Sequential Action Selection for Budgeted Localization in Robots
Nassim Aklil, Benoît Girard, Mehdi Khamassi, Ludovic Denoyer

To cite this version:
Nassim Aklil, Benoît Girard, Mehdi Khamassi, Ludovic Denoyer. Sequential Action Selection for Budgeted Localization in Robots. IEEE Robotic Computing 2017, IEEE, Apr 2017, Taichung, Taiwan. pp.97 - 100, 10.1109/IRC.2017.19. hal-01524808

HAL Id: hal-01524808
https://hal.science/hal-01524808
Submitted on 18 May 2017
Sequential Action Selection for Budgeted Localization in Robots

Nassim AKLIL, Benoit GIRARD and Mehdi KHAMASSI
Institute of Intelligent Systems and Robotics - ISIR
University Pierre and Marie Curie - UPMC
Paris, France

Ludovic DENOYER
Laboratory of Informatics of Paris 6 - LIP6
University Pierre and Marie Curie - UPMC
Paris, France

Abstract—Recent years have seen a fast growth in the number of applications of Machine Learning algorithms from Computer Science to Robotics. Nevertheless, while most such attempts were successful in maximizing robot performance after a long learning phase, to our knowledge none of them explicitly takes into account the budget in the algorithm evaluation: e.g. budget limitation on the learning duration or on the maximum number of possible actions by the robot. In this paper we introduce an algorithm for robot spatial localization based on image classification using a sequential budgeted learning framework. This aims to allow the learning of policies under an explicit budget. In this case our model uses a constraint on the number of actions that can be used by the robot. We apply this algorithm to a localization problem on a simulated environment. Our approach enables to reduce the problem to a classification task under budget constraint. The model has been tested, on the one hand, to simple neural networks for the classification part and, on the other hand, to different techniques of policy selection. The results show that the model can effectively learn an efficient policy (i.e. alternating between sensor measurement and movement to get additional information in different positions) in order to optimize its localization performance under each tested fixed budget.

I. INTRODUCTION

Spatial localization is one of the most challenging problems in Robotics. The main problem consists in taking a spatial decision in the environment in order to localize itself on a map using the different sensors that are available to the robot. The processing of these data is generally difficult because of their multimodality. The problem is made even more difficult by the mutual dependency of the localization and mapping steps: in order to localize itself, the robot needs to recognize cues and features which characterize a particular place and which have previously been perceived and stored. Conversely, to build a reliable map and correctly situate features within it, the robot needs to be able to localize itself relative to these features [1].

While several mapless robot navigation solutions exist [2], the problem of robotic localization has been classically and widely studied using the Self Localization and Mapping framework (SLAM, [3], [4], [5]), which proposes to simultaneously realize the localization and mapping steps. While SLAM methods may have difficulties during long navigation experiments – facing the loop closure problem where the robot needs to reset its estimations when recognizing a previously visited place, or having difficulties satisfying the hypothesis of a static world on which SLAM is anchored (see [6] for discussion) –, SLAM methods can produce robust and efficient localization when no limit is set on the amount of data and sensors which can be processed by the robot. However, while SLAM works both with lasers and cameras. Moreover, SLAM is not concerned with action selection, and thus cannot tell how information gathering for the localization process should be integrated within the global policy of the robot to maximize a given reward function.

Machine Learning research has recently come up with formal solutions to take into account an explicit budget for image recognition or data classification [7], [8], [9]. In particular, specific algorithms called Sequential Budgeted Learning algorithms are used in order to learn sequences and representations from limited amounts of data, which offers the possibility of adding an explicit budget to limit the model. One of the goals of these approaches is to limit the number of costly accesses to data to the minimum required for successful classification.

One way to do that is to incorporate the decision to access or not to access data in the policy of the agent, so that it learns to timely access data among other possible actions.

The idea of data acquisition considered as an action is also at the core of the active sensing field, mainly developed in the 2000’s. However, these techniques are limited by the fact that the systems learn action sequences having already learned the task representation. As shown in [10], the main technique used in the active sensing field is based on maximizing a weighted sum of rewards associated to a sequence of actions executed by a robot.

In this paper, we propose a model that makes a robot use as minimum data as possible to learn representations from the environment and to learn an optimal policy in order to accomplish a localization task. Hence, our problem is defined within a mapless navigation framework: the robot uses only the perceptions obtained via its sensors to take a spatial decision and is not based on a explicit map.

