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Estimation of the Multivariate Conditional-Tail-Expectation
for extreme risk levels: illustrations on environmental data-sets

Elena Di Bernardino1 , Clémentine Prieur2

Abstract

This paper deals with the problem of estimating the Multivariate version of the Conditional-Tail-
Expectation introduced in the bivariate framework in Di Bernardino et al. [16], and generalized in
Cousin and Di Bernardino [13]. We propose a new semi-parametric estimator for this risk measure,
essentially based on statistical extrapolation techniques, well designed for extreme risk levels. