Julien Niguez
email: julien.niguez@ens-paris-saclay.fr

Saïd Amari
email: said.amari@ens-paris-saclay.fr

LURPA Jean-Marc Faure
email: jean-marc.faure@ens-paris-saclay.fr

Active Fault-Tolerant Control of Timed Automata with Guards

Keywords: Timed Discrete Event Systems, Timed Automata with Guards, Fault-Tolerant Control, Reconfiguration

In this paper, an approach for active fault-tolerant control of discrete event systems modeled by timed automata with guards is proposed. Time is essential to detect some faults, and will be used as a criterion to select the control law. A model representing the behavior of the whole system that respects time constraints is first constructed. Hence, given a diagnosis result, a reconfigured control law is extracted from the previous model on the basis of the fastest execution time of desired tasks.

INTRODUCTION

Availability of industrial processes within a company is a constant concern, with significant economic implications. It depends among others on the ability of the systems to adapt to faults before they can have a negative impact on production. Fault-Tolerant Control (FTC) is a means of dependability that allows the interaction with the system controller, in order to adapt the control to a faulty behavior of the plant. The production strategy can be accommodated before the productivity of the system is reduced. Basic definitions of FTC are presented in [START_REF] Blanke | Diagnosis and Fault-Tolerant Control[END_REF].

Concerning FTC of Discrete Event Systems (DES), the different methods can be separated in two categories.

Passive FTC approaches generally consist of a single controller model that can be used for both nominal and faulty behavior. In (Seong-Jin Park and Jong-Tae Lim 1999), the controller is designed to respect the nominal specification with and without the occurrence of a fault. Some approach allows degraded modes of operation [START_REF] Wen | A Framework for Fault-Tolerant Control of Discrete Event Systems[END_REF] [START_REF] Wittmann | Fault-Tolerant Control of Discrete Event Systems Based on Fault-Accommodating Models[END_REF]. An extension of the latter introduces a module that hides the fault to the controller [START_REF] Wittmann | Fault-Hiding Control Reconfiguration for a Class of Discrete Event Systems[END_REF].

On the other hand, active FTC methods use several models of the controller that can be switched. In [START_REF] Shu | Fault-Tolerant Control for Safety of Discrete-Event Systems[END_REF], the controller model is selected in a bank of precomputed models according to the diagnosis result, while in [START_REF] Paoli | Active Fault Tolerant Control of Discrete Event Systems Using Online Diagnostics[END_REF], only the current state of the controller is adapted. Recently, approaches based on tracking controller reconfiguration were proposed, for both unambiguous (Schuh and Lunze 2016b) and ambiguous diagnosis (Schuh and Lunze 2016a).

In a previous work [START_REF] Niguez | Fault-Tolerant Control of Discrete Event Systems: Comparison of Two Approaches on the Same Case Study[END_REF], it has been shown that passive approaches require explicit models of faults, which is not feasible for an industrial application. Furthermore, there is no method for FTC of DES taking the physical time into account. This is particularly limiting as it is not possible to treat faults that are only detectable thanks to the measurement of time, and which results in most cases in a system failure. This paper proposes a method for active FTC of DES modeled by timed automata with guards. This formalism has been selected because it allows to represent execution date of an event with an interval. This represents the fact that in practice, an event does not occur at the exact same time, and a task does not have an exact duration. Fig. 1 details the architecture of the system considered. A faulty plant 𝒫𝒫 is controlled by a controller 𝒞𝒞 through controllable events 𝑒𝑒 𝑐𝑐 , and reacts by generating uncontrollable events 𝑒𝑒 𝑢𝑢 . The diagnoser 𝒟𝒟 is in charge of detecting the occurrence of a fault and to compute a diagnosis result. This result is sent to the reconfiguration block that consists of two units. The reconfiguration model 𝒢𝒢(𝑅𝑅) can be seen as a database of acceptable behaviors. The reconfigurator ℛ must select and extract a reconfigured control law from the reconfiguration model based on the diagnosis result. Then this new control law is sent to the controller 𝒞𝒞 in order to accommodate the fault 𝑓𝑓.

The main contribution of this paper is the construction method of the reconfiguration block. For this reason, it has been chosen to use an existing solution for the diagnoser. Since time was a major criterion, the diagnoser proposed in [START_REF] Schneider | Timed Residuals for Fault Detection and Isolation in Discrete Event Systems[END_REF] was selected.