II. RELATED WORK

The mapless navigation problem has been widely investigated since the late 90s. Different techniques are used and can be divided into three main subsets: optical flow, appearance or object recognition based navigation [11]. The first category resumes the techniques that are based on the motion of all the
The task in a given environment. We aim at learning to alternate between movements and data acquisition in order to collect relevant information and thus to localize efficiently. Our algorithm relies on the Deep Reinforcement Learning paradigm i.e learning a neural network-based policy by using reinforcement learning techniques, more precisely by using policy gradient techniques [21], where the model will reinforce the sequence of actions that allowed it to successfully complete the task. However in our case, the policy learning is not driven by a reward signal but by a defined loss function Δ that computes the quality of the system resulting in a model different than classical RL approaches.

Model Description

Let us denote X the set of all the possible positions of the robot in a particular given environment. At the beginning of each episode, when $t = 1$, the robot will be at a particular unknown position denoted x. Then, by sequentially choosing actions a_t at each time step t in the set of all possible actions A, the robot will either gather a new information by using one of its sensor, or move in the environment. At the end of the process, the robot will predict its position y. The quality of the prediction will be measured through a differentiable loss function $\Delta(x, y) \in \mathbb{R}^+$. Let us denote o_t the observation acquired by choosing action a_t such that $o_t \in \mathbb{R}^{n_{o_t}}$, n_{o_t} being the size of the observation space corresponding to action a_t i.e. the size of the acquired information if a_t is a sensor acquisition action, or 0 if a_t corresponds to a robot movement. Note that this assumption is different than the classical assumption of Reinforcement Learning where an agent receives at each time step an observation from the same observation space. The value of o_t is defined by the unknown probability $P(o_t|a_t, a_{t-1}, ..., a_1, x)$ which depends on the environment. We will denote $\pi(a_t|a_{t-1}, a_{t-1}, ..., a_1, o_t)$ the policy of the robot, i.e. the probability of choosing action a_t knowing the previously acquired information $o_{t-1}, ..., o_1$ and the previously chosen actions $a_{t-1}, ..., a_1$. The final decision function which will predict the robot position w.r.t acquired information will be denoted $f(a_t, o_t, a_{t-1}, a_{t-1}, ..., a_1, o_1, x)$.

Learning Algorithm

Let us denote $(x_1, ..., x_m)$ the set of training positions i.e. the m robot positions that will be used during training. Let us denote B the maximum number of actions allowed to the robot. The learning objective is to find both the policy π^* and the prediction function f^* that minimize the prediction error:

$$\pi^*, f^* = \arg \min_{\pi, f} L(\pi, f)$$

where

$$L(\pi, f) = \mathbb{E}_{\pi}[\Delta(f(a_B, o_B, ..., a_1, o_1, x), y)]$$

where the trajectories $a_B, o_B, ..., a_1, o_1$ are sampled following π. The minimization of this objective will be made by using policy gradient techniques proposed in [9].

1We consider that B is fixed, the extension of this model to variable number of steps being the object of a future research.
Let us denote \(T \) a trajectory, where \(T = a_B, o_B, ..., a_1, o_1 \), the previous objective function can be rewritten as:

\[
L(\pi, f) = \int (P(T|x) \Delta(f(x,T), y) dT dx dy
\]

(3)

and its gradient can be written as :

\[
\nabla_{\pi, f} L(\pi, f) = \int \nabla_{\pi, f} (P(T|x) \Delta(f(x,T), y)) P(x,y) dT dx dy
\]

(4)

This gradient can be estimated by using Monte Carlo sampling techniques over the set of training positions where \(M \) is the number of trajectories (total of action sequences):

\[
\frac{1}{n} \sum_{i=1}^{\frac{1}{n}} \left[\frac{1}{M} \sum_{k=1}^{M} \nabla_{\pi} \log P(T|x_i) \Delta(f(x_i,T), y_i) + \nabla_{f} \Delta(f(x_i,T), y_i) \right]
\]

The gradient is then composed by two terms. The first one aims at correcting trajectories by penalizing the trajectories with high loss and the second one is the gradient for the prediction part. Note that:

\[
\nabla \log P(T|x_i) = \nabla \sum_{i=1}^{B} \log P(a_t|a_{t-1}, o_{t-1}, ..., a_1, o_1)
\]

(5)

This estimation of the gradient can have a high variance that has been corrected by replacing \(\Delta(f(x_i,T), y_i) \) with \(\Delta(f(x_i,T), y_i) - b \) where \(b = E_{x,T,y} [\Delta(f(x,T), y)] \) that can be estimated from the training set.

