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Adaptive Clustering through Semidefinite Programming

Martin Royer

Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS,
Université Paris-Saclay, 91405 Orsay, France.

Abstract

We analyze the clustering problem through a flexible probabilistic model that aims to identify
an optimal partition on the sampleX1, ..., Xn. We perform exact clustering with high probability
using a convex semidefinite estimator that interprets as a corrected, relaxed version of K-means.
The estimator is analyzed through a non-asymptotic framework and showed to be optimal or
near-optimal in recovering the partition. Furthermore, its performances are shown to be adaptive
to the problem’s effective dimension, as well as to K the unknown number of groups in this
partition. We illustrate the method’s performances in comparison to other classical clustering
algorithms with numerical experiments on simulated data.

1 Introduction

Clustering, a form of unsupervised learning, is the classical problem of assembling n observations
X1, ..., Xn from a p-dimensional space into K groups. Applied fields are craving for robust clus-
tering techniques, such as computational biology with genome classification, data mining or image
segmentation from computer vision. But the clustering problem has proven notoriously hard when
the embedding dimension is large compared to the number of observations (see for instance the
recent discussions from [2, 21]).

A famous early approach to clustering is to solve for the geometrical estimator K-means [12, 13, 19].
The intuition behind its objective is that groups are to be determined in a way to minimize the
total intra-group variance. It can be interpreted as an attempt to ”best” represent the observations
by K points, a form of vector quantization. Although the method shows great performances
when observations are homoscedastic, K-means is a NP-hard, ad-hoc method. Clustering with
probabilistic frameworks are usually based on maximum likelihood approaches paired with a variant
of the EM algorithm for model estimation, see for instance the works of Fraley & Raftery [10] and
Dasgupta & Schulman [9]. These methods are widespread and popular, but they tend to be very
sensitive to initialization and model misspecifications.

Several recent developments establish a link between clustering and semidefinite programming.
Peng & Wei [16] show that the K-means objective can be relaxed into a convex, semidefinite
program, leading Mixon et al. [15] to use this relaxation under a subgaussian mixture model to
estimate the cluster centers. Chrétien et al. [8] use a slightly different form of a semidefinite
program, inspired by work on community detection by Guédon & Vershynin [11], to recover the
adjacency matrix of the cluster graph with high probability. Lastly in the different context of
variable clustering, Bunea et al. [5] present a semidefinite program with a correction step to
produce non-asymptotic exact recovery results.
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In this work, we introduce a semidefinite, penalized estimator for point clustering inspired by [16]
and adapted from the work and context of [5]. We analyze it through a flexible probabilistic model
inducing an optimal partition that we aim to recover. We investigate the optimal conditions of
exact clustering recovery with high probability and show optimal performances – including in high
dimensions, improving on [15], as well as adaptability to the effective dimension of the problem.
We also show that our results continue to hold without knowledge of the number of groups K.
Lastly we provide evidence of our method’s efficiency from simulated data and suggest a coherent
alternative in case our estimator is too costly to compute.
Notation. Throughout this work we use the convention 0/0 := 0 and [n] = {1, ..., n}. We take
an . bn to mean that an is smaller than bn up to an absolute constant factor. Let Sd−1 denote
the unit sphere in Rd. For q ∈ N∗ ∪ {+∞}, ν ∈ Rd, |ν|q is the lq-norm and for M ∈ Rd×d′ , |M |q,
|M |F , |M |∗ and |M |op are respectively the entry-wise lq-norm, the Frobenius norm associated with
scalar product 〈., .〉, the nuclear norm and the operator norm. |D|V is the variation semi-norm for
a diagonal matrix D, the difference between its maximum and minimum element. Let A < B mean
that A−B is symmetric, positive semidefinite.

2 Probabilistic modeling of point clustering

Consider X1, ..., Xn and let νa = E [Xa]. The variable Xa can be decomposed into

Xa = νa + Ea, a = 1, ..., n, (2.1)

with Ea stochastic centered variables in Rp.

Definition 1. For K > 1, µ = (µ1, ..., µK) ∈ (Rp)K , δ > 0 and G = {G1, ..., GK} a partition of
[n], we say X1, ..., Xn are (G,µ, δ)-clustered if ∀k ∈ [K],∀a ∈ Gk, |νa − µk|2 6 δ. We then call

∆(µ) := min
k<l
|µk − µl|2 (2.2)

the separation between the cluster means, and

ρ(G,µ, δ) := ∆(µ)/δ (2.3)

the discriminating capacity of (G,µ, δ).

In this work we assume that X1, ..., Xn are (G,µ, δ)-clustered. Notice that this definition does not
impose any constraint on the data: for any given G, there exists a choice of µ, means and radius
δ important enough so that X1, ..., Xn are (G,µ, δ)-clustered. But we are interested in partitions
with greater discriminating capacity, i.e. that make more sense in terms of group separation.
Indeed remark that if ρ(G,µ, δ) < 2, the population clusters {νa}a∈G1 , ..., {νa}a∈GK

are not linearly
separable, but a high ρ(G,µ, δ) implies that they are well-separated from each other. Furthermore,
we have the following result.

Proposition 1. Let (G∗K ,µ∗, δ∗) ∈ arg max ρ(G,µ, δ) for (G,µ, δ) such that X1, ..., Xn are (G,µ, δ)-
clustered, and |G| = K. If ρ(G∗K ,µ∗, δ∗) > 4 then G∗K is the unique maximizer of ρ(G,µ, δ).

So G∗K is the partition maximizing the discriminating capacity over partitions of size K. Therefore
in this work, we will assume that there is a K > 1 such that X1, ..., Xn is (G,µ, δ)-clustered with
|G| = K and ρ(G,µ, δ) > 4. By Proposition 1, G is then identifiable. It is the partition we aim to
recover.
We also assume that X1, ..., Xn are independent observations with subgaussian behavior. Instead
of the classical isotropic definition of a subgaussian random vector (see for example [20]), we use a
more flexible definition that can account for anisotropy.
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Definition 2. Let Y be a random vector in Rd, Y has a subgaussian distribution if there exist
Σ ∈ Rd×d such that ∀x ∈ Rd,

E
[
ex

T (Y−EY )
]
6 ex

T Σx/2. (2.4)

We then call Σ a variance-bounding matrix of random vector Y , and write shorthand Y ∼ subg(Σ).
Note that Y ∼ subg(Σ) implies Cov(Y ) 4 Σ in the semidefinite sense of the inequality. To sum-up
our modeling assumptions in this work:

Hypothesis 1. Let X1, ..., Xn be independent, subgaussian, (G,µ, δ)-clustered with ρ(G,µ, δ) > 4.

Remark that the modelization of Hypothesis 1 can be connected to another popular probabilistic
model: if we further ask that X1, ..., Xn are identically-distributed within a group (and hence
δ = 0), the model becomes a realization of a mixture model.

3 Exact partition recovery with high probability

Let G = {G1, ..., GK} and m := mink∈[K] |Gk| denote the minimum cluster size. G can be repre-
sented by its caracteristic matrix B∗ ∈ Rn×n defined as ∀k, l ∈ [K]2, ∀(a, b) ∈ Gk ×Gl,

B∗ab :=

{
1/|Gk| if k = l
0 otherwise.