Fig. 1 -A fault-tolerant control loop

The paper is organized as follows: section 2 details the formalism of timed automata with guards and the hypotheses of this work. In section 3 the construction of the reconfiguration model 𝒢𝒢(𝑅𝑅) is detailed. Section 4 exposes the different cases of reconfiguration. Finally, an example of application on a sorting case is provided in section 5.

PRELIMINARIES

Timed automata with guards

Definition 1 [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]: a timed automaton with guards, denoted by 𝐺𝐺, is a 6-tuple 𝐺𝐺 = (𝑄𝑄, Σ, 𝑄𝑄 0 , 𝑄𝑄 𝑚𝑚 , 𝑇𝑇𝑇𝑇𝑇𝑇, 𝐶𝐶) where:

• 𝑄𝑄 is the set of states;

• 𝑄𝑄 0 ∈ 𝑄𝑄 is the initial state;

• 𝑄𝑄 𝑚𝑚 ⊂ 𝑄𝑄 is the set of final (or marked) states;

• Σ is a finite set of events; • 𝐶𝐶 is the set of clocks, 𝑐𝑐 1 , … , 𝑐𝑐 𝑛𝑛 , with 𝑐𝑐 𝑖𝑖 (𝑡𝑡) ∈ ℝ + , 𝑡𝑡 ∈ ℝ + ; • 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the automaton with 𝑇𝑇𝑇𝑇𝑇𝑇 ⊆ 𝑄𝑄 × 𝒞𝒞(𝐶𝐶) × Σ × 2 𝐶𝐶 × 𝑄𝑄 where 𝒞𝒞(𝐶𝐶) is the set of admissible constraints for the clocks in the set 𝐶𝐶.

The set 𝑇𝑇𝑇𝑇𝑇𝑇 of timed transitions is to be interpreted as follows: if (𝑞𝑞 𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡, 𝑞𝑞 𝑜𝑜𝑢𝑢𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇, then there is a transition from 𝑞𝑞 𝑖𝑖𝑛𝑛 to 𝑞𝑞 𝑜𝑜𝑢𝑢𝑜𝑜 with the complete label (𝑒𝑒, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡) where 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 ∈ 𝒞𝒞(𝐶𝐶), 𝑒𝑒 ∈ Σ and 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 ⊆ 𝐶𝐶.

The set of admissible clock constraints 𝒞𝒞(𝐶𝐶) is specified as follows:

• If 𝑰𝑰 ⊆ ℝ + , then all conditions of the form 𝑐𝑐 𝑖𝑖 (𝑡𝑡) ∈ 𝑰𝑰 are in 𝒞𝒞(𝐶𝐶); • If 𝑔𝑔 1 and 𝑔𝑔 2 belong to 𝒞𝒞(𝐶𝐶), then 𝑔𝑔 1 ∧ 𝑔𝑔 2 belongs to

𝒞𝒞(𝐶𝐶);

Remarks:

• There is no need for the bounds of admissible clock constraints to be integer. • All clocks are set to 0 when the system is initialized.

• 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 corresponds to the subset of clocks that will be reset when the transition is fired. This mechanism allows modeling systems in which duration is stated for sequences of events.

An example of graphical representation of Timed Automata with Guards (TAG) is presented in part 2.3.

The determinism of timed automata with guards can be defined in two ways:

• Time-determinism: an automaton is deterministic if for all events in all states, the guards of the outgoing transitions are mutually exclusive. • Event-determinism: an automaton is deterministic if for all states, there is at most one outgoing transition triggered with the same event.

It can be denoted that any event-determinist TAG is also timedeterminist.

Hypotheses

Several hypotheses and limitations can be stated:

• For small systems, only one clock is generally sufficient to operate the system. Concerning larger systems, they can be handled by using decentralized approaches, in which each sub-system is modeled with a single clock. In that specific case of single clock systems, the parallel composition could be simplified since the conjunction of two guards would become equivalent to the intersection of the intervals. If the result of that intersection is the empty set, then the guard can never be validated, and the associated transition can be deleted. • All models will be event-deterministic.

• The repartition of occurrence dates of an event in a given interval will be modeled with a normal distribution.

