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Abstract

We investigate theoretically and experimentally the evaporation of liquid disks in the presence of natural
convection due to a density difference between the vapor and the surrounding gas. From the analogy between
thermal convection above a heated disk and our system, we derive scaling laws to describe the evaporation rate.
The local evaporation rate depends on the presence of a boundary layer in the gas phase such that the total
evaporation rate is given by a combination of different scaling contributions, which reflect the structure of the
boundary layer. We compare our theoretical predictions to experiments performed with water in an environment
controlled in humidity, which validate our approach.

1 Introduction

The evaporation of small liquid disks takes its roots in
botany, in particular with some studies on the transpi-
ration of plants published in the early twentieth century
[1, 2, 3, 4]. Beyond this original inspiration, evaporation
is an ubiquitous phenomenon in nature as for the evapo-
ration of liquids from water drops [5] to lakes or oceans [6]
and in the industry, in particular for coating processes.
Indeed, the transport of solutes is often driven by evap-
oration and dictates the self-organization of particles at
micro and macroscopic lengthscales [7]. Therefore, a cor-
rect modeling of the evaporation dynamics is crucial for
understanding evaporation kinetics and colloidal deposi-
tion.

When the evaporation is limited by the diffusion in the
vapor phase [8], the derivation of the evaporative flux
shows that the total evaporation rate is linear with the
radius of the liquid surface [9]. In 2006, Shahidzadeh-
Bonn et al. reported experimental observations of evap-
orating drops of water and hexane [10]. They observed
that while a drop of hexane evaporates as predicted by a
diffusive model, a drop of water has an anomalous evap-
oration rate above a certain radius. They attributed this
different behavior to the natural convection that takes
place, as water vapor is less dense than air. The di-
mensionless number representing the balance between
the buoyant forces in favor of convection and the vis-
cous forces in favor of diffusion, is the Grashof number
defined as

Gr =

∣∣∣∣ρs − ρ∞ρ∞

∣∣∣∣ gR3

ν2
, (1)

where ρs and ρ∞ are respectively the vapor density at
saturation and at infinity, g the gravity constant, R the
radius of the drop and ν the kinematic viscosity of air.
For small Grashof numbers, evaporation is limited by dif-
fusion while for large Grashof numbers, buoyancy creates
a convective flow.

Additional experimental questioning [11] and evi-
dences [12, 13, 14, 15, 16, 17] of the importance of con-
vective effects have been reported more recently in the
literature. Direct visualizations of evaporating drops
have been achieved by X-ray imaging method [12], IR
absorption [14], Schlieren technique [18] or by interfer-
ometric measurements [19] and these studies concluded
that evaporation can be enhanced by convection. The
transition between diffusive and convective evaporation
regimes has been reported and the convective evapo-
ration rate can be captured as Grβ with β ≈ 0.20
[13, 14, 15].

As we expect from the definition of the Grashof num-
ber (Eq. (1)), the threshold for convective evaporation
is a function of the radial lengthscale of the evaporating
surface. Recently, Carrier et al. investigated the mutual
influence of closely deposited drops on the evaporation
rate [20] as it can be encountered for a sprayed liquid. If
the drops are separated by a distance comparable to their
radius, they found that a cooperative effect induces con-
vective evaporation. In addition, they studied the evap-
oration of circular evaporating surfaces of different radii
and they concluded that for large Grashof numbers, con-
vection dominates with an evaporation rate that scales
as R2.

From the point of view of the governing equations, the
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evaporation of a liquid is similar to the dissolution of a
liquid into another. Recent attention has been devoted
to the sessile drop dissolution [21, 22, 23] and bubble
growth in supersaturated solutions [24] with a combina-
tion of experimental, numerical and theoretical investiga-
tions. These studies show that natural convection is also
observed above dissolving drops. The main difference
between evaporation and dissolution is the magnitude of
the Schmidt number Sc = ν/D defined as the ratio of
the kinematic viscosity ν of the surrounding phase and
the diffusivity D of the molecules. For evaporation, the
Schmidt number is close to unity as diffusivity and kine-
matic viscosity are similar for gases. In contrast, the
Schmidt number is large for dissolution [22]. This differ-
ence of Schmidt number is important for the structure of
the boundary layer of the convective flow [25].