In what follows, we will demonstrate the recovery of G through recovering its caracteristic matrix
B∗. We introduce the sets of square matrices

C{0,1}K := {B ∈ Rn×n+ : BT = B, tr(B) = K,B1n = 1n, B
2 = B} (3.1)

CK := {B ∈ Rn×n+ : BT = B, tr(B) = K,B1n = 1n, B < 0} (3.2)

C :=
⋃
K∈N
CK . (3.3)

We have: C{0,1}K ⊂ CK ⊂ C and CK is convex. Notice that B∗ ∈ C{0,1}K . A result by Peng, Wei (2007)
[16] shows that the K-means estimator B̄ can be expressed as

B̄ = arg max
B∈C{0,1}K

〈Λ̂, B〉 (3.4)

for Λ̂ := (〈Xa, Xb〉)(a,b)∈[n]2 ∈ Rn×n, the observed Gram matrix. Therefore a natural relaxation is
to consider the following estimator:

B̂ := arg max
B∈CK

〈Λ̂, B〉. (3.5)

Notice that E Λ̂ = Λ + Γ for Λ := (〈νa, νb〉)(a,b)∈[n]2 ∈ Rn×n, and Γ := E [〈Ea, Eb〉](a,b)∈[n]2 =

diag (|Var(Ea)|∗)16a6n ∈ Rn×n. The following two results demonstrate that Λ is the signal structure
that lead the optimizations of (3.4) and (3.5) to recover B∗, whereas Γ is a bias term that can hurt
the process of recovery.

Proposition 2. There exist c0 > 1 absolute constant such that if ρ2(G,µ, δ) > c0(6 +
√
n/m) and

m∆2(µ) > 8|Γ|V , then we have

arg max
B∈C{0,1}K

〈Λ + Γ, B〉 = B∗ = arg max
B∈CK

〈Λ + Γ, B〉. (3.6)
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This proposition shows that the B̂ estimator, as well as the K-means estimator, would recover
partition G on the population Gram matrix if the variation semi-norm of Γ were sufficiently small
compared to the cluster separation. Notice that to recover the partition on the population version,
we require the discriminating capacity to grow as fast as 1 + (

√
n/m)1/2 instead of simply 1 from

Hypothesis 1. The following proposition demonstrates that if the condition on the variation semi-
norm of Γ is not met, G may not even be recovered on the population version.

Proposition 3. There exist G,µ, δ and Γ such that ρ2(G,µ, δ) = +∞ but we have m∆2(µ) < 2|Γ|V
and

B∗ /∈ arg max
B∈C{0,1}K

〈Λ + Γ, B〉 and B∗ /∈ arg max
B∈CK

〈Λ + Γ, B〉. (3.7)

So Proposition 3 shows that even if the population clusters are perfectly discriminated, there is a
configuration for the variances of the noise that makes it impossible to recover the right cluster-
ing by K-means. This shows that K-means may fail when the random variable homoscedasticity
assumption is violated, and that it is important to correct for Γ.
The estimator from [5] can be adapted to our context. We introduce the following estimator, for
(a, b) ∈ [n]2 let V (a, b) := max(c,d)∈([n]\{a,b})2

∣∣〈Xa − Xb,
Xc−Xd
|Xc−Xd|2 〉

∣∣, b1 := arg minb∈[n]\{a} V (a, b)

and b2 := arg minb∈[p]\{a,b1} V (a, b). Then for a ∈ [n], let

Γ̂corr := diag
(
〈Xa −Xb1 , Xa −Xb2〉a∈[n]

)
. (3.8)

Computing Γ̂corr can be interpreted as a correcting term to de-bias Λ̂ as an estimator of Λ. The
result from Proposition 2 demonstrates the interest of studying the following semi-definite estimator
of the projection matrix B∗, let

B̂corr := arg max
B∈CK

〈Λ̂− Γ̂corr, B〉. (3.9)

In order to demonstrate the recovery of B∗ by this estimator, we introduce different quantitative
measures of the ”spread” of our stochastic variables, that affect the quality of the recovery. By
Hypothesis 1 there exist Σ1, ...,Σn such that ∀a ∈ [n], Xa ∼ subg(Σa). Let

σ2 := max
a∈[n]

|Σa|op, V2 := max
a∈[n]

|Σa|F , γ2 := max
a∈[n]

|Σa|∗. (3.10)

We are now ready to introduce this paper’s main result: a condition on the separation between the
cluster means sufficient for ensuring recovery of B∗ with high probability.

Theorem 1. Assume that m > 2. For c1, c2 > 0 absolute constants, if

m∆2(µ) > c2

(
σ2(n+m log n) + V2(

√
n+m log n) + γ(σ

√
log n+ δ) + δ2(

√
n+m)

)
, (3.11)

then with probability larger than 1− c1/n we have B̂corr = B∗, and therefore Ĝcorr = G.

We call the right hand side of (3.11) the separating rate. Notice that we can read two kinds of
requirements coming from the separating rate: requirements on the radius δ, and requirements
on σ2,V2, γ dependent on the distributions of observations. It appears as if δ + σ

√
log n can be

interpreted as a geometrical width of our problem. If we ask that δ is of the same order as σ
√

log n,
a maximum gaussian deviation for n variables, then all conditions on δ from (3.11) can be removed.
Thus for convenience of the following discussion we will now assume δ . σ

√
log n.
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How optimal is the result from Theorem 1? Notice that our result is adapted to anisotropy in
the noise, but to discuss optimality it is easier to look at the isotropic scenario: V2 =

√
pσ2 and

γ2 = pσ2. Therefore ∆2(µ)/σ2 represents a signal-to-noise ratio. For simplicity let us also assume
that all groups have equal size, that is |G1| = ... = |GK | = m so that n = mK and the sufficient
condition (3.11) becomes

∆2(µ)

σ2
&
(
K + log n

)
+

√
(K + log n)

pK

n
. (3.12)

Optimality. To discuss optimality, we distinguish between low and high dimensional setups.
In the low-dimensional setup n ∨m log n & p, we obtain the following condition:

∆2(µ)

σ2
&
(
K + log n

)
. (3.13)

Discriminating with high probability between n observations from two gaussians in dimension 1
would require a separating rate of at least σ2 log n. This implies that when K . log n, our result is
minimax. Otherwise, to our knowledge the best clustering result on approximating mixture center
is from [15], and on the condition that ∆2(µ)/σ2 & K2. Furthermore, the K & log n regime is
known in the stochastic-block-model community as a hard regime where a gap is surmised to exist
between the minimal information-theoretic rate and the minimal achievable computational rate
(see for example [7]).
In the high-dimensional setup n ∨m log n . p, condition (3.12) becomes:

∆2(µ)

σ2
&

√
(K + log n)

pK

n
. (3.14)

There are few information-theoretic bounds for high-dimension clustering. Recently, Banks, Moore,
Vershynin, Verzelen and Xu (2017) [3] proved a lower bound for Gaussian mixture clustering de-
tection, namely they require a separation of order