Graphical representation and notations

Fig. 2 depicts an example of a system modeled with a TAG, called 𝒢𝒢(𝑃𝑃 1). It consists of two processes 𝒜𝒜 and ℬ. Each process can be started with controllable events 𝑆𝑆 𝑎𝑎 and 𝑆𝑆 𝑏𝑏 , respectively followed by the sequences of uncontrollable events 𝑇𝑇𝑐𝑐 and 𝑏𝑏𝑐𝑐. The objective of the system is achieved when the event 𝑐𝑐 is generated. Both processes end with the occurrence of the event 𝑐𝑐, which means that process ℬ can be seen as a redundancy of the process 𝒜𝒜. The system can be restarted with the controllable event 𝑅𝑅. State 𝑃𝑃 0 is considered initial (shown with an incoming arrow). State 𝑃𝑃 5 is considered as final (shown with an outgoing arrow). Each time the clock is reset, it is stated in the transition with the element 𝑇𝑇 (for example, in the transition 𝑅𝑅, 𝕔𝕔(𝑡𝑡), 𝑇𝑇 from state 𝑃𝑃 5 to state 𝑃𝑃 0). Otherwise, it is indicated with -. In this example, every uncontrollable event is expected to occur before an upper bound 𝓂𝓂 time units (t.u.), while every controllable event is considered as occurring instantly at the current clock value 𝑐𝑐(𝑡𝑡) when entering a new state (the interval of these transitions should be [𝑐𝑐(𝑡𝑡); 𝑐𝑐(𝑡𝑡)]). However, for the sake of clarity, the notation 𝕔𝕔(𝑡𝑡) is used instead of [𝑐𝑐(𝑡𝑡); 𝑐𝑐(𝑡𝑡)] in the graphical representations of TAGs. Controllable (resp. uncontrollable) events are represented by uppercase (resp. lowercase) letters.

Composition of timed automata with guards

Definition 2 [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]: consider two timed automata with guards:

𝐺𝐺 1 = �𝑄𝑄 1 , Σ 1 , 𝑄𝑄 0,1 , 𝑄𝑄 𝑚𝑚,1 , 𝑇𝑇𝑇𝑇𝑇𝑇 1 , 𝐶𝐶 1 � 𝐺𝐺 2 = �𝑄𝑄 2 , Σ 2 , 𝑄𝑄 0,2 , 𝑄𝑄 𝑚𝑚,2 , 𝑇𝑇𝑇𝑇𝑇𝑇 2 , 𝐶𝐶 2 �
The parallel composition of 𝐺𝐺 1 and 𝐺𝐺 2 is the automaton

𝐺𝐺 1||2 = 𝓐𝓐𝓐𝓐�𝑄𝑄 1 × 𝑄𝑄 2 , Σ 1 ∪ Σ 2 , 𝑄𝑄 0,1 × 𝑄𝑄 0,2 , 𝑄𝑄 𝑚𝑚,1 × 𝑄𝑄 𝑚𝑚,2 , 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 , 𝐶𝐶 1 ∪ 𝐶𝐶 2 � 𝑃𝑃 0 𝑃𝑃 1 𝑃𝑃 2 𝑃𝑃 3 𝑃𝑃 4 𝑃𝑃 5 𝑆𝑆 𝑎𝑎 , 𝕔𝕔 𝑡𝑡 , - 𝑇𝑇, 0; 𝓂𝓂 , - 𝑐𝑐, 0; 𝓂𝓂 , - 𝑆𝑆 𝑏𝑏 , 𝕔𝕔 𝑡𝑡 , - 𝑐𝑐, 0; 𝓂𝓂 , - 𝑏𝑏, 0; 𝓂𝓂 , - 𝑅𝑅, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇
where 𝒜𝒜𝒸𝒸 corresponds to accessible states, 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 is defined as follows:

𝑇𝑇𝑇𝑇𝑇𝑇 1||2 ⊆ (𝑄𝑄 1 × 𝑄𝑄 2) × 𝒞𝒞(𝐶𝐶) 1||2 × (Σ 1 ∪ Σ 2) × 2 𝐶𝐶 1 ∪𝐶𝐶 2 × (𝑄𝑄 1 × 𝑄𝑄 2) • For all 𝑒𝑒 ∈ Σ 1 ∩ Σ 2 , if (𝑞𝑞 𝑖𝑖,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 𝑖𝑖 , 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 𝑖𝑖 , 𝑞𝑞 𝑖𝑖,𝑜𝑜𝑢𝑢𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖 for 𝑖𝑖 = 1,2, then ��𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑞𝑞 2,𝑖𝑖𝑛𝑛 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 ∧ 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 ∪ 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , �𝑞𝑞 1,𝑜𝑜𝑢𝑢𝑜𝑜 , 𝑞𝑞 2,𝑜𝑜𝑢𝑢𝑜𝑜 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 • For all 𝑒𝑒 1 ∈ Σ 1 \Σ 2 and 𝑞𝑞 2 ∈ 𝑄𝑄 2 if (𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 , 𝑒𝑒 1 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 , 𝑞𝑞 1,𝑜𝑜𝑢𝑢𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1 , then ��𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑞𝑞 2 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 , 𝑒𝑒 1 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 , �𝑞𝑞 1,𝑜𝑜𝑢𝑢𝑜𝑜 , 𝑞𝑞 2 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 • For all 𝑒𝑒 2 ∈ Σ 2 \Σ 1 and 𝑞𝑞 1 ∈ 𝑄𝑄 1 if (𝑞𝑞 2,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒 2 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , 𝑞𝑞 2,𝑜𝑜𝑢𝑢𝑜𝑜) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 2 , then ��𝑞𝑞 1 , 𝑞𝑞 2,𝑖𝑖𝑛𝑛 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒 2 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , �𝑞𝑞 1 , 𝑞𝑞 2,𝑜𝑜𝑢𝑢𝑜𝑜 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2

CONSTRUCTION OF THE RECONFIGURATION MODEL

The objective of this part is to provide a construction method of the reconfiguration model 𝒢𝒢(𝑅𝑅) of Fig. 1. This step of the approach must be done offline.

Problem statement

The main idea is to construct a reconfiguration model of the system that describes the entire behavior complying with a set of timed rules. Two kinds of models can be used to obtain this result: Plant models and Specification models. These models are then composed in order to obtain the reconfiguration model. Every succession of states that leads from the initial state to the final state correspond to a sequence of operations that meets the time constraints and performs the expected tasks.

Plant models

Plant models are used to represent the components of the system. They correspond to their logical behavior, without taking time constraints into account. The TAG 𝒢𝒢(𝑃𝑃 1) of Fig. 2 can be considered as a plant model. We will consider that:

• Controllable events are generated as soon as they are expected, which correspond to the current clock value when entering a new state. This is represented by the interval 𝕔𝕔(𝑡𝑡) in the associated transitions. • Uncontrollable events are expected to occur between 0 and 𝓂𝓂 t.u., with 𝓂𝓂 an unknown upper bound. The corresponding interval depicts the fact that the date of the occurrence of the event is not constant. This is represented by the interval [0; 𝓂𝓂[in the associated transition.

The TAG of Fig. 2 depicts the two sequences of events that include the event 𝑐𝑐 from the initial state.

Specification models

Specification models are graphical representations of the timed rules that the system must satisfy to operate in its nominal conditions. They are used to specify the intervals of the transitions associated with uncontrollable events. Fig. 3 shows two specifications that ensure timed rules on the system of Fig. 2. 𝒢𝒢(𝑆𝑆 1) states that the event 𝑇𝑇 must occur between 1 and 3 t.u. after the occurrence of the event 𝑆𝑆 𝑎𝑎 , and that the system is reinitialized through event 𝑅𝑅 before any other cycle of process 𝒜𝒜. It can be noted that it is not necessary to reset the clock on the occurrence of 𝑆𝑆 𝑎𝑎 since 𝑆𝑆 𝑎𝑎 is supposed to occur instantly when the transition from S1 to S2 is fired. 𝒢𝒢(𝑆𝑆 3) describes the fact that 𝑐𝑐 must occur between 1 and 2 t.u. after the occurrence of either 𝑇𝑇 or 𝑏𝑏. The specification 𝒢𝒢(𝑆𝑆 2) (not presented here) is similar to 𝒢𝒢(𝑆𝑆 1) in that it ensures that 𝑏𝑏 occurs between 2 and 5 t.u. after 𝑆𝑆 𝑏𝑏 . For specifications of Fig. 3, all states are considered as final, but the outgoing arrows were deleted for the sake of readability.