In this paper, we propose to derive scaling laws for a
flat circular evaporating surface in a regime dominated
by convection. We base our analysis on an analogy be-
tween convective evaporation of flat circular surfaces and
the thermal convection that takes place above a heated
disk. We show that our prediction is in agreement with
our measurements and with some empirical predictions
available in the literature.

2 Model

As stated in the introduction, the evaporation of the liq-
uid changes the composition of the surrounding atmo-
sphere and thus, its local density. Therefore, we con-
sider the natural convection that can take place above
a circular disk of liquid. In this Section, we establish
a scaling law between the evaporation flux and the ra-
dius of the flat drop. By analogy between heat and mass
transfer, this derivation closely follows that of the heat
transfer above a horizontal heated surface, which is a
classical problem [26, 27, 28, 29]. Dehaeck et al. have
also performed a detailed study of the role of natural
convection on an evaporating pendant droplet, see the
Supporting Information of [19]. In particular, they dis-
cussed the role of the varying slope of the droplet, and of
thermal Marangoni flows induced in the droplet by the
latent heat released during evaporation. However, these
papers either considered a plate geometry instead of a
disk [26, 27], or started from dimensionless or simplified
equations [28, 29, 19], which is why we prefer to present
the derivation in details.

2.1 Diffusion-convection equations

We establish the equations to describe the flow in the
gas phase and our analysis requires the following as-
sumptions. (i) The liquid-vapor interface is horizontal.
(ii) The flow of vapor is axisymmetric and in a steady
state. (iii) Thermal effects are negligible. (iv) We use
the Boussinesq approximation: the air density is assumed

Water
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Figure 1: Sketch presenting the notations for the convec-
tive evaporation above a circular disk of volatile liquid.

constant, except in the terms where it acts as a driving
force for the flow; in particular, the flow is considered
incompressible.

Under these conditions, the velocity field of the vapor
above the drop writes u = u er +w ez and depends only
on the cylindrical coordinates r and z, with origin at
the center of the drop interface (Fig. 1). The continuity
equation is

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (2)

With p the pressure field, c the mass concentration field,
ρ(c) the gas density field and µ its dynamic viscosity,
the radial and vertical components of the Navier-Stokes
equation are respectively

ρ∞

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+

µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
,

(3a)

ρ∞

(
u
∂w

∂r
+ w

∂w

∂z

)
= −ρ(c)g − ∂p

∂z
+

µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
. (3b)

In these equations, according to the Boussinesq approx-
imation, the gas density is taken as constant and equal
to its value at infinity ρ∞, except in the driving force
term of natural convection, ρ(c)g in the equation (3b) of
vertical motion. From the ideal gas law, the gas density
varies linearly with the vapor concentration:

ρ(c) = ρ0 −∆ρ
c

cs
, (4)

where ρ0 is the density of dry air, ∆ρ = ρ0− ρs the den-
sity difference between pure air and air saturated with
vapor, and cs the saturation concentration of vapor in
air. Finally, the diffusion-convection equation for the
concentration field is

u
∂c

∂r
+ w

∂c

∂z
= D

[
1

r

∂

∂r

(
r
∂c

∂r

)
+
∂2c

∂z2

]
, (5)

where D is the diffusion coefficient of vapor in air.
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Let p = pstat + $ with pstat the hydrostatic pressure,
such that −ρ∞g − ∂pstat/∂z = 0. The Navier-Stokes
equations (3) become:

ρ∞

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂$

∂r
+

µ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
,

(6a)

ρ∞

(
u
∂w

∂r
+ w

∂w

∂z

)
= − [ρ(c)− ρ∞] g − ∂$

∂z
+

µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
. (6b)

We now nondimensionalize equations (2), (5) and (6)
by the characteristic length scale R, the characteristic
velocity ν/R and the characteristic pressure ρ∞ν2/R2.
We thus introduce the following dimensionless quanti-
ties, denoted by a tilde: r̃ = r/R, z̃ = z/R, ũ = Ru/ν,
w̃ = Rw/ν and p̃ = R2p/ρ∞ν2. We also define a di-
mensionless concentration field c̃ = (c − c∞)/(cs − c∞),
where c∞ is the vapor concentration far from the drop.
We then obtain:

1

r̃

∂(r̃ũ)

∂r̃
+
∂w̃

∂z̃
= 0, (7a)

ũ
∂ũ

∂r̃
+ w̃

∂ũ

∂z̃
= −∂$̃

∂r̃
+
∂2ũ

∂r̃2
+

1

r̃

∂ũ

∂r̃
− ũ

r̃2
+
∂2ũ

∂z̃2
,

(7b)

ũ
∂w̃

∂r̃
+ w̃

∂w̃

∂z̃
= −∂$̃

∂z̃
+ Gr c̃+

∂2w̃

∂r̃2
+

1

r̃

∂w̃

∂r̃
+
∂2w̃

∂z̃2
,

(7c)

ũ
∂c̃

∂r̃
+ w̃

∂c̃

∂z̃
=

1

Sc

[
1

r̃

∂

∂r̃

(
r̃
∂c̃

∂r̃

)
+
∂2c̃

∂z̃2

]
, (7d)

with two dimensionless numbers, the Grashof number
defined by equation (1), and the Schmidt number Sc =
ν/D, which is of order one because all diffusivities have
the same order of magnitude in gases.

Since the liquid is out of equilibrium with the atmo-
sphere, a mass transfer occurs at the liquid-vapor in-
terface. From Fick’s law, the local flux normal at the
liquid-vapor interface is given by

j(r) = −D ∂c(r, z)

∂z

∣∣∣∣
z=0

, (8)

where the concentration gradient is taken at the liquid-
vapor interface, i.e. z = 0. The total evaporating flux is
given by

Q =

∫
S

j(r) dS, (9)

where S is the surface of the liquid-vapor interface.
To determine these local and total fluxes, we must es-

tablish the vapor concentration gradient at the interface.
Therefore, we analyze in the next paragraphs the set of
equations (7) to derive this concentration gradient.

−2 −1 0 1 2
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0.0
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Figure 2: Dimensionless vapor concentration map above
an evaporating disk in the dimensionless space (r̃, z̃) ob-
tained from equation (12). White and cyan lines are the
oblate spheroidal coordinates (κ, σ), for respectively con-
stant κ and σ values.

2.2 Diffusion-limited evaporation

For small Grashof numbers, the unique driving term of
the gas flow, namely Gr c̃ in equation (7c), vanishes.
From the definition of the Grashof number given by equa-
tion (1), and from (4), the condition Gr < 1 is equivalent
to a drop radius smaller than R? defined as

R? =

(
cs − c∞
c∞

ν2

g

)1/3

. (10)

Hence, in this condition, there is no gas flow i.e. ũ =
w̃ = 0, and the set of equations (7) reduces to the Laplace
equation for the concentration field. From equation (7d),
the Laplace equation writes

1

r̃

∂

∂r̃

(
r̃
∂c̃

∂r̃

)
+
∂2c̃

∂z̃2
= 0. (11)

The boundary conditions are a saturated vapor concen-
tration at the surface of the disk c(r < R, z = 0) = cs
and a vapor concentration c∞ far from the disk. Intro-
ducing the oblate spheroidal coordinates (κ, σ) defined as
r̃2 = (1−κ2)(1+σ2) and z̃ = κσ, the vapor concentration
can be written in the simple form [30, 31]

c̃(κ, σ) = 1− 2

π
arctan(σ). (12)

This solution is represented in Fig. 2.
Thus, for a diffusion-limited evaporation, the local flux

calculated from equation (8), is

jdiff(r) =
2

π

D(cs − c∞)√
R2 − r2

, (13)

which is the well-known flux for a drop of a small contact
angle. This flux presents a divergence at the edge that
can be interpreted as a tip effect by analogy with electro-
static problems. Substituting equation (13) in equation
(9), we derive the total flux

Qdiff = 4D(cs − c∞)R. (14)
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Figure 3: (a) For a large Grashof number, sketch rep-
resenting the three characteristic zones of the boundary
layer depicted in red above an evaporating disk of liq-
uid. The thickness of the boundary layer is given by
Eq. (17). Blue arrows indicate the direction of the gas
flow for a light vapor, ∆ρ > 0. (b) Relative surface area
of the center, edge and intermediate zone as a function
of the Grashof number. Each area is calculated from the
scaling presented in (a). The corresponding radius R is
indicated for water.

Equations (13) and (14) have been largely commented
in the literature, particularly in the frames of evaporat-
ing droplet lifetime [32, 33] and the so-called coffee stain
effect [9, 34, 35, 36, 17]. Therefore, we do not develop
further the diffusion-limited case and we analyze in the
next paragraph the convective evaporation.

2.3 Convective evaporation

2.3.1 Spatial structure of the boundary layer

For large Grashof numbers, a flow is established in the
gas phase. The direction and the spatial structure of this
flow depends on the sign of the density difference ∆ρ, as
well as the spatial structure of the flow, especially at the
edge and at the center of the liquid disk. As the exper-
iments conducted in Section 3 are for a positive density
difference, we henceforth assume that ∆ρ > 0. Under
this assumption, the flow is mostly horizontal inwards.

Due to this convective flow, unsaturated air is brought
toward the edge of the evaporating film. At some dis-
tance from the edge of the film, a slender boundary layer
is established and progressively thickens. At the center
of the disk, the flow field converges, and thus moves up-
wards to form a rising plume of wet air.

Consequently, we distinguish three zones as depicted
in Fig. 3(a): the edge and the center zones, that do
not satisfy the conditions for a slender boundary layer,
in contrast to the intermediate zone, which is slender in
the sense that vertical variations are much sharper than
horizontal ones. We first focus on this intermediate zone
where the approximation of a thin horizontal boundary
layer can be applied to determine its thickness variation.
Then, from this first analysis, we precise the horizontal
extension of the intermediate zone and, by consequence,
we also define the sizes of the edge and center zones.

2.3.2 Intermediate zone

We assume that the flow is almost horizontal and that the
vertical variations occur over lengthscales mush smaller
than the horizontal ones. To retain the necessary inertial,
viscous and pressure terms describing such a flow, the
following rescaling is introduced [26]: ẑ = Gr1/5z̃, û =

Gr−2/5ũ, ŵ = Gr−1/5w̃ and $̂ = Gr−4/5$̃. Substituting
these new variables in equations (7), we obtain:

1

r̃

∂(r̃û)

∂r̃
+
∂ŵ

∂ẑ
=0, (15a)

û
∂û

∂r̃
+ ŵ

∂û

∂ẑ
=− ∂$̂

∂r̃
+

Gr−2/5

(
∂2û

∂r̃2
+

1

r̃

∂û

∂r̃
− û

r̃2

)
+
∂2û

∂ẑ2
, (15b)

Gr−2/5

(
û
∂ŵ

∂r̃
+ ŵ

∂ŵ

∂ẑ

)
=− ∂$̂

∂ẑ
+ c̃+

Gr−4/5

(
∂2ŵ

∂r̃2
+

1

r̃

∂ŵ

∂r̃

)
+ Gr−2/5 ∂

2ŵ

∂ẑ2
, (15c)

û
∂c̃

∂r̃
+ ŵ

∂c̃

∂ẑ
=

1

Sc

[
Gr−2/5 1

r̃

∂

∂r̃

(
r̃
∂c̃

∂r̃

)
+
∂2c̃

∂ẑ2

]
.

(15d)

Hence, within corrections of relative order Gr−2/5,

1

r̃

∂(r̃û)

∂r̃
+
∂ŵ

∂ẑ
= 0, (16a)

û
∂û

∂r̃
+ ŵ

∂û

∂ẑ
= −∂$̂

∂r̃
+
∂2û

∂ẑ2
, (16b)

0 = −∂$̂
∂ẑ

+ c̃, (16c)

û
∂c̃

∂r̃
+ ŵ

∂c̃

∂ẑ
=

1

Sc

∂2c̃

∂ẑ2
, (16d)
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which are the analogue equations that describe natural
convection above a heated disk [29].