√
K(logK)p/n. When K . log n, our condition

is only different in that it replaces log(K) by log(n), a price to pay for going from detecting the
clusters to exactly recovering the clusters. Otherwise when K grows faster than log n there might
exist a gap between the minimal possible rate and the achievable, as discussed previously.
Adaptation to effective dimension. We can analyse further the condition (3.11) by introduc-
ing an effective dimension r∗, measuring the largest volume repartition for our variance-bounding
matrices Σ1, ...,Σn. Let

r∗ :=
γ2

σ2
=

maxa∈[n] |Σa|∗
maxa∈[n] |Σa|op

, (3.15)

r∗ can also be interpreted as a form of global effective rank of matrices Σa. Indeed, define Re(Σ) :=
|Σ|∗/|Σ|op, then we have r∗ 6 maxa∈[n]Re(Σa) 6 maxa∈[n] rank(Σa) 6 p.
Now using V2 6

√
r∗σ

2 and γ =
√
r∗σ, condition (3.11) can be written as

∆2(µ)

σ2
&
(
K + log n

)
+

√
(K + log n)

r∗K

n
. (3.16)

By comparing this equation to (3.12), notice that r∗ is in place of p, indeed playing the role of an
effective dimension for the problem. This also shows that our estimator adapts to this effective
dimension, without any dimension reduction step. In consequence, equation (3.16) distinguishes
between an actual high-dimensional setup: n ∨m log n . r∗ and a ”low” dimensional setup r∗ .
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n ∨ m log n under which, regardless of the actual value of p, our estimators recovers under the
near-minimax condition of (3.13).

This informs on the effect of correcting term Γ̂corr in the theorem above when n+m log n . r∗. The
un-corrected version of the semi-definite program (3.5) has a leading separating rate of γ2/m =
σ2r∗/m, but with the Γ̂corr correction on the other hand, (3.16) has leading separating factor smaller
than σ2

√
(K + log n)r∗/m = σ2

√
n+m log n × √r∗/m. This proves that in a high-dimensional

setup, our correction enhances the separating rate of at least a factor
√

(n+m log n)/r∗.

4 Adaptation to the unknown number of group K

It is rarely the case that K is known, but we can proceed without it. We produce an estimator
adaptive to the number of groups K: let κ̂ ∈ R+, we now study the following adaptive estimator:

B̃corr := arg max
B∈C

〈Λ̂− Γ̂corr, B〉 − κ̂ tr(B). (4.1)

Theorem 2. Suppose that m > 2 and (3.11) is satisfied. For c3, c4, c5 > 0 absolute constants
suppose that the following condition on κ̂ is satisfied

c4

(
V2√n+ σ2n+ γ(σ

√
log n+ δ) + δ2√n

)
< c5κ̂ < m∆2(µ), (4.2)

then we have B̃corr = B∗ with probability larger than 1− c3/n

Notice that condition (4.2) essentially requires κ̂ to be seated between m∆2(µ) and some compo-
nents of the right-hand side of (3.11). So under (4.2), the results from the previous section apply
to the adaptive estimator B̃corr as well and this shows that it is not necessary to know K in order
to perform well for recovering G. Finding an optimized, data-driven parameter κ̂ using some form
of cross-validation is outside of the scope of this paper.

5 Numerical experiments

We illustrate our method on simulated Gaussian data in two challenging, high-dimensional setup
experiments for comparing clustering estimators. Our sample are drawn from K = 3 identically-
sized, identically distributed and perfectly discriminated clusters of non-isovolumic Gaussians. The
distributions are chosen to be isotropic, and the ratio between the lowest and the highest standard
deviation is of 1 to 10. We draw points of a Rp space in two different scenarii. In (S1), for a given
dimension space p = 2000 and a fixed isotropic noise level, we report the algorithms’ compared
performances as the signal-to-noise ratio ∆2(µ)/σ2 is increased from 1 to 20. In (S2) we impose a
fixed signal to noise ratio, and observe the algorithm’s decay in performance as the space dimension
p is increased from 100 to 400 000. All points of the simulated space are reported as a median value
with asymmetric standard deviations in the form of errorbars over a hundred simulations.

Solving for estimator B̂corr is a hard problem as n grows. For this task we implemented an ADMM
solver from the work of Boyd et al. [4] with multiple stopping criterions including a fixed number
of iterations of T = 3000. The results we report use n = 30 samples. For reference, we compare the
recovering capacities of Ĝcorr, labeled ’pecok’ in Figure 1 with other classical clustering algorithm.
We chose three different but standard clustering procedures: Lloyd’s K-means algorithm [12] with
K-means++ initialization [1] (although in scenario (S2), it is too slow to converge as p grows so
we do not report it), Ward’s method for Hierarchical Clustering [22] and the low-rank clustering
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Figure 1: Performance comparison for classical clustering estimators and ours Ĝcorr, labeled ’pecok’
in reference to [5]. The lower split-join, the better the clustering performance and split-join(G, Ĝ) =
0 implies Ĝ = G.

algorithm applied to the Gram matrix, a spectral method appearing in McSherry [14]. Lastly we
include the CORD algorithm from Bunea et al. [6].

We measure the performances of estimators by computing the split-join metric on the cluster
graphs, counting the number of edges to remove or add to go from one graph to the other. In the
two experiments, the results of Ĝcorr are markedly better than that of other methods. Scenario
(S1) shows it can achieve exact recovery with a lesser signal to noise ratio than its competitors,
whereas scenario (S2) shows its performances are decaying at a much lower rate than the others
when the space dimension is increased.

Because of the slow convergence of ADMM, Ĝcorr comes with important computation times. Of
course all of the compared methods have a very hard time reaching high sample sizes n in the
high dimensional context and to that regard, the low-rank clustering method is by far the most
promising.

6 Conclusion

In this paper we analyzed a new semidefinite positive algorithm for clustering within the context of
a flexible probabilistic model and exhibit the key quantities that guarantee non-asymptotic exact
recovery. It implies an essential bias-removing correction that significanty improves the recovering
rate in the high-dimensional setup. Hence we showed the estimator to be near-minimax, adapted
to an effective dimension of the problem. We demonstrated that our estimator can in theory
be optimally adapted to a data-driven choice of K. Lastly we illustrated on high-dimensional
experiments that our approach is empirically stronger than other classical clustering methods.

Our method is computationally intensive even though it is of polynomial order. As the Γ̂corr
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correction step of the algorithm can be interpreted as an independent, denoising step for the Gram
matrix, we suggest using it as such for other notably faster algorithm such as the spectral algorithms.
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Appendix

A Intermediate results

A.1 Generic controls for exact recovery

Let Γ̂ be any estimator of Γ and let B̂ := arg maxB∈CK 〈Λ̂− Γ̂, B〉.

Theorem 3. For c1, c2 > 0 absolute constants suppose that |Γ̂−Γ|V 6 γ̄2
n with probability 1−c1/n,

and that

m∆2(µ) > c2

(
σ2(n+m log n) + V2(

√
n+m log n) + γ̄2

n + δ2(
√
n+m)

)
, (A.1)

then we have B̂ = B∗ with probability larger than 1− c1/n

In the case where the number of groups is unknown we study B̃ := arg maxB∈C〈Λ̂− Γ̂, B〉− κ̂ tr(B)
for κ̂ ∈ R.

