
HAL Id: hal-01525062
https://hal.science/hal-01525062

Submitted on 19 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Active Fault-Tolerant Control of Timed Automata with
Guards

Julien Niguez, Said Amari, Jean-Marc Faure

To cite this version:
Julien Niguez, Said Amari, Jean-Marc Faure. Active Fault-Tolerant Control of Timed Automata with
Guards. 20th IFAC World Congress, IFAC, Jul 2017, Toulouse, France. �hal-01525062�

https://hal.science/hal-01525062
https://hal.archives-ouvertes.fr

Active Fault-Tolerant Control of Timed Automata with Guards

Julien Niguez, Saïd Amari, Jean-Marc Faure

LURPA, ENS Paris-Saclay, Univ. Paris-Sud, Université Paris 13, Sorbonne Paris Cité, Supmeca,
Université Paris-Saclay, 94235, Cachan, France.

{julien.niguez ; said.amari ; jean-marc.faure}@ens-paris-saclay.fr

Abstract: In this paper, an approach for active fault-tolerant control of discrete event systems modeled by
timed automata with guards is proposed. Time is essential to detect some faults, and will be used as a
criterion to select the control law. A model representing the behavior of the whole system that respects
time constraints is first constructed. Hence, given a diagnosis result, a reconfigured control law is extracted
from the previous model on the basis of the fastest execution time of desired tasks.
Keywords: Timed Discrete Event Systems, Timed Automata with Guards, Fault-Tolerant Control,
Reconfiguration

1. INTRODUCTION

Availability of industrial processes within a company is a
constant concern, with significant economic implications. It
depends among others on the ability of the systems to adapt to
faults before they can have a negative impact on production.
Fault-Tolerant Control (FTC) is a means of dependability that
allows the interaction with the system controller, in order to
adapt the control to a faulty behavior of the plant. The
production strategy can be accommodated before the
productivity of the system is reduced. Basic definitions of FTC
are presented in (Blanke et al. 2016).

Concerning FTC of Discrete Event Systems (DES), the
different methods can be separated in two categories.

Passive FTC approaches generally consist of a single
controller model that can be used for both nominal and faulty
behavior. In (Seong-Jin Park and Jong-Tae Lim 1999), the
controller is designed to respect the nominal specification with
and without the occurrence of a fault. Some approach allows
degraded modes of operation (Wen et al. 2008) (Wittmann,
Richter, and Moor 2012). An extension of the latter introduces
a module that hides the fault to the controller (Wittmann,
Richter, and Moor 2013).

On the other hand, active FTC methods use several models of
the controller that can be switched. In (Shu and Lin 2014), the
controller model is selected in a bank of precomputed models
according to the diagnosis result, while in (Paoli, Sartini, and
Lafortune 2011), only the current state of the controller is
adapted. Recently, approaches based on tracking controller
reconfiguration were proposed, for both unambiguous (Schuh
and Lunze 2016b) and ambiguous diagnosis (Schuh and Lunze
2016a).

In a previous work (Niguez, Amari, and Faure 2015), it has
been shown that passive approaches require explicit models of
faults, which is not feasible for an industrial application.
Furthermore, there is no method for FTC of DES taking the
physical time into account. This is particularly limiting as it is
not possible to treat faults that are only detectable thanks to the

measurement of time, and which results in most cases in a
system failure.

This paper proposes a method for active FTC of DES modeled
by timed automata with guards. This formalism has been
selected because it allows to represent execution date of an
event with an interval. This represents the fact that in practice,
an event does not occur at the exact same time, and a task does
not have an exact duration. Fig. 1 details the architecture of the
system considered. A faulty plant 𝒫𝒫 is controlled by a
controller 𝒞𝒞 through controllable events 𝑒𝑒𝑐𝑐, and reacts by
generating uncontrollable events 𝑒𝑒𝑢𝑢. The diagnoser 𝒟𝒟 is in
charge of detecting the occurrence of a fault and to compute a
diagnosis result. This result is sent to the reconfiguration block
that consists of two units. The reconfiguration model 𝒢𝒢(𝑅𝑅) can
be seen as a database of acceptable behaviors. The
reconfigurator ℛ must select and extract a reconfigured control
law from the reconfiguration model based on the diagnosis
result. Then this new control law is sent to the controller 𝒞𝒞 in
order to accommodate the fault 𝑓𝑓.

The main contribution of this paper is the construction method
of the reconfiguration block. For this reason, it has been
chosen to use an existing solution for the diagnoser. Since time
was a major criterion, the diagnoser proposed in (Schneider,
Litz, and Danancher 2011) was selected.

Fig. 1 – A fault-tolerant control loop

The paper is organized as follows: section 2 details the
formalism of timed automata with guards and the hypotheses

of this work. In section 3 the construction of the
reconfiguration model 𝒢𝒢(𝑅𝑅) is detailed. Section 4 exposes the
different cases of reconfiguration. Finally, an example of
application on a sorting case is provided in section 5.