Although these equations can only be solved numer-
ically, the full solution is not necessary to obtain the
scaling of the evaporative flux. Starting from the edge of
the drop (r̃ = 1), a boundary-layer solution emerges. To
see this, we set r̃ = 1− x̃ in equations (16), and consider
their behavior at small x̃. We then obtain equations
similar to those describing natural convection above a
horizontal heated plate with a straight edge. As shown
by Stewartson [26], such equations admit a self-similar
solution depending on the rescaled variable1 η̂ = ẑ/x̃2/5.
Merkin [29] showed that, although such a self-similarity
is lost when considering equations (16), it is still possible
to use η̂ as a rescaling variable for ẑ. Hence, the concen-
tration gradient is localized within a boundary layer of
dimensionless thickness x̃2/5. In dimensional units, from
the definitions of ẑ, z̃ and x̃, the scaling of the boundary
layer thickness is thus

δ(r) ≈ (R− r)2/5R3/5

Gr1/5
. (17)

2.3.3 Spatial extension of the three zones

Now, we estimate the spatial extension of the different
zones. From equation (17), the slenderness of the bound-
ary layer scales as

δ

x
=

1

Gr1/5

(
R

x

)3/5

. (18)

As a consequence, starting from the drop edge, the
boundary layer becomes slender only for distances larger
than x = R/Gr1/3 = R? from Eqs. (1) and (10), which
defines the extent of the edge zone; in this domain, hori-
zontal and vertical variations occur over a similar length-
scale R?. This is similar to the breakdown of the bound-
ary layer approximation, for the flow of a fluid at high
Reynolds number, at the immediate vicinity of the lead-
ing edge of a solid, which is well known in fluid mechanics
[37]. This effect is often negligible in the estimation of
the friction force on a solid. However, as we discuss later,
the contribution of the edge on the total evaporation rate
is significant in our situation.

Close to the center of the drop, the solution given by
Eq. (22) also breaks down, and must match the rising
plume. As discussed by Merkin [29], the situation is com-
plex close to the center, where a strong pressure builds
up in response to the converging horizontal flow. Indeed,
the flow structure is still described by Eqs. (16) but, ap-
proaching the center, the boundary layer splits into two
layers: an inner layer in contact with the drop where
viscous and inertial effects balance the pressure buildup
while concentration gradients are not significant, and an
outer inviscid layer where the concentration gradients are

1Notice that there is a typo in the definition (9) of η in [26].

significant. The inner layer has a dimensionless thickness
r̃2/3 [29]. Similarly to equation (18), the slenderness of

the inner layer scales as Gr−1/5(R/r)1/3. Thus, the inner

layer cannot be considered as slender for r . Gr−3/5R,
which defines the extent of the central zone where the
boundary-layer approximation underlying equation (16)
breaks down (Fig. 3(a)).

2.3.4 Evaporative flux

A proper estimate of the evaporative flux must consider
in principle the three zones (Fig. 3(a)). In the edge
zone x < R?, we showed that the boundary layer has
both horizontal and vertical extensions of lengthscale R?.
Thus, we can estimate the scaling of the local flux defined
by equation (8) as

jedge ≈ D
cs − c∞
R?

, (19)

where R? is the characteristic lengthscale of the vertical
vapor concentration gradient. The domain x < R? has
a surface 2πRR? in the limit of large Grashof numbers,
i.e. R? � R. Hence, the evaporative flux in this zone
has the following order of magnitude:

Qedge ≈ 2πRR?
D(cs − c∞)

R?
= 2πDR(cs − c∞). (20)

Interestingly, this is exactly the same scaling as the evap-
oration flux of the whole drop in the purely diffusive
regime as shown in Eq. (14).

In the intermediate zone, for r < R − R?, the flux
scales as

jint(r) ≈ D
cs − c∞
δ(r)

, (21)

where δ(r) is the boundary layer thickness that corre-
sponds to the lengthscale of the vapor concentration gra-
dient. From the scaling of δ(r) given by Eq. (17), we
have

jint(r) ≈
D(cs − c∞)Gr1/5

R3/5(R− r)2/5
, (22)

and using equation (9) with dS = 2πrdr, we obtain

Qint ≈ 2πDR(cs − c∞)Gr1/5 = 2π
D(cs − c∞)6/5

c
1/5
∞ ν2/5

R8/5.

(23)
The main prediction of this analysis is that the evapora-
tion flux must be proportional to R8/5.