Theorem 4. For c3, c4, c5 > 0 absolute constants suppose that |Γ̂ − Γ|∞ 6 γ̄2
n with probability

1− c3/n. Suppose that (A.1) is satisfied and that the following condition on κ̂ is satisfied

c4

(
V2√n+ σ2n+ γ̄2

n + δ2√n
)
< c5κ̂ < m∆2(µ), (A.2)

then we have B̃ = B∗ with probability larger than 1− c3/n

A.2 On estimating Γ

In the general case we have Γ̂ = 0 hence a deterministic perturbation term γ̄2
n = |Γ|∞ weighing on

the separation requirements. For Γ̂corr, we have the following result.

Proposition 4. Assume that m > 2. For c6, c7 > 0 absolute constants, with probability larger than
1− c6/n we have

|Γ̂corr − Γ|∞ 6 c7

(
σ2log n+ (δ + σ

√
log n)γ + δ2

)
. (A.3)

A.3 Concentration of random subgaussian Gram matrices

A key result in our proof is the following concentration bound on the Gram matrix of centered,
subgaussian, independent random variables.

Lemma 1. For some absolute constant c∗ > 0, for a ∈ [n] let Ea be centered, independent random

vectors in Rd, Ea ∼ subg(Σa). Let E :=
[ ...
ET

a
...

]
∈ Rn×d then ∀t > 0

P
[
|EET − E

[
EET

]
|op > 2 max

a∈[n]
|Σa|F

√
t+ 2 max

a∈[n]
|Σa|opt

]
6 9n2e−c∗t. (A.4)
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B Main proofs

B.1 Proof of Proposition 1: identifiability

Suppose that X1, ..., Xn are (G,µ, δ)-clustered with |G| = K, and ρ(G,µ, δ) > 4. Then we remark

that for (a, b) ∈ [n]2, a
G∼ b is equivalent to |νa − νb|2 6 2δ because:

• if a
G∼ b then there exist k ∈ [K] such that |νa − νb|2 6 |νa − µk|2 + |µk − νb|2 6 2δ

• if a
G
6∼ b then there exist (k, l) ∈ [K]2 such that |νa−νb|2 > |µk−µl|2−|νa−µk|2−|νb−µl|2 >

4δ − 2δ > 2δ.

Now suppose there exist G′ such that X1, ..., Xn are (G′,µ′, δ′)-clustered with |G′| = K and
ρ(G′,µ′, δ′) > 4. By symmetry we can assume δ′ 6 δ, and the previous remark shows that G′ is a
sub-partition of G, ie G preserves the structure of G′. But since |G| = |G′| this implies G = G′.

B.2 Exact recovery with high probability

The proof for Theorem 1 (respectively Theorem 2) is a composition of Theorem 3 (respectively
Theorem 4) and Proposition 4.

In this section, under Hypothesis 1, we have ∀k ∈ [K], ∀a ∈ Gk : Xa ∼ subg(Σa). For k ∈ [K], we
define σ2

k := maxa∈Gk
|Σa|op 6 σ2,V2

k := maxa∈Gk
|Σa|F 6 V2, γ2

k := maxa∈Gk
|Σa|∗ 6 γ2.

A number of proofs in this section are adapted from the proof ensemble of [5]. In it the authors use
a latent model for variable clustering. A comparable model in this work would require to impose
the following conditions on X1, ..., Xn: identically distributed variables within a group (implying
δ = 0) and isovolumic, Gaussian distributions.

B.2.1 Proof of Theorem 3

In this theorem we only need to consider B ∈ CK , but the proof of Theorem 4 is similar to this
one, hence we will start by considering the more general B ∈ C and use B ∈ CK at a later stage of
the proof. Thus we want to prove that under some conditions, with high probability:

〈Λ̂− Γ̂, B∗ −B〉 > 0 for all B ∈ C \ {B∗} (B.1)

For (a, b) ∈ Gk ×Gl for (k, l) ∈ [K]2, let:

(S1)ab := −|µk − µl|22/2 (B.2)

(W1)ab := 〈νa − µk, νb − µl〉
(W2)ab := 〈µk − νa + νb − µl + Eb − Ea, µk − µl〉
(W3)ab := 〈Eb − Ea, νa − µk + µl − νb〉
(W4)ab := (〈Ea, Eb〉 − Γab)

(W5)ab := (Γ− Γ̂)ab

Lemma 2. Proving (B.1) reduces to proving

〈S1 +W1 +W2 +W3 +W4 +W5, B
∗ −B〉 > 0 for all B ∈ C \ {B∗}. (B.3)

11



The proof for Lemma 2 is found in section B.2.3. So we need only concern ourselves with the quan-
tities S1,W1,W2,W3,W4,W5. The term S1 contains our uncorrupted signal and since 〈S1, B

∗〉 = 0
it writes:

〈S1, B
∗ −B〉 =

∑
16k 6=l6K

1

2
|µk − µl|22|BGkGl

|1 (B.4)

The other parts are noisy and must be controlled. The term W2 is a simple subgaussian form
controlled through the following lemma, proved in section B.2.4:

Lemma 3. For c′2 > 0 absolute constant, with probability greater than 1− 1/n:

∀B ∈ C, |〈W2, B
∗ −B〉| 6

∑
16k 6=l6K

(
2δ +

√
c′2(log n)(σ2

k + σ2
l )
)
|µk − µl|2|BGkGl

|1. (B.5)

To control the other noisy terms we now introduce a deterministic result:

Lemma 4. For any symmetric matrix W ∈ Rn×n we have:

∀B ∈ C, |〈W,B∗ −B〉| 6 6|B∗W |∞
∑

16k 6=l6K
|BGkGl

|1 + |W |op
[ ∑

16k 6=l6K
|BGkGl

|1/m+ (tr(B)−K)
]
.

(B.6)

The proof for Lemma 4 will be found in [5], p.21-22 until eq. (58).

As B∗1 = 1 and B∗ > 0, |B∗W |∞ 6 |W |∞ so we use the lemma on terms W1 and W3 by bounding
|W |∞ and |W |op: for the term W1 we use |W1|∞ 6 δ2 so |W1|op 6 δ2√n. To control the term W3,
we use the subgaussian tail bound of (B.25) with |νa − µk + µl − νb|2 6 2δ and a union bound
over (a, b) ∈ [n]2. We get that for c′3 > 0 absolute constant, with probability greater than 1− 1/n,
|W3|∞ 6

√
c′3(log n)σ2δ2 and |W3|op 6

√
c′3(log n)σ2δ2 ×

√
n therefore with probability greater

than 1− 1/n, ∀B ∈ C:

|〈W1, B
∗ −B〉| 6 δ2

[ ∑
16k 6=l6K

|BGkGl
|1(6 +

√
n

m
) +
√
n(tr(B)−K)+

]
(B.7)

|〈W3, B
∗ −B〉| 6

√
c′3(log n)σ2δ2

[ ∑
16k 6=l6K

|BGkGl
|1(6 +

√
n

m
) +
√
n(tr(B)−K)+

]
(B.8)

For the term W4 we introduce the following lemma, proved in section B.2.5:

Lemma 5. For c′4, c
′′
4 > 0 absolute constants, with probability larger than 1− 2/n:

∀B ∈ C, |〈W4, B
∗ −B〉| 6

[
6c′4(V2

√
log n+ σ2 log n)/

√
m+ c′′4(V2√n+ σ2n)/m

] ∑
16k 6=l6K

|BGkGl
|1

+ (tr(B)−K)+c
′′
4(V2√n+ σ2n). (B.9)