Reconfiguration model

Given the plant and specification models determined as explained above, the following algorithm is proposed to compute the reconfiguration model. If there is no final state in 𝒢𝒢(𝑅𝑅), this means that the specifications are too restrictive. One or more restrictions must be relaxed in order for the system to perform its expected behavior. The TAG of Fig. 4 presents the reconfiguration model obtained by composition of 𝒢𝒢(𝑃𝑃 1), 𝒢𝒢(𝑆𝑆 1), 𝒢𝒢(𝑆𝑆 2) and 𝒢𝒢(𝑆𝑆 3), and represents all the evolutions of the components that respect the time constraints of the specification. Both states sequences 𝑅𝑅 0 𝑅𝑅 1 𝑅𝑅 2 𝑅𝑅 5 and 𝑅𝑅 0 𝑅𝑅 3 𝑅𝑅 4 𝑅𝑅 5 lead from the initial state 𝑅𝑅 0 to the final state 𝑅𝑅 5 . However, it can be denoted that the first sequence is on average faster to execute than the second one for a normal distribution of occurrence dates (resp. 3,5 t.u. and 5 t.u.).

RECONFIGURATION OF THE CONTROLLER

The objective of this part is to detail the method of reconfiguration of the controller given the reconfiguration model and the diagnosis result, which will be performed by the reconfigurator unit ℛ of Fig. 1. Since the reconfiguration step is done accordingly to the diagnosis result, it must be only done online.

Reconfiguration cases

For the nominal behavior, the control law is directly extracted from the reconfiguration model by selecting the fastestexecution-time path on the average from the initial state to the final state. In the example Fig. 4, it corresponds to the sequence of states 𝑅𝑅 0 𝑅𝑅 1 𝑅𝑅 2 𝑅𝑅 5 , with an average execution time of 3,5 t.u.

Concerning the behavior in case of a fault, we will distinguish cases based on the three types of diagnosis results considered (Schneider, Litz, and Danancher 2011):

Residual: {𝑒𝑒} -event 𝑒𝑒 was expected but did not occur Extract the fastest-execution-time path if there exists one going from the initial state to the final state. This path corresponds to the control law 𝒢𝒢(𝒞𝒞)

Result: control law 𝒢𝒢(𝒞𝒞)
If it is not possible to reach a final state after step 1, it means that it is not possible to reconfigure the system. In practice, this means that the system possesses no redundancy for the component associated to the faulty event. Let us consider the diagnosis residual {𝑇𝑇}. In Fig. 4, the transition from 𝑅𝑅 1 to 𝑅𝑅 2 must be deleted. However, it is still possible to reach the final state through the sequence of events 𝑅𝑅 0 𝑅𝑅 3 𝑅𝑅 4 𝑅𝑅 5 . The submodel extracted from this sequence corresponds to the reconfigured control law 𝒢𝒢(𝒞𝒞), with an average execution time of 5 t.u.

Residual: {𝑒𝑒}, 𝑙𝑙𝑇𝑇𝑡𝑡𝑒𝑒/𝑒𝑒𝑇𝑇𝑇𝑇𝑙𝑙𝑒𝑒 -event 𝑒𝑒 was expected but occurred too late/early Modify the bounds of all the transitions labeled with the event 𝑒𝑒 so that the date of occurrence of the event is no longer out of bounds. II.

Extract the fastest-execution-time path if there exists one going from the initial state to the final state. This path corresponds to the control law 𝒢𝒢(𝒞𝒞)

Result: control law 𝒢𝒢(𝒞𝒞)
Let us consider the diagnosis residual {𝑇𝑇}, 𝑙𝑙𝑇𝑇𝑡𝑡𝑒𝑒, with a date of execution of 5. In order to compute the new control law, the transition from 𝑅𝑅 1 to 𝑅𝑅 2 is modified to 𝑇𝑇, [1; 5], 𝑇𝑇. The average execution-time of the sequence 𝑅𝑅 0 𝑅𝑅 1 𝑅𝑅 2 𝑅𝑅 5 become 4,5 t.u., which is still faster than the average execution-time of the sequence 𝑅𝑅 0 𝑅𝑅 3 𝑅𝑅 4 𝑅𝑅 5 . Hence, the reconfigured control law can be extracted from states 𝑅𝑅 0 𝑅𝑅 1 𝑅𝑅 2 𝑅𝑅 5 .

Case of ambiguous diagnosis

The case of ambiguous diagnosis corresponds to the situation when the diagnoser proposes a set of faulty events instead of single one. It is possible to treat this case by successively applying step 1 of algorithms 2 and 3 for each possibly faulty event and then apply step 2.