2. PRELIMINARIES

2.1. Timed automata with guards

Definition 1 (Cassandras and Lafortune 2008): a timed
automaton with guards, denoted by 𝐺𝐺, is a 6-tuple 𝐺𝐺 =
(𝑄𝑄, Σ,𝑄𝑄0,𝑄𝑄𝑚𝑚,𝑇𝑇𝑇𝑇𝑇𝑇,𝐶𝐶) where:

• 𝑄𝑄 is the set of states;
• 𝑄𝑄0 ∈ 𝑄𝑄 is the initial state;
• 𝑄𝑄𝑚𝑚 ⊂ 𝑄𝑄 is the set of final (or marked) states;
• Σ is a finite set of events;
• 𝐶𝐶 is the set of clocks, 𝑐𝑐1, … , 𝑐𝑐𝑛𝑛, with 𝑐𝑐𝑖𝑖(𝑡𝑡) ∈ ℝ+, 𝑡𝑡 ∈ ℝ+;
• 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the automaton with

𝑇𝑇𝑇𝑇𝑇𝑇 ⊆ 𝑄𝑄 × 𝒞𝒞(𝐶𝐶) × Σ × 2𝐶𝐶 × 𝑄𝑄 where 𝒞𝒞(𝐶𝐶) is the set of
admissible constraints for the clocks in the set 𝐶𝐶.

The set 𝑇𝑇𝑇𝑇𝑇𝑇 of timed transitions is to be interpreted as follows:
if (𝑞𝑞𝑖𝑖𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇, then there is a transition
from 𝑞𝑞𝑖𝑖𝑖𝑖 to 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 with the complete label (𝑒𝑒,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
where 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ 𝒞𝒞(𝐶𝐶), 𝑒𝑒 ∈ Σ and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⊆ 𝐶𝐶.

The set of admissible clock constraints 𝒞𝒞(𝐶𝐶) is specified as
follows:

• If 𝑰𝑰 ⊆ ℝ+, then all conditions of the form 𝑐𝑐𝑖𝑖(𝑡𝑡) ∈ 𝑰𝑰
are in 𝒞𝒞(𝐶𝐶);

• If 𝑔𝑔1 and 𝑔𝑔2 belong to 𝒞𝒞(𝐶𝐶), then 𝑔𝑔1 ∧ 𝑔𝑔2 belongs to
𝒞𝒞(𝐶𝐶);

Remarks:

• There is no need for the bounds of admissible clock
constraints to be integer.

• All clocks are set to 0 when the system is initialized.
• 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 corresponds to the subset of clocks that will be

reset when the transition is fired. This mechanism
allows modeling systems in which duration is stated
for sequences of events.

An example of graphical representation of Timed Automata
with Guards (TAG) is presented in part 2.3.

The determinism of timed automata with guards can be
defined in two ways:

• Time-determinism: an automaton is deterministic if
for all events in all states, the guards of the outgoing
transitions are mutually exclusive.

• Event-determinism: an automaton is deterministic if
for all states, there is at most one outgoing transition
triggered with the same event.

It can be denoted that any event-determinist TAG is also time-
determinist.

2.2. Hypotheses

Several hypotheses and limitations can be stated:

• For small systems, only one clock is generally sufficient
to operate the system. Concerning larger systems, they can

be handled by using decentralized approaches, in which
each sub-system is modeled with a single clock. In that
specific case of single clock systems, the parallel
composition could be simplified since the conjunction of
two guards would become equivalent to the intersection
of the intervals. If the result of that intersection is the
empty set, then the guard can never be validated, and the
associated transition can be deleted.

• All models will be event-deterministic.
• The repartition of occurrence dates of an event in a given

interval will be modeled with a normal distribution.

2.3. Graphical representation and notations

Fig. 2 depicts an example of a system modeled with a TAG,
called 𝒢𝒢(𝑃𝑃1). It consists of two processes 𝒜𝒜 and ℬ. Each
process can be started with controllable events 𝑆𝑆𝑎𝑎 and 𝑆𝑆𝑏𝑏,
respectively followed by the sequences of uncontrollable
events 𝑎𝑎𝑎𝑎 and 𝑏𝑏𝑏𝑏. The objective of the system is achieved
when the event 𝑐𝑐 is generated. Both processes end with the
occurrence of the event 𝑐𝑐, which means that process ℬ can be
seen as a redundancy of the process 𝒜𝒜. The system can be
restarted with the controllable event 𝑅𝑅. State 𝑃𝑃0 is considered
initial (shown with an incoming arrow). State 𝑃𝑃5 is considered
as final (shown with an outgoing arrow). Each time the clock
is reset, it is stated in the transition with the element 𝑟𝑟 (for
example, in the transition 𝑅𝑅, 𝕔𝕔(𝑡𝑡), 𝑟𝑟 from state 𝑃𝑃5 to state 𝑃𝑃0).
Otherwise, it is indicated with −. In this example, every
uncontrollable event is expected to occur before an upper
bound 𝓂𝓂 time units (t.u.), while every controllable event is
considered as occurring instantly at the current clock value
𝑐𝑐(𝑡𝑡) when entering a new state (the interval of these transitions
should be [𝑐𝑐(𝑡𝑡); 𝑐𝑐(𝑡𝑡)]). However, for the sake of clarity, the
notation 𝕔𝕔(𝑡𝑡) is used instead of [𝑐𝑐(𝑡𝑡); 𝑐𝑐(𝑡𝑡)] in the graphical
representations of TAGs.