Lastly as the term W5 is diagonal we have |W5|op = |W5|∞ and |B∗W5|∞ 6 |W5|∞/m therefore:

∀B ∈ C, |〈W5, B
∗ −B〉| 6 |W5|∞

[ 7

m

∑
16k 6=l6K

|BGkGl
|1 + (tr(B)−K)+

]
(B.10)
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Using those controls of W1,W2,W3,W4,W5, in combination in a union bound in (B.3) we get for
c′1 > 0 absolute constant, with probability greater than 1− c′1/n: ∀B ∈ C,

〈S1 +W1 +W2 +W3 +W4 +W5, B
∗ −B〉 >

∑
16k 6=l6K

[1

2
|µk − µl|22 −

(
2δ +

√
2c′2(log n)σ2

)
|µk − µl|2

− (6c′4
V2
√

log n+ σ2 log n√
m

+ c′′4
V2√n+ σ2n

m
)− 7

m
|W5|∞ − (6 +

√
n

m
)(δ2 +

√
c′3(log n)σ2δ2)

]
|BGkGl

|1

− (tr(B)−K)+[c′′4(V2√n+ σ2n) + (δ2 +
√
c′3(log n)σ2δ2)

√
n+ |W5|∞] (B.11)

We now use the fact that for this theorem we are only considering B ∈ CK , ie matrices such that
tr(B) = K so we can discard the last line of (B.11). In this particular context we can improve
the control provided by Lemma 4 for W5: as tr(B∗) = K, we have for α ∈ R : |〈W5, B

∗ − B〉| 6
|〈W5 − αIn, B∗ − B〉| + |α(tr(B) − K)|. So by choosing α = (maxa(W5)aa + mina(W5)aa)/2, we
have |W5 − αIn|op = |W5 − αIn|∞ = |W5|V /2 and therefore:

∀B ∈ CK |〈W5, B
∗ −B〉| 6 |W5|V

7

2m

∑
16k 6=l6K

|BGkGl
|1 (B.12)

In consequence we can replace |W5|∞ by |W5|V /2 in the second line of (B.11), and with another
union bound, by assumption we replace |W5|V /2 by γ̄2

n/2.
Lastly Lemma 3 p. 17 from [5] shows the only matrix in CK whose support is included in supp(B∗)
is B∗, therefore B ∈ CK \{B∗} implies

∑
16k 6=l6K |BGkGl

|1 > 0. Hence for c2 > 0 absolute constant,
the following condition on ∆(µ) is sufficient to ensure exact recovery with probability larger than
1− c1/n:

∆2(µ) > c2

[
σ2m log n+ V2

√
m log n+ V2√n+ σ2n+ γ̄2

n + δ2(
√
n+m)

]
× 1

m
(B.13)

This concludes the proof for Theorem 3.

B.2.2 Proof of Theorem 4: adaptive exact recovery

In this Theorem we need to take into account the additional penalization term κ̂ tr(B). Notice it is
equivalent to a correction by κ̂In of our estimator Λ̂−Γ̂, therefore for B ∈ C, 〈Λ̂−Γ̂−κ̂In, B∗−B〉 =
〈Λ̂ − Γ̂, B∗ − B〉 + κ̂ × (tr(B) −K). Therefore for Theorem 4 we can follow the same proof as in
Theorem 3 until establishing (B.11), at which point we can use a union bound to use the assumption
|W5|∞ 6 γ̄2

n. Consequently we have with probability greater than 1− c′1/n: ∀B ∈ C,

〈S1 +W1 +W2 +W3 +W4 +W5, B
∗ −B〉 >

∑
16k 6=l6K

[1

2
|µk − µl|22 −

(
2δ +

√
2c′2(log n)σ2

)
|µk − µl|2

− (6c′4
V2
√

log n+ σ2 log n√
m

+ c′′4
V2√n+ σ2n

m
)− 7

m
γ̄2
n − (6 +

√
n

m
)(δ2 +

√
c′3(log n)σ2δ2)

]
|BGkGl

|1

− (tr(B)−K)+[c′′4(V2√n+ σ2n) + (δ2 +
√
c′3(log n)σ2δ2)

√
n+ γ̄2

n] + κ̂(tr(B)−K) (B.14)

Using the assumption (A.1) of Theorem 4 there exist c′2 > 0 such that with probability greater
than 1− c′1/n: ∀B ∈ C,

〈S1 +W1 +W2 +W3 +W4, B
∗ −B〉 > c′2∆2(µ)

∑
16k 6=l6K

|BGkGl
|1

− (tr(B)−K)+[c′′4(V2√n+ σ2n) + (δ2 +
√
c′3(log n)σ2δ2)

√
n+ γ̄2

n] + κ̂(tr(B)−K) (B.15)
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From here, when tr(B) > K, the left-hand side of (A.2) is sufficient to ensure recovery. When
tr(B) = K, we already established that

∑
16k 6=l6K |BGkGl

|1 > 0 for all matrices B ∈ CK \ {B∗}
so (A.1) is sufficient in that case. Lastly note that K − tr(B) 6 1

m

∑
16k 6=l6K |BGkGl

|1 (see [5] eq.
(57) p.21) so the right-hand side of (A.2) is sufficient condition for recovery when tr(B)−K < 0.
This concludes the proof of Theorem 4.

B.2.3 Proof of Lemma 2

(Λ̂− Γ̂)ab = 〈Xa, Xb〉 − Γ̂ab = 〈νa, νb〉+ 〈νa, Eb〉+ 〈νb, Ea〉+ 〈Ea, Eb〉 − Γ̂ab (B.16)

= 〈νa, νb〉+ 〈νa − νb, Eb − Ea〉+ 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.17)

= 〈νa, νb〉+ 〈µk − µl, Eb − Ea〉+ (W3)ab + 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.18)

= −〈µk, µl〉+ 〈νa − µk, νb − µl〉+ 〈νa, µl〉+ 〈µk, νb〉
+ 〈µk − µl, Eb − Ea〉+ (W3)ab + 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.19)

= −(S1)ab −
1

2
(|µk|22 + |µl|22) + (W1)ab + 〈νa, µl〉+ 〈µk, νb〉

+ 〈µk − µl, Eb − Ea〉+ (W3)ab + 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.20)

= −(S1)ab −
1

2
(|µk|22 + |µl|22) + (W1)ab + 〈νa, µk〉+ 〈µl, νb〉

+ 〈µk − µl, νb − νa + Eb − Ea〉+ (W3)ab + 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.21)

= −(S1)ab −
1

2
(|µk|22 + |µl|22) + (W1)ab + 〈νa, µk〉+ 〈µl, νb〉

+ 2(S1)ab + (W2)ab + (W3)ab + 〈νa, Ea〉+ 〈νb, Eb〉+ (W4 +W5)ab (B.22)

Now since (〈νa, µk〉)(a,b)∈[n]2 = (〈νa, µk〉)a∈[n]×1Tn , (|µk|22)(a,b)∈[n]2 = (|µk|22)a∈[n]×1Tn , (〈νb, µl〉)(a,b)∈[n]2 =