Recurrent Neural Network-based Policy

From these definitions we have: (i) to model \(\pi(a_t, a_{t-1}, a_{t-2}, a_1, o_1) \) and (ii) to model \(f(a_t, o_t, a_{t-1}, o_{t-1}, a_1, o_1) \). In these two cases, we have to aggregate the information gathered by the robot i.e the \(o_t \)s. This will be handled by using a classical recurrent neural network mechanism: at each time step, the current trajectory will be captured through a latent vector \(z_t \) in a latent space \(\mathbb{R}^N \) where \(N \) is the dimension of this space.

We denote \(h_a(z_t, o_t) : \mathbb{R}^N \times \mathbb{R}^{n_o} \rightarrow \mathbb{R}^N \) the aggregation function associated with action \(a \) and which computes the latent vector \(z_{t+1} \) from \(z_t \) using the information \(o_t \) collected at time \(t \) by choosing action \(a \). Moreover, we denote \(g(a, z_t) \) the function that computes the probability of each possible action from \(z_t \). Given these two functions, the inference algorithm can be written as Algorithm 1. In this algorithm, at each time step \(t \), \(g(a|z_t) \) is computed from the latent state \(z_t \) and the action \(a_t \) is sampled from \(g(a|z_t) \). An observation \(o_t \) associated to \(a_t \) is then returned that will be used to compute the next latent state \(z_{t+1} \) such that:

\[
h_a(z_t, o_t) = tanh(W_z z_t + W_o o_t)
\]

(6)

Where \(W_z \) and \(W_o \) are matrices associated to \(z \) and \(o \).

The resulting gradient can be computed by using backpropagation techniques.

Algorithm 1 Inference

1: for \(t \leftarrow 1, B \) do
2: \(p = g(a/z_t) \) \(\triangleright \) Compute the action distribution
3: Apply action \(a_t \)
4: Acquire observation \(o_t \)
5: \(z_{t+1} \leftarrow h_a(z_t, o_t) \) \(\triangleright \) Compute next latent vector
6: end for
7: \(\hat{y} \leftarrow f(z_B) \) \(\triangleright \) Prediction

IV. EXPERIMENTS

We have made a set of preliminary experiments using a simulated 2D environment. This environment corresponds to a \(50 \times 50 \) grid where each position corresponds to an empty one or to a colored wall. We consider an agent moving in this environment with 2 possible move actions (\textit{turn left}, \textit{turn right}), and one acquisition action where the robot can acquire a 1D image through a virtual camera. This image corresponds to a partial observation of what is in front of the robot. The goal of the agent is to predict its position using \(B \) actions. An example of such a maze is given in Figure 1. Note that the position prediction problem has been casted in a 4 \times 4 classification problem as it is illustrated on the figure. When \(o_t \) is a movement action, the agent receives an empty observation \(o_t \), while when \(a_t \) is an image acquisition action, the agent receives a vector of values corresponding to the RGB-pixels in front of the robot. Note that when choosing to turn right or left, the robot changes its angle by \(\pi/4 \). For the training, we have sampled 5000 training positions (and 2500 validation positions to tune the parameters of the model) and the quality of the model has been evaluated in term of accuracy on 2500 different testing positions. A position is characterized by the coordinates of the robot in the maze and its orientation, sampled in the set of \(\{0, \pi/2, \pi, 3\pi/2\} \).

We have compared our approach with 2 different baselines, and for different values of \(B \):

- The image classification baseline corresponds to a classical classification model (i.e multilayer perceptron) where 1, 2 or 3 images are acquired by turning the agent on the left at each time step. The collected images are then concatenated and given to the classification model
- The Forced policy model is a model where \(\pi \) has been manually chosen in order to alternate between image acquisition and \textit{turn left} action. The resulting trajectory for \(B = 5 \) is thus \(\{\text{image, turn, image, turn, image}\} \).
- The Learned policy corresponds to our model learning where the agent can freely choose which action to apply.

For the Forced policy and the Learned policy, we have explored two variants i.e \textit{recurrent} and \textit{non recurrent}. In the first case, the \(h_a \) function is re-used at every time step while in the second case, one uses on \(h_a \) function at each time step resulting in a model with more parameters to learn. The parameters (size of the latent space, learning rate, etc...) have been chosen by cross-validation. The results presented in Table I have been averaged over 3 different runs.
not fixed, and where the agent can decide when to stop the sequential acquisition process.

ACKNOWLEDGMENT

This work has been partially supported by the Agence Nationale de la Recherche and Labex SMART (ANR-11-LABX-65 Online Budgeted Learning Project).

REFERENCES