Fig. 2 – Timed automaton with guards 𝒢𝒢(𝑃𝑃1)

Controllable (resp. uncontrollable) events are represented by
uppercase (resp. lowercase) letters.

2.4. Composition of timed automata with guards

Definition 2 (Cassandras and Lafortune 2008): consider two
timed automata with guards:

𝐺𝐺1 = �𝑄𝑄1,Σ1,𝑄𝑄0,1,𝑄𝑄𝑚𝑚,1,𝑇𝑇𝑇𝑇𝑎𝑎1,𝐶𝐶1�
𝐺𝐺2 = �𝑄𝑄2,Σ2,𝑄𝑄0,2 ,𝑄𝑄𝑚𝑚,2 ,𝑇𝑇𝑇𝑇𝑎𝑎2,𝐶𝐶2�

The parallel composition of 𝐺𝐺1 and 𝐺𝐺2 is the automaton
𝐺𝐺1||2 = 𝓐𝓐𝓐𝓐�𝑄𝑄1 × 𝑄𝑄2,Σ1 ∪ Σ2,𝑄𝑄0,1 × 𝑄𝑄0,2,𝑄𝑄𝑚𝑚,1 ×
𝑄𝑄𝑚𝑚,2,𝑇𝑇𝑇𝑇𝑎𝑎1||2,𝐶𝐶1 ∪ 𝐶𝐶2�

𝑃𝑃0

𝑃𝑃1 𝑃𝑃2

𝑃𝑃3 𝑃𝑃4

𝑃𝑃5

𝑆𝑆𝑎𝑎 , 𝕔𝕔 𝑡𝑡 ,−

𝑇𝑇, 0;𝓂𝓂 ,−

𝑐𝑐, 0;𝓂𝓂 ,−

𝑆𝑆𝑏𝑏 , 𝕔𝕔 𝑡𝑡 ,− 𝑐𝑐, 0;𝓂𝓂 ,−

𝑏𝑏, 0;𝓂𝓂 ,−

𝑅𝑅, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

where 𝒜𝒜𝒸𝒸 corresponds to accessible states,
𝑇𝑇𝑇𝑇𝑎𝑎1||2 is defined as follows:

𝑇𝑇𝑇𝑇𝑎𝑎1||2 ⊆ (𝑄𝑄1 × 𝑄𝑄2) × 𝒞𝒞(𝐶𝐶)1||2 × (Σ1 ∪ Σ2) × 2𝐶𝐶1∪𝐶𝐶2
× (𝑄𝑄1 × 𝑄𝑄2)

• For all 𝑒𝑒 ∈ Σ1 ∩ Σ2, if

(𝑞𝑞𝑖𝑖,𝑖𝑖𝑖𝑖,𝑔𝑔𝑢𝑢𝑎𝑎𝑎𝑎𝑑𝑑𝑖𝑖 , 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖 ,𝑞𝑞𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎𝑖𝑖 for 𝑖𝑖 = 1,2, then

��𝑞𝑞1,𝑖𝑖𝑖𝑖,𝑞𝑞2,𝑖𝑖𝑖𝑖�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1 ∧ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑2, 𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1
∪ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2, �𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2

• For all 𝑒𝑒1 ∈ Σ1\Σ2 and 𝑞𝑞2 ∈ 𝑄𝑄2 if

(𝑞𝑞1,𝑖𝑖𝑖𝑖,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1, 𝑒𝑒1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1,𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1, then

��𝑞𝑞1,𝑖𝑖𝑖𝑖,𝑞𝑞2�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑1, 𝑒𝑒1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡1, �𝑞𝑞1,𝑜𝑜𝑜𝑜𝑜𝑜,𝑞𝑞2�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2

• For all 𝑒𝑒2 ∈ Σ2\Σ1 and 𝑞𝑞1 ∈ 𝑄𝑄1 if

(𝑞𝑞2,𝑖𝑖𝑖𝑖,𝑔𝑔𝑢𝑢𝑢𝑢𝑢𝑢𝑑𝑑2, 𝑒𝑒2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑎𝑎2, then

��𝑞𝑞1,𝑞𝑞2,𝑖𝑖𝑖𝑖�,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑2, 𝑒𝑒2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡2, �𝑞𝑞1,𝑞𝑞2,𝑜𝑜𝑜𝑜𝑜𝑜�� ∈ 𝑇𝑇𝑇𝑇𝑎𝑎1||2

3. CONSTRUCTION OF THE RECONFIGURATION
MODEL

The objective of this part is to provide a construction method
of the reconfiguration model 𝒢𝒢(𝑅𝑅) of Fig. 1. This step of the
approach must be done offline.