1n × (〈νb, µl〉)b∈[n], (|µl|22)(a,b)∈[n]2 = 1n × (|µl|22)b∈[n], (〈νa, Ea〉)(a,b)∈[n]2 = (〈νa, Ea〉)a∈[n] × 1Tn ,

(〈νb, Eb〉)(a,b)∈[n]2 = 1n × (〈νb, Eb〉)b∈[n] and since B1n = B∗1n = (1TnB)T = (1TnB
∗)T = 1n, we

have:

〈Λ̂− Γ̂, B∗ −B〉 = 〈S1 +W1 +W2 +W3 +W4 +W5, B
∗ −B〉 (B.23)

B.2.4 Proof of Lemma 3: control of |〈W2, B
∗ −B〉|

By definition, (W2)ab = 0 when k = l and (B∗)ab = 0 when k 6= l so we have 〈W2, B
∗〉 = 0. Let

〈A,B〉GkGl
=
∑

(a,b)∈Gk×Gl
AabBab, we have:

〈W2, B
∗ −B〉 = −〈W2, B〉 = −

∑
16k 6=l6K

〈W2, B〉GkGl
6

∑
16k 6=l6K

|W2|GkGl
|∞|BGkGl

|1 (B.24)

Let (a, b) ∈ Gk × Gl, we look at (W2)ab = 〈Eb − Ea − (νa − µk) + (νb − µl), µk − µl〉 = 〈Ea −
Eb, µk − µl〉+ 〈−(νa− µk) + (νb− µl), µk − µl〉. The term on the right is a constant offset bounded
by 2δ|µk − µl|2. Let z := µk − µl, by Lemma 7 〈Ea−Eb, z〉 is a subgaussian variable with variance
bounded by (σ2

k + σ2
l )|z|22 therefore its tails are characteristically bounded (see for example [20]),

there exist c∗ > 0 absolute constant such that ∀t > 0:

P
[
|〈Eb − Ea, z〉| > |z|2

√
σ2
k + σ2

l × t
]
6 e1−c∗t2 (B.25)
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This implies that ∀t > 0,P
[
|(W2)ab| > |µk − µl|2(2δ +

√
σ2
k + σ2

l × t)
]
6 e1−c∗t2 . We conclude with

a union bound over all (a, b) ∈ Gk ×Gl, a union bound over all (k, l) ∈ [K]2, k 6= l and by taking
t =

√
(1 + 3 log n)/c∗.

B.2.5 Proof of Lemma 5: control of |〈W4, B
∗ −B〉|

Recall (W4)ab = 〈Ea, Eb〉 −Γab. We will prove Lemma 5 by using the derivation of (B.6) combined
with Lemma 1 for control of the operator norm and the following lemma for the remaining part.

Lemma 6. For c′4 > 0 absolute constant, with probability greater than 1− 1/n:

|B∗W4|∞ 6 c′4 × (V2
√

log n+ σ2 log n)/
√
m. (B.26)

Proof. Let (a, b) ∈ Gk ×Gl, we rewrite (B∗W4)ab as the sum of the following two terms:

(B∗W4)ab =
ub
|Gk|

× 1k=l + 〈Ẽk, Eb〉 with

{
ub := |Eb|22 − Γbb
Ẽk := 1

|Gk|
∑

c∈Gk,c 6=bEc
(B.27)

The bound for ub uses Lemma 9: ∀t > 0 P
[
||Eb|22 − E |Eb|22| > V2

l

√
t+ σ2

l t
]
6 2e−c∗t so only

the scalar product remains to be controlled. Notice that by Lemma 7,
√
|Gk|Ẽk is a centered

subgaussian with variance-bounding matrix Σ̃ = 1
|Gk|

∑
c∈Gk,c 6=b Σc, therefore |Σ̃|F 6 V2

k and |Σ̃|op 6
σ2
k. So using Lemma 9 again we find ∀t > 0:

P
[
2|
√
|Gk|〈Ẽk, Eb〉| >

√
2〈Σ̃,Σb〉1/2

√
t+ |Σ̃1/2Σ

1/2
b |opt

]
6 2e−c∗t (B.28)

Therefore using a union bound, then 〈Σ̃,Σb〉1/2 6 VkVl 6 V2 (Cauchy-Schwarz) and applying
another union bound over all (a, b) ∈ [n]2 with t = (log 4 + 3 log n)/c∗ yields the result.

We are ready to wrap-up the proof. From Lemma 1 applied to W4, taking t = (log 2 + n log 9 +
log n)/c∗ there exists c′′4 > 0 absolute constant such that we have with probability greater than
1− 1/n: |W4|op 6 c′′4(V2√n+ σ2n). Now applying Lemma 4 to W4:

|〈W4, B
∗ −B〉| 6 6|B∗W4|∞

∑
16k 6=l6K

|BGkGl
|1 + |W4|op

[ ∑
16k 6=l6K

|BGkGl
|1/m+ (tr(B)−K)

]
(B.29)

Therefore combining the lemma with the derivations above and a union bound, we get with prob-
ability greater than 1− 2/n:

|〈W4, B
∗ −B〉| 6

[
6c′4(V2

√
log n+ σ2 log n)/

√
m+ c′′4(V2√n+ σ2n)/m

] ∑
16k 6=l6K

|BGkGl
|1

+ (tr(B)−K)+c
′′
4(V2√n+ σ2n) (B.30)

This concludes the proof for Lemma 5.
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B.3 Proof of Proposition 4, Gamma estimator Γ̂corr

Let a ∈ Gk, b1 ∈ Gl1 , b2 ∈ Gl2 , using (2.1) and 2|xy| 6 x2 + y2 we have for a ∈ [n]:

|Γ̂aa − Γaa| = |〈Xa −Xb1 , Xa −Xb2〉 − Γaa| 6 U1 +
3

2
U2 + 2U3 + 3U4 (B.31)

where: U1 := ||Ea|22 − Γaa|
U2 := |νa − νb1 |22 + |νa − νb2 |22

U3 := sup
(b,c)∈[n]2

〈 νa − νc
|νa − νc|2

, Eb〉2

U4 := sup
(b,c)∈[n]2,b 6=c

|〈Eb, Ec〉|

Control of U1 = ||Ea|22 − Γaa|: by using the first inequality from Lemma 9 with t = (2 log n +

log 2)/c∗ there exists c′1 > 0 such that with probability greater than 1− 1/n2:

U1 6 c′1 × (V2
k

√
log n+ σ2

k log n) (B.32)

Control of U3 = sup(b,c)∈[n]2〈 νa−νc
|νa−νc|2 , Eb〉

2: write z = (νa − νc)/|νa − νc|2 and Y = Σ
−1/2
b Eb ∼

subg(Ip) and A = Σ
1/2
b

T
(zzT )Σ

1/2
b , so that: 〈z, Eb〉2 = ETb zz

TEb = Y TAY . Because |z|2 = 1
and zzT is symmetric of rank 1 we have |A|F = |A|op = tr(A) 6 σ2 therefore we use Lemma 8 with
t = (4 log n+ log 2)/c∗ and then a union bound over all (b, c) ∈ [n]2 so that with probability greater
than 1− 1/n2:

U3 6 c′3 × σ2 log n (B.33)