Case of multiple final states

It is necessary to distinguish two cases:

• All final states have the same signification for the system (e.g. two processes that product the same pieces. One of the processes can be seen as a redundancy).

In this case, it is sufficient to find a path from the initial state to any of the final states, since they all share the same physical meaning.

• Final states have different meanings for the system (e.g. a machine producing pieces depending on the input raw piece)

It is necessary to compute a sub-control law for every set of final states that holds a different signification. Hence, the control law is obtained by composition of all the sub-control laws. An example of this kind of system is treated in section 5.

APPLICATION: SORTING SYSTEM

In this section, the reconfiguration method is applied for illustration purpose. The example used for this application is a turntable from a sorting system (Fig. 5), whose purpose is to separate packages of two different sizes arriving from conveyer B, small packages sent to the right, large packages sent to the left. This system is inspired by the one which is proposed in the ITS PLC software and has been modified to highlight the interest of the method with the addition of a second controller to rotate the table.

Presentation of the system

The turntable is composed of a table (C) and a set of rollers (D) which can both rotate in two directions. This specificity allows to distribute the packages on each side in two different ways, so the system can be reconfigured in case of faults. Conveyors B, E and G are not considered in this paper.

The table below lists all the events that are used to model the system. In the case of controllable events, 𝐸𝐸 (resp. 𝐸𝐸 �) means that the actuator is set to 1 (resp. 0).

Construction of the reconfiguration model of the turntable

For simplicity reasons, only the reconfiguration model of the turntable will be presented in Fig. 6. It was built using two plant models (one for the table and one for the rollers) and three specification models (one ensuring that large (small) packages are delivered to the left (right), one for the delay of loading/unloading of the rollers and another one for the delay of the table rotations).) describe the only two sequences of events that ensure the distribution of a large package (resp. a small package) to the left (resp. right): 𝑇𝑇 + followed by 𝑅𝑅 -or 𝑇𝑇 - followed by 𝑅𝑅 + (resp. 𝑇𝑇 + followed by 𝑅𝑅 + or 𝑇𝑇 -followed by 𝑅𝑅 -).

States 𝑅𝑅 9 , 𝑅𝑅 14 , 𝑅𝑅 23 and 𝑅𝑅 28 are final. However, 𝑅𝑅 9 and 𝑅𝑅 14 mean that a small package has been successfully transferred to the right, while 𝑅𝑅 23 and 𝑅𝑅 28 have the same meaning for a large package delivered to the left. Hence, for the step of control law selection, it is necessary to keep one of the states 𝑅𝑅 9 and 𝑅𝑅 14 and one of the states 𝑅𝑅 23 and 𝑅𝑅 28 , as well as the sequences leading to these states.

Reconfiguration scenarios

In this part, the selection of the control law for the controller will be detailed in different cases of reconfiguration.

First scenario: faultless case

In the case where no fault has occurred, it is possible to extract the control law directly from the reconfiguration model. Since the execution time is not a discriminant criterion here, the control law can be obtained arbitrarily as long as it contains exactly one of the states 𝑅𝑅 9 and 𝑅𝑅 14 and one of the states 𝑅𝑅 23 and 𝑅𝑅 28 . A possible solution for the control law can be obtained from the reconfiguration model of Fig. 6 without states 𝑅𝑅 10 , 𝑅𝑅 11 , 𝑅𝑅 12 , 𝑅𝑅 13 , 𝑅𝑅 14 , 𝑅𝑅 24 , 𝑅𝑅 25 , 𝑅𝑅 26 , 𝑅𝑅 27 , 𝑅𝑅 28 , 𝑅𝑅 32 , 𝑅𝑅 33 and 𝑅𝑅 34 .

Second scenario: faulty case 1

In this case, the actuator allowing the counterclockwise rotation of the rollers cannot be activated. The corresponding diagnosis result emitted by the diagnoser is : {𝑅𝑅 -}, that can be interpreted as "the event 𝑅𝑅 -was expected but did not occur". According to the Algorithm 2 of the section 4.1.1, the first step consists in the suppression of all transitions labeled with the faulty event. According to Fig. 6, transitions from 𝑅𝑅 7 to 𝑅𝑅 8 and from 𝑅𝑅 26 to 𝑅𝑅 27 must be deleted. The consequence is that final states 𝑅𝑅 9 and 𝑅𝑅 28 cannot be reached anymore, but states 𝑅𝑅 14 and 𝑅𝑅 23 are still accessible. Hence, the only possible solution for the reconfigured control law corresponds to the reconfiguration model of Fig. 6 without states 𝑅𝑅 5 , 𝑅𝑅 6 , 𝑅𝑅 7 , 𝑅𝑅 8 , 𝑅𝑅 9 , 𝑅𝑅 24 , 𝑅𝑅 25 , 𝑅𝑅 26 , 𝑅𝑅 27 and 𝑅𝑅 28 .