3.1. Problem statement

The main idea is to construct a reconfiguration model of the
system that describes the entire behavior complying with a set
of timed rules. Two kinds of models can be used to obtain this
result: Plant models and Specification models. These models
are then composed in order to obtain the reconfiguration
model. Every succession of states that leads from the initial
state to the final state correspond to a sequence of operations
that meets the time constraints and performs the expected
tasks.

3.2. Plant models

Plant models are used to represent the components of the
system. They correspond to their logical behavior, without
taking time constraints into account. The TAG 𝒢𝒢(𝑃𝑃1) of Fig. 2
can be considered as a plant model. We will consider that:

• Controllable events are generated as soon as they are
expected, which correspond to the current clock value
when entering a new state. This is represented by the
interval 𝕔𝕔(𝑡𝑡) in the associated transitions.

• Uncontrollable events are expected to occur between
0 and 𝓂𝓂 t.u., with 𝓂𝓂 an unknown upper bound. The
corresponding interval depicts the fact that the date of
the occurrence of the event is not constant. This is
represented by the interval [0;𝓂𝓂[in the associated
transition.

The TAG of Fig. 2 depicts the two sequences of events that
include the event 𝑐𝑐 from the initial state.

3.3. Specification models

Specification models are graphical representations of the timed
rules that the system must satisfy to operate in its nominal
conditions. They are used to specify the intervals of the
transitions associated with uncontrollable events.

Fig. 3 - Two models of timed specifications – From left to right:

𝒢𝒢(𝑆𝑆1) and 𝒢𝒢(𝑆𝑆3)

Fig. 3 shows two specifications that ensure timed rules on the
system of Fig. 2. 𝒢𝒢(𝑆𝑆1) states that the event 𝑎𝑎 must occur
between 1 and 3 t.u. after the occurrence of the event 𝑆𝑆𝑎𝑎, and
that the system is reinitialized through event 𝑅𝑅 before any
other cycle of process 𝒜𝒜. It can be noted that it is not necessary
to reset the clock on the occurrence of 𝑆𝑆𝑎𝑎 since 𝑆𝑆𝑎𝑎 is supposed
to occur instantly when the transition from S1 to S2 is fired.
𝒢𝒢(𝑆𝑆3) describes the fact that 𝑐𝑐 must occur between 1 and 2 t.u.
after the occurrence of either 𝑎𝑎 or 𝑏𝑏. The specification 𝒢𝒢(𝑆𝑆2)
(not presented here) is similar to 𝒢𝒢(𝑆𝑆1) in that it ensures that 𝑏𝑏
occurs between 2 and 5 t.u. after 𝑆𝑆𝑏𝑏. For specifications of Fig.
3, all states are considered as final, but the outgoing arrows
were deleted for the sake of readability.

3.4. Reconfiguration model

Given the plant and specification models determined as
explained above, the following algorithm is proposed to
compute the reconfiguration model.

Algorithm 1: Construction of the reconfiguration model

Given: plant models 𝒢𝒢(𝑃𝑃𝑖𝑖), specification models 𝒢𝒢�𝑆𝑆𝑗𝑗�

Compute the reconfiguration model 𝒢𝒢(𝑅𝑅) of the system,
defined by:

𝒢𝒢(𝑅𝑅) = 𝒢𝒢(𝒫𝒫)||𝒢𝒢(𝒮𝒮)
with 𝒢𝒢(𝒫𝒫) = | |𝑖𝑖 𝒢𝒢(𝒫𝒫𝑖𝑖) and 𝒢𝒢(𝒮𝒮) = | |𝑗𝑗 𝒢𝒢�𝒮𝒮𝑗𝑗�

Result: reconfiguration model 𝒢𝒢(𝑅𝑅)

If there is no final state in 𝒢𝒢(𝑅𝑅), this means that the
specifications are too restrictive. One or more restrictions must
be relaxed in order for the system to perform its expected
behavior. The TAG of Fig. 4 presents the reconfiguration
model obtained by composition of 𝒢𝒢(𝑃𝑃1), 𝒢𝒢(𝑆𝑆1), 𝒢𝒢(𝑆𝑆2) and
𝒢𝒢(𝑆𝑆3), and represents all the evolutions of the components that
respect the time constraints of the specification. Both states
sequences 𝑅𝑅0𝑅𝑅1𝑅𝑅2𝑅𝑅5 and 𝑅𝑅0𝑅𝑅3𝑅𝑅4𝑅𝑅5 lead from the initial state
𝑅𝑅0 to the final state 𝑅𝑅5. However, it can be denoted that the
first sequence is on average faster to execute than the second
one for a normal distribution of occurrence dates (resp. 3,5 t.u.
and 5 t.u.).