Control of U4 = sup(b,c)∈[n]2,b 6=c |〈Eb, Ec〉|: using the fact that Eb and Ec are independent and the

second inequality of Lemma 9 with t = (4 log n + log 2)/c∗, a union bound over all (b, c) ∈ [n]2,
there exists c′4 > 0 such that we have with probability greater than 1− 1/n2:

U4 6 c′4 × (σ2 log n+ V2
√

log n) (B.34)

Control of U2 = |νa − νb1 |22 + |νa − νb2 |22: here we use the requirement that all groups are of length

at least m > 3, there exist (a1, a2) ∈ Gk \ {a}, (c, d) ∈ ([n] \ {a, a1, a2})2, let Z = (Xc −Xd)/|Xc −
Xd|2. For au ∈ {a1, a2} we have 〈Xa −Xau , Z〉 = 〈νa − νau , Z〉+ 〈Ea − Eau , Z〉. By independence
and Lemma 7, 〈Ea − Eau , Z〉 is subgaussian with variance bounded by 2σ2. Therefore using the
subgaussian tail bounds of (B.25) and a union bound, there exists c′2 > 0 absolute constant such
that with probability over 1− 1/n2: V (a, a1) ∨ V (a, a2) 6 2δ + c′2σ

√
log n. Hence for bu ∈ {b1, b2}

with probability over 1− 1/n2:

|〈Xa −Xbu , Xc −Xd〉| 6 (2δ + c′2σ
√

log n)|Xc −Xd|2 (B.35)

Now suppose l1 6= k, choose c ∈ Gk \ {a}, d ∈ Gl1 \ {b1}. We have |Xc −Xd|2 6 |µk − µl1 |2 + 2δ +
|Ec−Ed|2. We also have 〈Xa−Xb1 , Xc−Xd〉 = 〈νa−νb1 +Ea−Eb1 , νc−νd+Ec−Ed〉 = 〈µk−µl1 +
δab+Ea−Eb1 , µk−µl1 +δcd+Ec−Ed〉 for δab = (νa−νb1)−(µk−µl1) and δcd = (νc−νd)−(µk−µl1).
Therefore:

|〈Xa −Xb1 , Xc −Xd〉| > |µk − µl1 |22/2− 4δ|µk − µl1 |2 (B.36)

− 1

2
〈 µk − µl1
|µk − µl1 |2

, Ec + Ea − Ed − Eb1〉2 − 2 sup
(b,c,d)∈[n]3

〈 δcd
|δcd|2

, Eb〉2 − 4U4 − 12δ2

> |µk − µl1 |22/2− 4δ|µk − µl1 |2 − 8U ′3 − 2U ′′3 − 4U4 − 12δ2 (B.37)
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where U ′3 = sup(b,l)∈[n]×[K]〈
µk−µl
|µk−µl|2 , Eb〉

2, U ′′3 = sup(b,c,d)∈[n]3〈 δcd
|δcd|2 , Eb〉

2.

So combining the last derivations:

|µk − µl1 |22/2− 4δ|µk − µl1 |2 6 (2δ + c′2σ
√

log n)(|µk − µl1 |2 + 2δ + |Ec − Ed|2)

+8U ′3 + 2U ′′3 + 4U4 + 12δ2 (B.38)

Notice that U ′3, U
′′
3 can be controlled exactly as U3 was, and simultaneously: for c′′3 > 0 absolute

constant, with probability greater than 1− 1/n2: 8U ′3 + 2U ′′3 6 c′′3σ
2 log n.

We now control |Ec − Ed|2: notice that by Lemma 7, Ec − Ed is subg(Σc + Σd). We have
E
[
|Ec − Ed|22

]
6 |Σc + Σd|∗ 6 2γ2, |Σc + Σd|F 6 2V2 6 2σγ and |Σc + Σd|op 6 2σ2. There-

fore by the first inequality of Lemma 9 with t = (4 log n + log 2)/c∗ and a union bound over all
(c, d) ∈ [n]2, there exists c′′2 > 0 absolute constant such that we have simultaneously with probability
greater than 1− 1/n2:

sup
(c,d)∈[n]2

|Ec − Ed|2 6 c′′2

√
γ2 + σγ

√
log n+ σ2 log n 6 c′′2(γ + σ

√
log n) (B.39)

Therefore with a union bound, with probability greater than 1− 4/n2:

|µk − µl1 |22/2− (c′2σ
√

log n+ 6δ)|µk − µl1 |2 6(2δ + c′2σ
√

log n)
(
2δ + (γ + σ

√
log n)(c′′2 +

c′′3
c′2

+
4c′4
c′2

)
)

+ 12δ2 (B.40)

Hence for c′5 > 0 absolute constant we have with probability greater than 1 − 4/n2: |µk − µl1 |22 6
c′5(δ + σ

√
log n)(δ + σ

√
log n+ γ). The same control can be derived simultaneously for |µk − µl2 |22

by replacing d ∈ Gl1 \ {b1} by d′ ∈ Gl2 \ {b1, b2}. We conclude that for c′′5 > 0 absolute constant,
we have with probability greater than 1− 4/n2:

U2 6 2|µk − µl1 |22 + 2|µk − µl2 |22 + 16δ2 6 c′′5(δ + σ
√

log n)(δ + σ
√

log n+ γ) (B.41)

Therefore with a union bound over all four terms U1, U2, U3, U4 and a ∈ [n], for c6, c7 > 0 absolute
constants we have with probability greater than 1−c6/n: |Γ̂−Γ|∞ 6 c7(δ+σ

√
log n)(δ+σ

√
log n+γ).

This concludes the proof of Proposition 4

B.4 Proof of Proposition 2

For this proof we rely heavily on the proof of Theorem 3: let Γ̂ = 0 so that W5 = Γ, notice that
W3 and W4 are centered. We take expectation of (B.3), therefore proving 〈Λ + Γ, B∗ − B〉 >
0 for all B ∈ CK \ {B∗} is equivalent to proving:

〈S1 +W1 + E [W2] + Γ, B∗ −B〉 > 0 for all B ∈ CK \ {B∗} (B.42)

Notice that for (a, b) ∈ Gk × Gl, E [(W2)ab] 6 2δ|µk − µl|2. Using this in combination with other
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arguments from the proof of Theorem 3, that is using (B.4), (B.7) and (B.12), we have ∀B ∈ CK :

〈S1, B
∗ −B〉 =

∑
16k 6=l6K

1

2
|µk − µl|22|BGkGl

|1 (B.43)

|〈W1, B
∗ −B〉| 6

∑
16k 6=l6K

δ2(6 +

√
n

m
)|BGkGl

|1 (B.44)

|〈E [W2] , B∗ −B〉| 6
∑

16k 6=l6K
2δ|µk − µl|2|BGkGl

|1 (B.45)

|〈W5, B
∗ −B〉| 6

∑
16k 6=l6K

7|Γ|V
2m
|BGkGl

|1 (B.46)

Thus we have:

〈S1 +W1 + E [W2] +W5, B
∗ −B〉 >

∑
16k 6=l6K

[1

2
|µk − µl|22 − 2δ|µk − µl|2 − δ2(6 +

√
n

m
)− 7|Γ|V

2m

]
|BGkGl

|1

(B.47)

Hence we deduce that there exist c0 absolute constant such that if ρ2(G,µ, δ) > c0(6 +
√
n/m) and

m∆2(µ) > 8|Γ|V , then we have arg maxB∈CK 〈Λ + Γ, B〉 = B∗. Lastly as B∗ is in C{0,1}K ⊂ CK , this
concludes the proof.