A corrective term must be established for the center
zone. However, the ratio of the central zone area to the
total drop area is Gr−6/5. As shown in Fig. 3(b), the
center zone represents a small portion of the drop. Thus,
we neglect the contribution of the center zone on the total
evaporative flux.

Consequently, from Eqs. (23) and (20), our analysis
yields the following law for the evaporation flux:

Qconv ≈ a1Qint + a2Qedge (24a)

≈ 2πDR(cs − c∞)(a1Gr1/5 + a2), (24b)

5



Sample

Humidity sensor

Water

Air pump

Desiccant

PID controller

Figure 4: Sketch of the experimental setup with a scale in
a box for which the atmosphere is controlled in humidity.

where a1 and a2 are two constant numbers. By inspec-
tion of Eq. (24b), we notice that in a convective regime,
the total flux is a combination of a term reminiscent of a
diffusive evaporation regime and a second term depend-
ing on the Grashof number, a signature of the convective
flow. In the following, we perform experiments to mea-
sure the evaporation rate for large Grashof numbers to
validate our prediction given by equation (24).

3 Experiments

Our experiments of controlled evaporation are performed
in a box made in polycarbonate (50 × 50 × 50 cm3). A
precision scale (Ohaus Pioneer 210 g) with a precision of
0.1 mg is placed at the center of the box and is interfaced
with a Python code using the pyserial library to record
the time evolution of the weight. The humidity is reg-
ulated with a PID controller based on an Arduino Uno
and a humidity sensor (Honeywell HIH-4021-003) posi-
tioned far from the evaporating surface (Fig. 4). Dry air
is produced by circulating ambient air with an air pump
(Tetra APS 300) in a container filled with desiccant made
of anhydrous calcium sulfate (Drierite). Moist air is ob-
tained by bubbling air in water. The relative humidity
is set to RH = 50% in all of our experiments.

Circular troughs of different radii are filled with pure
water right to the brim and a particular attention is paid
to get a flat surface. The diffusion coefficient of water
vapor in air is D ≈ 2 × 10−5 m2/s, and the kinematic
viscosity of the gas is ν ≈ 1.5× 10−5 m2/s in our experi-
mental conditions [17]. The time variation of the weight
of these containers is reported in Fig. 5(a) over a time
duration between 6000 to 9000 s. Data points are fitted
with a linear function to get the mass evaporation rate
Q such that ∆m(t) = −Qt. In Fig. 5(b), we report the
evaporation rates Q as a function of the radius of the liq-
uid patch and the equivalent Grashof number as defined
by equation (1).

To estimate the Grashof number, we evaluate the den-
sity gradient in the atmosphere due to the difference of
vapor concentration. The air density ρ at a pressure P0,
a temperature T and a relative humidity RH is given by
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Figure 5: (a) Time evolution of the weight of water for
different radii of circular troughs. The solid lines cor-
responds to linear fit of the experimental data points.
(b) Measured evaporation rate as a function of the sur-
face radius and the Grashof number. The dotted blue
line is a fit with equation (24) with a Grashof number
to the power 0.18, and with the coefficients a1 = 0.31
and a2 = 0.48. The solid line is the diffusive prediction
Qdiff . (c) Sherwood number Sh defined by equation (26)
as a function of the Grashof number. Lines are equiva-
lent to the plot (b). The inset shows the compensated

plot Sh/Gr1/5 vs Gr.
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[38]

ρ =
1

zm

P0

RT Md

[
1− fRH

(
1− Mw

Md

)
Ps
P0

]
, (25)

where zm and f are the compressibility and enhancement
factors, R the ideal gas coefficient, Md and Mw the mo-
lar density of dry and saturated air, and Ps the satu-
rated pressure. At room temperature, we have f = 1,
zm = 1 [38] and a saturated pressure Ps = 2.3 kPa [39].
Therefore, the density variation at a relative humidity
RH = 0.5 is |ρs − ρ∞|/ρ∞ ≈ 5 × 10−3. In the next sec-
tion, we discuss the evaporation model that we proposed
in Section 2 in comparison with our experimental results.

