = 0.25Kcal/mol and f = 2.50Kcal/mol. We simulated this system for different temperatures (300K, 400K, 500K, 600K and 700K). Figure 11 shows that the system takes few time steps to reach the desired temperature. For each temperature and combination of AR parameters, we observed an equilibrium in the number of active particles. The AR parameters also influence the time needed to reach this equilibrium and the desired temperature (Figures 12,[START_REF] Streett | Multiple time-step methods in molecular dynamics[END_REF]14 and 15).

In order to verify statistical averages, we compared the radial distribution function (RDF) obtained by 10 ns of ARMD simulation with the one obtained by molecular dynamics, in the NVT ensemble at 300 K temperature, with the aforesaid parameters. On average, 36% of the particles were active during the ARMD simulation. Figure 16 shows that the RDF obtained by ARMD matches the one obtained with MD, indicating that position-dependent statistical averages are not modified [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF].

In order to understand the effect of the number of active particles on temperature in ARMD, we performed three simulations with varying r and f values at 300K. Figure 17 shows that different r and f values lead to different numbers of active particles for the desired temperature. Figure 17 and table 1 illustrate how fluctuations in temperature are also related to the number of active particles, and fluctuations of the number of active particles: higher percentages of restrained particles lead to higher temperature fluctuations.

In the NVT ensemble, the overall achievable speed-up when computing a statistical average depends both on the instantaneous computational speed-up that can be achieved at each time step, and the modification of the variance caused by the AR Hamiltonian [START_REF] Trstanova | Estimating the speed-up for Adaptively Restrained Langevin Dynamics[END_REF]. We refer the reader to Artemova and Redon [START_REF] Artemova | Adaptively Restrained Particle Simulations[END_REF] for an example analysis of the speed-up that can be achieved in the NVT ensemble. 

Conclusion

We have presented novel algorithms enabling the use of AR molecular dynamics simulations with the LAMMPS software package, and we have demonstrated how ARMD makes it possible to speed up simulations.

We would now like to investigate extensions of this work in several directions. First, the current method needs to incrementally update forces twice (to subtract old contributions and then add new contributions). As a result, with this force update algorithm, ARMD requires about at least 60% restrained particles to achieve a speedup. We thus need to explore the possibility of developing other force update algorithms. Second, we have described serial algorithms, even though LAMMPS may take advantage of parallelization (e.g. OpenMP and MPI) to speed up calculations for large systems. We need to extend our algorithms to this case (and potentially take care of load balancing issues). We also need to extend our force update algorithms to long-range interactions. Finally, we want to apply our methods to processes that we believe should strongly benefit from the ARMD methodology, i.e. systems where precise information should be
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  Update positionswhere lines 1 -2 ensure that neighbor lists are rebuilt periodically (e.g. every 20 time steps), and line 3 is the main step: calculating forces.

	2	Build neighbor lists
	3 end
	4 Calculate forces
	5 Update momenta
	6	

1 if (U pdateN eeded) then

Table 1 .

 1 Table represents the average and standard deviation in temperature obtained by 3 different ARMD simulations with different AR parameters.

	2.50	63.5	301.94	12.302217
	1.3 4.5	90.0	299.501	22.913903
	3.5 4.69	98.8	302.456	78.788141

§ Note that different AR parameters generate different Hamiltonians, so that identical initial conditions result in different total adaptive energies.
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