Third scenario: faulty case 2

In this case, the sensor 𝑡𝑡 𝑟𝑟 is subject to activation delays, valued at 0,5 t.u. The diagnosis result is {𝑡𝑡 𝑟𝑟 }, 𝑙𝑙𝑇𝑇𝑡𝑡𝑒𝑒. According to the Algorithm 3 of the section 4.1.2, transitions from 𝑅𝑅 5 to 𝑅𝑅 6 and from 𝑅𝑅 19 to 𝑅𝑅 20 are both adjusted to 𝑡𝑡 𝑟𝑟 , [2,9; 3,6], 𝑇𝑇, resulting in a difference in the average time of sequences leading to final states. Namely, it is faster in terms of execution time to reach states 𝑅𝑅 14 and 𝑅𝑅 28 . Hence, the reconfigured control law corresponds to the reconfiguration model of Fig. 6

CONCLUSION

A method of fault-tolerant control of timed automata with guards has been presented, based on the diagnosis obtained with timed-residuals. The reconfiguration is performed in two steps. First, the reconfiguration model is computed, representing the entire system behavior that respects timed rules. Secondly, this model and diagnostic results are used to search the fastest paths from the initial to the final states. Finally, these paths are used to compute the control law of the system for each case of operation. An example of application is provided on a simple system.

In future works, it would be interesting to use a linear representation of TAG [START_REF] Niguez | Analysis of Timed Automata with Guards in Dioids Algebra[END_REF]

Fig. 2 -

 2 Fig. 2 -Timed automaton with guards 𝒢𝒢(𝑃𝑃 1)

Fig. 3 -

 3 Fig. 3 -Two models of timed specifications -From left to right:𝒢𝒢(𝑆𝑆 1) and 𝒢𝒢(𝑆𝑆 3)

Algorithm 1 :

 1 Construction of the reconfiguration model Given: plant models 𝒢𝒢(𝑃𝑃 𝑖𝑖), specification models 𝒢𝒢�𝑆𝑆 𝑗𝑗 � Compute the reconfiguration model 𝒢𝒢(𝑅𝑅) of the system, defined by: 𝒢𝒢(𝑅𝑅) = 𝒢𝒢(𝒫𝒫)||𝒢𝒢(𝒮𝒮) with 𝒢𝒢(𝒫𝒫) = | | 𝑖𝑖 𝒢𝒢(𝒫𝒫 𝑖𝑖) and 𝒢𝒢(𝒮𝒮) = | | 𝑗𝑗 𝒢𝒢�𝒮𝒮 𝑗𝑗 � Result: reconfiguration model 𝒢𝒢(𝑅𝑅)

Fig. 4 -

 4 Fig. 4 -Reconfiguration model 𝒢𝒢(𝑅𝑅)

Algorithm 2 :

 2 Reconfiguration for {𝑒𝑒} Given: reconfiguration model 𝒢𝒢(𝑅𝑅), diagnosis residual {𝑒𝑒} I.Delete all the transitions labeled with the event 𝑒𝑒. II.

Fig

 Fig. 5 -Turntable

Table 1 -

 1 Event of the turntable model

	Label	C/U Description
	𝑇𝑇 𝑅𝑅 -, 𝑅𝑅 -���� C	Unloading rotation of the rollers
	𝑝𝑝 𝑠𝑠	U	Detection of a small package
	𝑝𝑝 𝑏𝑏	U	Detection of a large package
	𝑝𝑝 𝑐𝑐	U	Detection of a package on the table
	𝑝𝑝 𝑟𝑟	U	Detection of a package on the right
			conveyor
	𝑝𝑝 𝑙𝑙	U	Detection of a package on the left
			conveyor
	𝑡𝑡 𝑟𝑟	U	Table facing the right conveyor
	𝑡𝑡 𝑚𝑚	U	Table in initial position
	𝑡𝑡 𝑙𝑙	U	Table facing the left conveyor