𝑆𝑆1

𝑆𝑆2

𝑆𝑆3
𝑅𝑅, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑆𝑆𝑎𝑎 , 𝕔𝕔 𝑡𝑡 ,−

𝑇𝑇, 1; 3 ,−
𝑆𝑆7 𝑆𝑆8

𝑇𝑇, 0;𝓂𝓂 , 𝑇𝑇

𝑏𝑏, 0;𝓂𝓂 , 𝑇𝑇

𝑐𝑐, 1; 2 ,−

Fig. 4 - Reconfiguration model 𝒢𝒢(𝑅𝑅)

4. RECONFIGURATION OF THE CONTROLLER

The objective of this part is to detail the method of
reconfiguration of the controller given the reconfiguration
model and the diagnosis result, which will be performed by the
reconfigurator unit ℛ of Fig. 1. Since the reconfiguration step
is done accordingly to the diagnosis result, it must be only
done online.

4.1. Reconfiguration cases

For the nominal behavior, the control law is directly extracted
from the reconfiguration model by selecting the fastest-
execution-time path on the average from the initial state to the
final state. In the example Fig. 4, it corresponds to the
sequence of states 𝑅𝑅0𝑅𝑅1𝑅𝑅2𝑅𝑅5, with an average execution time
of 3,5 t.u.

Concerning the behavior in case of a fault, we will distinguish
cases based on the three types of diagnosis results considered
(Schneider, Litz, and Danancher 2011):

 Residual: {𝑒𝑒} – event 𝑒𝑒 was expected but did not occur

Algorithm 2: Reconfiguration for {𝑒𝑒}

Given: reconfiguration model 𝒢𝒢(𝑅𝑅), diagnosis residual {𝑒𝑒}

I. Delete all the transitions labeled with the event 𝑒𝑒.
II. Extract the fastest-execution-time path if there exists

one going from the initial state to the final state. This
path corresponds to the control law 𝒢𝒢(𝒞𝒞)

Result: control law 𝒢𝒢(𝒞𝒞)

If it is not possible to reach a final state after step 1, it means
that it is not possible to reconfigure the system. In practice, this
means that the system possesses no redundancy for the
component associated to the faulty event. Let us consider the
diagnosis residual {𝑎𝑎}. In Fig. 4, the transition from 𝑅𝑅1 to 𝑅𝑅2
must be deleted. However, it is still possible to reach the final
state through the sequence of events 𝑅𝑅0𝑅𝑅3𝑅𝑅4𝑅𝑅5. The sub-
model extracted from this sequence corresponds to the
reconfigured control law 𝒢𝒢(𝒞𝒞), with an average execution time
of 5 t.u.

 Residual: {𝑒𝑒}, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 – event 𝑒𝑒 was expected but
occurred too late/early

Algorithm 3: Reconfiguration for {𝑒𝑒}, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 or {𝑒𝑒}, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Given: reconfiguration model 𝒢𝒢(𝑅𝑅), diagnosis residual
{𝑒𝑒}, 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒 or {𝑒𝑒}, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

I. Modify the bounds of all the transitions labeled with
the event 𝑒𝑒 so that the date of occurrence of the event
is no longer out of bounds.

II. Extract the fastest-execution-time path if there exists
one going from the initial state to the final state. This
path corresponds to the control law 𝒢𝒢(𝒞𝒞)

Result: control law 𝒢𝒢(𝒞𝒞)

Let us consider the diagnosis residual {𝑎𝑎}, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, with a date of
execution of 5. In order to compute the new control law, the
transition from 𝑅𝑅1 to 𝑅𝑅2 is modified to 𝑎𝑎, [1; 5], 𝑟𝑟. The average
execution-time of the sequence 𝑅𝑅0𝑅𝑅1𝑅𝑅2𝑅𝑅5 become 4,5 t.u.,
which is still faster than the average execution-time of the
sequence 𝑅𝑅0𝑅𝑅3𝑅𝑅4𝑅𝑅5. Hence, the reconfigured control law can
be extracted from states 𝑅𝑅0𝑅𝑅1𝑅𝑅2𝑅𝑅5.

4.2. Case of ambiguous diagnosis

The case of ambiguous diagnosis corresponds to the situation
when the diagnoser proposes a set of faulty events instead of
single one. It is possible to treat this case by successively
applying step 1 of algorithms 2 and 3 for each possibly faulty
event and then apply step 2.

4.3. Case of multiple final states

It is necessary to distinguish two cases:

• All final states have the same signification for the
system (e.g. two processes that product the same
pieces. One of the processes can be seen as a
redundancy).