4 Discussion

In Fig. 5(b), we show a fit from equation (24b) that cor-
rectly captures our data. From our experimental results,
we determine the values of a1 and a2 by fitting equa-
tion (24b) with a variable Grashof exponent. The result-
ing exponent is 0.18 and coefficient values are a1 = 0.31
and a2 = 0.48 (Fig. 5b). The two dimensionless coef-
ficients a1 and a2 are close to unity and the power of
the Grashof number is close to 1/5, in agreement with
the theoretical prediction. The fact that a1 ' a2 and
Gr1/5 is between 1 and 10, shows that the contribution
of the edge (a2Qedge), although smaller, remains signifi-
cant compared to the intermediate zone (a1Qint) in our
experimental conditions.

To non-dimensionalize the convective flux, we intro-
duce the Sherwood number Sh defined as the ratio of the
convective and diffusive fluxes,

Sh =
Qconv

Qdiff
≈ π

2

(
a1Gr1/5 + a2

)
, (26)

from equations (14) for Qdiff and (24b) for Qconv. In
Fig. 5c, we plot the Sherwood number as a function of
the Grashof number. Thus, we can estimate for instance
that convection becomes significant for Sh = 1.5, i.e. the
convective flux is 50% higher than the predicted diffusive
flux, which corresponds to Gr ≈ 20.

The evaporation regime in the experiments is convec-
tive. To follow the first data analysis performed by Kelly-
Zion et al. [13], we fit our data with a power law against
the disk radius. We obtain that Q ∝ R1.39, in agree-
ment with their experimental results on heptane and 3-
methylpentane where the radius exponents are 1.37 and
1.43, respectively. Nevertheless, we must underline that
the vapors of heptane and 3-methylpentane are denser
than air, contrary to water vapor. This difference in va-
por density can change the total evaporation rate, espe-
cially at the edge of the disk. The similar values for the
exponent can be attributed to the fact that this scaling
mainly probes the effect of the radius due to the inter-
mediate zone, which is insensitive to the sign of ∆ρ.

In their study, Kelly-Zion et al. [13] also considered
that the total evaporation flux is the result of two signif-
icant contributions, one based on diffusion, and the other
on convection. In our theoretical analysis in Section 2,
we saw that the evaporative flux is always a diffusive
flux evaluated right at the interface of the evaporating
drop. However, it turns out that the analysis of the spa-
tial structure of the flow of vapor above the drop, and
its separation into two convective-diffusive zones: one
slender far from the edge, and one more isotropic close
to the edge, justifies that the evaporative flux separates
into two contributions, one scaling as a purely diffusive
flux, the other one as a convective one in a regime of large
Grashof number. Kelly-Zion et al. [13] studied volatile
compounds with vapor heavier than air, contrary to wa-
ter vapor. Although this leads to a different flow struc-
ture, starting from the center outwards, this does not
affect the scaling derived in Sec. 2. Therefore, our model
justifies a posteriori the hypothesis made by Kelly-Zion
et al. [13] and later by Carle et al. [15], who have added
a diffusive and a convective flux to model their data.

Carrier et al. investigated the evaporation of water
with beakers filled to the rim and they reported two
regimes [20]. For radii smaller than 30 mm, the evap-
oration rate is proportional to the radius R. For larger
radii, they suggest that the evaporation rate scales as R2,
for radii up to 300 mm and they concluded that this sec-
ond regime can be attributed to convection. This power
exponent is significantly larger than the value found by
Kelly-Zion et al. [13] and ours. Carrier et al. attributed
the difference to measurements by Kelly-Zion et al. to a
crossover between the diffusive and a regime character-
ized by the development of convection cells. In the spirit
of the classical Rayleigh-Bénard instability, these authors
proposed a direct transition from a quiescent state for the
gas with diffusive exchanges solely, to an unstable con-
vection state where the gas would be set in motion along
convection cells. However, such a transition appears in
configurations where the gas would be confined between
horizontal surfaces, which is far from our experimental
configuration (Fig. 4). Unfortunately, the precise con-
figuration and the confinement are not reported for the
experiments performed by Carrier et al., so we cannot
conclude as to whether the difference in exponent can be
ascribed to a difference in confinement. In our case, the
steady single-plume situation becomes unstable above a
certain Grashof number, with the appearance of multiple
plumes and even of a large-scale circulation [40]. How-
ever, to the best of our knowledge, the onset of such an
instability is unknown. Nevertheless, our measurements
suggest that, even if such an instability appears in our
range of Grashof numbers, it does not lead to a signifi-
cant deviation from the scaling (24).
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5 Conclusion

In this paper, we used an analogy between thermal con-
vection that occurs above a uniformly heated disk and
the convective evaporation of a circular patch of liq-
uid. The dimensionless form of the flow equations in the
gas phase reveals a dimensionless parameter called the
Grashof number Gr, which relates the opposite effects
of buoyant and viscous forces. This number increases
with the radius R of the disk as R3. Therefore, natural
convection is expected for large Grashof numbers.