B.5 Proof of Proposition 3

Assume X1, ..., Xn is (G,µ, δ)-clustered with caracterizing matrix B∗ and define the following:

• δ = 0 implying maximum discriminating capacity for G ie ρ(G,µ, δ) = +∞.

• Let

B∗ :=


1

m

1

m

1

m

 ∈ C{0,1}K and B1 :=


2/m

2/m

1

2m

 ∈ C{0,1}K

where
1

m
represents constant square blocks of size m and value 1/m, and the other values

in the matrices are zeros.

• K = 3 and for some ∆ > 0, µ1 = (∆/
√

2, 0, 0)T and µ2 = (0,∆/
√

2, 0)T , µ3 = (0, 0,∆/
√

2)T

so that for (a, b) ∈ Gk × Gl: Λab = 〈µk, µl〉 = ∆2/2 × 1{a G∼ b}. Then ∆2(µ) = ∆2 and
Λ = (∆2/2)mB∗.

• For γ+ > γ− > 0 let Γ = diag (γ+, ..., γ+︸ ︷︷ ︸
m

, γ−, ..., γ−︸ ︷︷ ︸
m

, γ−, ..., γ−︸ ︷︷ ︸
m

)

Then we have the following: 〈B∗,Γ〉 = γ+ + 2γ−, 〈B1,Γ〉 = 2γ+ + γ−, 〈B∗,Λ〉 = ∆2/2 × 3m,
〈B1,Λ〉 = ∆2/2× 2m. Thus we have 〈B∗,Λ + Γ〉 < 〈B1,Λ + Γ〉 as soon as m∆2(µ) < 2(γ+ − γ−).
This concludes the proof.
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C Subgaussian properties and controls

Lemma 7. ∀a ∈ [n] let Ya ∼ subg(Σa), independent, Σa ∈ Rd×d then

Y = (Y T
1 , ..., Y

T
n )T ∼ subg(diag (Σa)a∈[n]), (C.1)

Z =
∑
a∈[n]

caYa ∼ subg(
∑
a∈[n]

c2
aΣa). (C.2)

Proof. By independence for z = {zT1 , ..., zTn }T ∈ Rnd, za ∈ Rd we have

E
[
ez

T (Y−EY )
]

=

n∏
a=1

E
[
ez

T
a (Ya−EYa)

]
6

n∏
a=1

ez
T
a Σaza/2 = ez

T diag(Σa)a∈[n]z/2

E
[
ez

T
1 (Z−EZ)

]
=

n∏
a=1

E
[
ez

T
1 ca(Ya−EYa)

]
6

n∏
a=1

ez
T
1 c

2
aΣaz1/2 = ez

T
1 (

∑
a∈[n] c

2
aΣa)z1/2

Lemma 8. Hanson-Wright inequality for subgaussian variables
Let Y be a centered random vector, Y ∼ subg(Id), let A be a matrix of size d × d. There exists
c∗ > 0 such that for any t > 0

P
[
|Y TAY − E

[
Y TAY

]
| > |A|F

√
t+ |A|opt

]
6 2e−c∗t. (C.3)

Proof. A variation of the original Hanson-Wright inequality (Theorem 1.1 from [18]), it holds as
σ = 1 bounds the subgaussian norm |Y |Ψ2 := supx∈Sd−1

supp>1 p
−1/2(E |xTY |p)1/p, a consequence

of Lemma 5.5 from [20].

Lemma 9. Subgaussian quadratic forms
Let E,E′ be centered, independent random vectors, E ∼ subg(Σ), E′ ∼ subg(Σ′), then for t > 0

P
[
||E|22 − E |E|22| > |Σ|F

√
t+ |Σ|opt

]
6 2e−c∗t (C.4)

P
[
2|〈E,E′〉| >

√
2〈Σ,Σ′〉1/2

√
t+ |Σ1/2Σ′1/2|opt

]
6 2e−c∗t. (C.5)

Proof. For the first inequality, we use Lemma 8 with Y = Σ−1/2E and A = Σ. As for the second
inequality, by Lemma 7 we have Y = (ETΣ−1/2, E′TΣ′−1/2T )T ∼ subg(I2d). Then let us use
Lemma 8 with

A =

(
0 Σ1/2Σ′1/2

Σ′1/2
T

Σ1/2T 0

)
Notice that |A|2F = 2〈Σ,Σ′〉 and |A|op 6 |Σ1/2Σ′1/2|op so the results follow.

Proof of Lemma 1: concentration of random subgaussian Gram matrices.
Let W := EET − E[EET ]. Using the epsilon-net method as in Lemma 4.2 from [17], let N be a
1/4-net for Sn−1 such that |N | 6 9n (see Lemma 5.2 [20]), we have for u, v ∈ S2

n−1 : uTWv 6
maxx∈N x

TWv + 1
4 maxu∈Sn−1 u

TWv 6 maxx,y∈N 2 xTWy + 1
2 maxu,v∈S2n−1

uTWv hence

|W |op 6 2 max
x,y∈N 2

xTWy and P [|W |op > t] 6
∑

x,y∈N 2

P
[
xTWy > t/2

]
(C.6)
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Notice that this rewrites xTWy =
∑n

a=1

∑n
b=1 xa(E

T
a Eb − Γab)yb = (

∑n
a=1E

T
a xa)(

∑n
b=1E

T
b yb)

T −
E(
∑n

a=1E
T
a xa)(

∑n
b=1E

T
b yb)

T . For x, y ∈ N 2, let x ⊗ Σ1/2 := (x1Σ
1/2
1 , ..., xnΣ

1/2
n )T ∈ Rnp×p and

Y = (ET1 Σ
−1/2
1 , ..., ETnΣ

−1/2
n )T ∈ Rnp×1 (by Lemma 7 we have Y ∼ subg(Inp)). We have

xTWy = Y T (x⊗ Σ1/2)(y ⊗ Σ1/2)TY − E[Y T (x⊗ Σ1/2)(y ⊗ Σ1/2)TY ] (C.7)

Now define A := (x ⊗ Σ1/2)(y ⊗ Σ1/2)T : we have |A|op 6 maxa∈[n] |Σa|op because for z ∈ Rp,
|(x ⊗ Σ1/2)z|22 =

∑n
b=1 x

2
b |Σ

1/2
b z|22 6 maxa∈[n] |Σa|op|z|22 . As for the Frobenius norm, by Cauchy-

Schwarz: |(x⊗Σ1/2)(y⊗Σ1/2)T |2F =
∑n

a=1

∑n
b=1 x

2
ay

2
b |Σ

1/2
a Σ

1/2
b |

2
F 6 maxa∈[n] |Σa|2F . Therefore using

Lemma 8 on Y we have ∀t > 0 : P
[
|Y TAY − E

[
Y TAY

]
| > maxa∈[n] |Σa|F

√
t+ maxa∈[n] |Σa|opt

]
6

2e−ct. Hence in conjunction with (C.6) we conclude the proof.
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