+ , 𝑇𝑇 + ��� C Clockwise rotation of the table 𝑇𝑇 -, 𝑇𝑇 - ��� C Counterclockwise rotation of the table 𝑅𝑅 + , 𝑅𝑅 + ���� C Loading rotation of the rollers

 The reconfiguration model of the turntable has several specificities. The upper part of the graph (all states from 𝑅𝑅 1 to 𝑅𝑅 14) corresponds to the treatment of a large package, while the lower part (all states from 𝑅𝑅 15 to 𝑅𝑅 28) corresponds to the small package. Sequences of states 𝑅𝑅 5 𝑅𝑅 6 𝑅𝑅 7 𝑅𝑅 8 𝑅𝑅 9 and 𝑅𝑅 10 𝑅𝑅 11 𝑅𝑅 12 𝑅𝑅 13 𝑅𝑅 14 (resp. 𝑅𝑅 19 𝑅𝑅 20 𝑅𝑅 21 𝑅𝑅 22 𝑅𝑅 23 and 𝑅𝑅 24 𝑅𝑅 25 𝑅𝑅 26 𝑅𝑅 27 𝑅𝑅 28

 without states 𝑅𝑅 5 , 𝑅𝑅 6 , 𝑅𝑅 7 , 𝑅𝑅 8 , 𝑅𝑅 9 , 𝑅𝑅 19 , 𝑅𝑅 20 , 𝑅𝑅 21 , 𝑅𝑅 22 , 𝑅𝑅 23 ,𝑅𝑅 29 , 𝑅𝑅 30 and 𝑅𝑅 31 .

 in order to search for the fastest path during the reconfiguration step. 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑝𝑝 𝑐𝑐 , 1,9; 2,1 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑡𝑡 𝑟𝑟 , 2,9; 3,1 , 𝑇𝑇 𝑡𝑡 𝑟𝑟 , 2,9; 3,1 , 𝑇𝑇 𝑡𝑡 𝑙𝑙 , 2,9; 3,1 , 𝑇𝑇 𝑡𝑡 𝑙𝑙 , 2,9; 3,1 , 𝑇𝑇 𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑝𝑝 𝑙𝑙 , 1,9; 2,1 , 𝑇𝑇 𝑝𝑝 𝑙𝑙 , 1,9; 2,1 , 𝑇𝑇 𝑝𝑝 𝑟𝑟 , 1,9; 2,1 , 𝑇𝑇 𝑝𝑝 𝑟𝑟 , 1,9; 2,1 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑅𝑅 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑡𝑡 𝑚𝑚 , 2,9; 3,1 , 𝑇𝑇 𝑇𝑇 -, 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑡𝑡 𝑚𝑚 , 2,9; 3,1 , 𝑇𝑇𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑇𝑇 + , 𝕔𝕔 𝑡𝑡 , 𝑇𝑇 𝑝𝑝 𝑐𝑐 , 1,9; 2,1 , 𝑇𝑇 Fig. 6 -Reconfiguration model of the turntable

								𝑅𝑅 31	𝑅𝑅 30	𝑅𝑅 29
						𝑅𝑅 5	𝑅𝑅 6	𝑅𝑅 7	𝑅𝑅 8	𝑅𝑅 9
		𝑅𝑅 + ,								
	𝑝𝑝 𝑏𝑏 , [0: 𝓂𝓂[, 𝑇𝑇	𝑅𝑅 1	𝑅𝑅 2	𝑅𝑅 3	𝑅𝑅 4	𝑅𝑅 10	𝑅𝑅 11	𝑅𝑅 12	𝑅𝑅 13	𝑅𝑅 14
	𝑅𝑅 0									
	𝑝𝑝 𝑠𝑠 , [0: 𝓂𝓂[, 𝑇𝑇	𝑅𝑅 15	𝑅𝑅 16	𝑅𝑅 17	𝑅𝑅 18	𝑅𝑅 19	𝑅𝑅 20	𝑅𝑅 21	𝑅𝑅 22	𝑅𝑅 23
						𝑅𝑅 24	𝑅𝑅 25	𝑅𝑅 26	𝑅𝑅 27	𝑅𝑅 28
								𝑅𝑅 34	𝑅𝑅 33	𝑅𝑅 32