In our theoretical analysis, we recalled the vapor con-
centration field surrounding an evaporating disk and the
related evaporative flux for small Grashof numbers, i.e.
a diffusion-limited evaporation. In addition, we inves-
tigated the evaporation dynamics under natural rising
convection. The evaporating surface must be split in
three domains. Near the edge of the disk, over a distance
R?, the boundary layer is not slender and the evapora-
tive flux is diffusive with a concentration gradient across
a distance R?. In an intermediate zone, the boundary
layer can be considered as slender with a thickness that
scales as (R − r)2/5 and the evaporative flux scales as
Gr1/5. Near the center of the disk, the flow is converging
and is directed upward with a more complex boundary
layer structure. The characteristic area ratio of this zone
is Gr−6/5, such that the precise contribution of the cen-
ter zone may be neglected in a first approach, although
further experimental and theoretical investigation of this
zone could be performed to clarify its fine structure.
Therefore, the total evaporative flux under natural con-
vection results in a combination of a diffusive-like flux
at the edge and a flux across the boundary layer in the
intermediate zone, and is correctly described by equation
(24). The Sherwood number, which compares the con-
vective flux Qconv to the diffusive flux Qdiff shows that
the convective flow has a significant effect for Gr > 20.

With our experimental measurements, we successfully
verify our prediction under natural convection. The scal-
ing laws of our theoretical developments provide the dif-
ferent evaporating mechanisms that occur above a cir-
cular liquid disk. In particular, we explain the origin
of the convective evaporation dynamics observed exper-
imentally [13, 15], where a combination of diffusion and
convection-like contributions has been noticed.

Further refinements would require numerical calcula-
tions to provide a full resolution of the gas flow and,
therefore, a prediction of the evaporation rate without
unknown prefactors. In addition, it would be interesting
to investigate also the case of drops with a non-zero con-
tact angle to evaluate how the interface slope can modify
the spatial extension of the intermediate zone. Further-
more, it would be interesting to revisit the case of vapor
heavier than air, for which the flow is expected to be
outwards above the evaporating disk. In such a case,
we expect a significant effect of the geometrical config-
uration at the edge. If the disk is placed at height, a

downwards gravity current starting from the edge can
evacuate the vapor collected from the disk, playing the
same role as the rising plume in the case of light vapor.
In contrast, if the disk is placed on an infinite plane or in
a trough, vapor cannot be evacuated, and accumulates,
probably leading to a reduction of the evaporation rate.
From a general perspective, the convective flow strongly
depends on the geometrical aspects, which can lead to
complex expressions of the evaporative flux with effects
of boundaries.

6 Appendix

In Section 2.1, we assume that the flow in the gas phase is
steady in order to neglect the time derivatives that would
appear in equations (3). This assumption can be justified
as follows. For large Grashof numbers, the characteristic
velocity in the gas phase is

U =
ν

R
Gr2/5, (27)

as suggested by the rescaling û = Gr−2/5ũ with ũ =
Ru/ν. Therefore, the characteristic timescale associated
to the natural convection is

τconv =
R

U =
R2

ν
Gr−2/5. (28)

For a disk radius of water of R = 20 mm, the Grashof
number is Gr ≈ 1.5×103 and the timescale is τconv ≈ 1.4
s, which is much smaller than the observation timescales.

Equivalently, we can estimate the timescale for small
Grashof numbers. For a diffusion-limited evaporation,
the timescale is simply [41]

τdiff =
R2

D . (29)

For a millimeter water drop radius, τdiff ≈ 5 × 10−2

s, which is also much smaller than the lifetime of such
droplet [11]. Consequently, this supports the steady state
assumption made in Section 2.1.
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