In this case, it is sufficient to find a path from the initial state
to any of the final states, since they all share the same physical
meaning.

• Final states have different meanings for the system
(e.g. a machine producing pieces depending on the
input raw piece)

It is necessary to compute a sub-control law for every set of
final states that holds a different signification. Hence, the
control law is obtained by composition of all the sub-control
laws. An example of this kind of system is treated in section 5.

5. APPLICATION: SORTING SYSTEM

In this section, the reconfiguration method is applied for
illustration purpose. The example used for this application is a
turntable from a sorting system (Fig. 5), whose purpose is to
separate packages of two different sizes arriving from
conveyer B, small packages sent to the right, large packages
sent to the left. This system is inspired by the one which is
proposed in the ITS PLC software and has been modified to
highlight the interest of the method with the addition of a
second controller to rotate the table.

 𝑅𝑅0

 𝑅𝑅1 𝑅𝑅2

 𝑅𝑅3 𝑅𝑅4

 𝑅𝑅5

𝑆𝑆𝑎𝑎 , 𝕔𝕔 𝑡𝑡 ,− 𝑐𝑐, 1; 2 ,−

𝑆𝑆𝑏𝑏 , 𝕔𝕔 𝑡𝑡 ,−

𝑅𝑅, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑐𝑐, 1; 2 ,−

𝑇𝑇, 1; 3 , 𝑇𝑇

𝑏𝑏, 2; 5 , 𝑇𝑇

Fig. 5 – Turntable

5.1. Presentation of the system

The turntable is composed of a table (C) and a set of rollers
(D) which can both rotate in two directions. This specificity
allows to distribute the packages on each side in two different
ways, so the system can be reconfigured in case of faults.
Conveyors B, E and G are not considered in this paper.

The table below lists all the events that are used to model the
system.

Table 1 - Event of the turntable model
Label C/U Description

𝑇𝑇+ ,𝑇𝑇+��� C Clockwise rotation of the table

𝑇𝑇− ,𝑇𝑇−��� C Counterclockwise rotation of the table

𝑅𝑅+ ,𝑅𝑅+���� C Loading rotation of the rollers

𝑅𝑅− ,𝑅𝑅−���� C Unloading rotation of the rollers

𝑝𝑝𝑠𝑠 U Detection of a small package

𝑝𝑝𝑏𝑏 U Detection of a large package

𝑝𝑝𝑐𝑐 U Detection of a package on the table

𝑝𝑝𝑟𝑟 U Detection of a package on the right
conveyor

𝑝𝑝𝑙𝑙 U Detection of a package on the left
conveyor

𝑡𝑡𝑟𝑟 U Table facing the right conveyor

𝑡𝑡𝑚𝑚 U Table in initial position

𝑡𝑡𝑙𝑙 U Table facing the left conveyor

In the case of controllable events, 𝐸𝐸 (resp. 𝐸𝐸�) means that the
actuator is set to 1 (resp. 0).

5.2. Construction of the reconfiguration model of the
turntable

For simplicity reasons, only the reconfiguration model of the
turntable will be presented in Fig. 6. It was built using two
plant models (one for the table and one for the rollers) and
three specification models (one ensuring that large (small)
packages are delivered to the left (right), one for the delay of
loading/unloading of the rollers and another one for the delay
of the table rotations).

The reconfiguration model of the turntable has several
specificities. The upper part of the graph (all states from 𝑅𝑅1 to
𝑅𝑅14) corresponds to the treatment of a large package, while the
lower part (all states from 𝑅𝑅15 to 𝑅𝑅28) corresponds to the small
package. Sequences of states 𝑅𝑅5𝑅𝑅6𝑅𝑅7𝑅𝑅8𝑅𝑅9 and
𝑅𝑅10𝑅𝑅11𝑅𝑅12𝑅𝑅13𝑅𝑅14 (resp. 𝑅𝑅19𝑅𝑅20𝑅𝑅21𝑅𝑅22𝑅𝑅23 and
𝑅𝑅24𝑅𝑅25𝑅𝑅26𝑅𝑅27𝑅𝑅28) describe the only two sequences of events
that ensure the distribution of a large package (resp. a small
package) to the left (resp. right): 𝑇𝑇+ followed by 𝑅𝑅− or 𝑇𝑇−
followed by 𝑅𝑅+ (resp. 𝑇𝑇+ followed by 𝑅𝑅+ or 𝑇𝑇− followed by
𝑅𝑅−).

States 𝑅𝑅9, 𝑅𝑅14, 𝑅𝑅23 and 𝑅𝑅28 are final. However, 𝑅𝑅9 and 𝑅𝑅14
mean that a small package has been successfully transferred to
the right, while 𝑅𝑅23 and 𝑅𝑅28 have the same meaning for a large
package delivered to the left. Hence, for the step of control law
selection, it is necessary to keep one of the states 𝑅𝑅9 and 𝑅𝑅14
and one of the states 𝑅𝑅23 and 𝑅𝑅28, as well as the sequences
leading to these states.

5.3. Reconfiguration scenarios

In this part, the selection of the control law for the controller
will be detailed in different cases of reconfiguration.

 First scenario: faultless case

In the case where no fault has occurred, it is possible to extract
the control law directly from the reconfiguration model. Since
the execution time is not a discriminant criterion here, the
control law can be obtained arbitrarily as long as it contains
exactly one of the states 𝑅𝑅9 and 𝑅𝑅14 and one of the states 𝑅𝑅23
and 𝑅𝑅28. A possible solution for the control law can be
obtained from the reconfiguration model of Fig. 6 without
states 𝑅𝑅10, 𝑅𝑅11, 𝑅𝑅12, 𝑅𝑅13, 𝑅𝑅14, 𝑅𝑅24, 𝑅𝑅25, 𝑅𝑅26, 𝑅𝑅27, 𝑅𝑅28, 𝑅𝑅32,
𝑅𝑅33 and 𝑅𝑅34.

 Second scenario: faulty case 1

In this case, the actuator allowing the counterclockwise
rotation of the rollers cannot be activated. The corresponding
diagnosis result emitted by the diagnoser is : {𝑅𝑅−}, that can be
interpreted as “the event 𝑅𝑅− was expected but did not occur”.
According to the Algorithm 2 of the section 4.1.1, the first step
consists in the suppression of all transitions labeled with the
faulty event. According to Fig. 6, transitions from 𝑅𝑅7 to 𝑅𝑅8 and
from 𝑅𝑅26 to 𝑅𝑅27 must be deleted. The consequence is that final
states 𝑅𝑅9 and 𝑅𝑅28 cannot be reached anymore, but states 𝑅𝑅14
and 𝑅𝑅23 are still accessible. Hence, the only possible solution
for the reconfigured control law corresponds to the
reconfiguration model of Fig. 6 without states 𝑅𝑅5, 𝑅𝑅6, 𝑅𝑅7, 𝑅𝑅8,
𝑅𝑅9, 𝑅𝑅24, 𝑅𝑅25, 𝑅𝑅26, 𝑅𝑅27 and 𝑅𝑅28.

 Third scenario: faulty case 2

In this case, the sensor 𝑡𝑡𝑟𝑟 is subject to activation delays, valued
at 0,5 t.u. The diagnosis result is {𝑡𝑡𝑟𝑟}, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. According to the
Algorithm 3 of the section 4.1.2, transitions from 𝑅𝑅5 to 𝑅𝑅6 and
from 𝑅𝑅19 to 𝑅𝑅20 are both adjusted to 𝑡𝑡𝑟𝑟 , [2,9; 3,6], 𝑟𝑟, resulting
in a difference in the average time of sequences leading to final
states. Namely, it is faster in terms of execution time to reach
states 𝑅𝑅14 and 𝑅𝑅28. Hence, the reconfigured control law
corresponds to the reconfiguration model of Fig. 6 without

states 𝑅𝑅5, 𝑅𝑅6, 𝑅𝑅7, 𝑅𝑅8, 𝑅𝑅9, 𝑅𝑅19, 𝑅𝑅20, 𝑅𝑅21, 𝑅𝑅22, 𝑅𝑅23,𝑅𝑅29, 𝑅𝑅30 and
𝑅𝑅31.

6. CONCLUSION

A method of fault-tolerant control of timed automata with
guards has been presented, based on the diagnosis obtained
with timed-residuals. The reconfiguration is performed in two
steps. First, the reconfiguration model is computed,
representing the entire system behavior that respects timed
rules. Secondly, this model and diagnostic results are used to
search the fastest paths from the initial to the final states.
Finally, these paths are used to compute the control law of the
system for each case of operation. An example of application
is provided on a simple system.

In future works, it would be interesting to use a linear
representation of TAG (Niguez, Amari, and Faure 2016) in
order to search for the fastest path during the reconfiguration
step.

REFERENCES

Blanke, Mogens, Michel Kinnaert, Jan Lunze, and Marcel
Staroswiecki. 2016. Diagnosis and Fault-Tolerant
Control. Berlin, Heidelberg: Springer Berlin
Heidelberg.

Cassandras, Christos G., and Stéphane Lafortune. 2008.
Introduction to Discrete Event Systems. 2. ed. New
York, NY: Springer.

Niguez, Julien, Saïd Amari, and Jean-Marc Faure. 2015.
“Fault-Tolerant Control of Discrete Event Systems:
Comparison of Two Approaches on the Same Case
Study.” In 2015 IEEE 20th Conference on Emerging
Technologies & Factory Automation (ETFA), 1–4..

Niguez, Julien, Said Amari, and Jean-Marc Faure. 2016.
“Analysis of Timed Automata with Guards in Dioids
Algebra.” In 2016 13th International Workshop on
Discrete Event Systems (WODES), 391–97.

Paoli, Andrea, Matteo Sartini, and Stéphane Lafortune. 2011.
“Active Fault Tolerant Control of Discrete Event
Systems Using Online Diagnostics.” Automatica 47
(4): 639–49.

Schneider, Stefan, Lothar Litz, and Mickael Danancher. 2011.
“Timed Residuals for Fault Detection and Isolation in
Discrete Event Systems.” In 3rd International
Workshop on Dependable Control of Discrete
Systems, 35–40..

Schuh, Melanie., and Jan. Lunze. 2016a. “Fault-Tolerant
Control of Deterministic I/O Automata with
Ambiguous Diagnostic Result.” In 2016 13th
International Workshop on Discrete Event Systems
(WODES), 251–57.

———. 2016b. “Fault-Tolerant Control for Deterministic
Discrete Event Systems with Measurable State.” In
2016 American Control Conference (ACC), 7516–22.

Seong-Jin Park, and Jong-Tae Lim. 1999. “Fault-Tolerant
Robust Supervisor for Discrete Event Systems with
Model Uncertainty and Its Application to a
Workcell.” IEEE Transactions on Robotics and
Automation 15 (2): 386–91.

Shu, Shaolong, and Feng Lin. 2014. “Fault-Tolerant Control
for Safety of Discrete-Event Systems.” IEEE
Transactions on Automation Science and
Engineering 11 (1): 78–89.

Wen, Qin, Ratnesh Kumar, Jing Huang, and H. Liu. 2008. “A
Framework for Fault-Tolerant Control of Discrete
Event Systems.” IEEE Transactions on Automatic
Control 53 (8): 1839–49.

Wittmann, Thomas, Jan Richter, and Thomas Moor. 2012.
“Fault-Tolerant Control of Discrete Event Systems
Based on Fault-Accommodating Models.” IFAC
Proceedings Volumes, 8th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical
Processes, 45 (20): 854–59.

Wittmann, Thomas, Jan Richter, and Thomas Moor. 2013.
“Fault-Hiding Control Reconfiguration for a Class of
Discrete Event Systems.” IFAC Proceedings
Volumes, 4th IFAC Workshop on Dependable
Control of Discrete Systems, 46 (22): 49–54.

ITS PLC software, Real Games, https://realgames.co/its-plc/.

 𝑅𝑅5

 𝑅𝑅4

 𝑅𝑅6

 𝑅𝑅29

 𝑅𝑅3

 𝑅𝑅9 𝑅𝑅7 𝑅𝑅8

 𝑅𝑅13 𝑅𝑅14 𝑅𝑅1 𝑅𝑅2 𝑅𝑅10 𝑅𝑅11 𝑅𝑅12

 𝑅𝑅30 𝑅𝑅31

 𝑅𝑅0
 𝑅𝑅18 𝑅𝑅17 𝑅𝑅22 𝑅𝑅23 𝑅𝑅15 𝑅𝑅16 𝑅𝑅19 𝑅𝑅20 𝑅𝑅21

 𝑅𝑅24 𝑅𝑅25 𝑅𝑅28 𝑅𝑅26 𝑅𝑅27

 𝑅𝑅32 𝑅𝑅33 𝑅𝑅34

𝑝𝑝𝑏𝑏 , [0:𝓂𝓂[, 𝑇𝑇

𝑝𝑝𝑠𝑠 , [0:𝓂𝓂[, 𝑇𝑇

𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑝𝑝𝑐𝑐 , 1,9; 2,1 , 𝑇𝑇 𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇
𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇
𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑡𝑡𝑟𝑟 , 2,9; 3,1 , 𝑇𝑇

𝑡𝑡𝑟𝑟 , 2,9; 3,1 , 𝑇𝑇

𝑡𝑡𝑙𝑙 , 2,9; 3,1 , 𝑇𝑇

𝑡𝑡𝑙𝑙 , 2,9; 3,1 , 𝑇𝑇

𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅−,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅−,𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑝𝑝𝑙𝑙 , 1,9; 2,1 , 𝑇𝑇

𝑝𝑝𝑙𝑙 , 1,9; 2,1 , 𝑇𝑇

𝑝𝑝𝑟𝑟 , 1,9; 2,1 , 𝑇𝑇

𝑝𝑝𝑟𝑟 , 1,9; 2,1 , 𝑇𝑇 𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅+,𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑅𝑅−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇𝑡𝑡𝑚𝑚, 2,9; 3,1 , 𝑇𝑇

𝑇𝑇−, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑡𝑡𝑚𝑚, 2,9; 3,1 , 𝑇𝑇𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇
𝑇𝑇+, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇

𝑝𝑝𝑐𝑐 , 1,9; 2,1 , 𝑇𝑇

Fig. 6 - Reconfiguration model of the turntable

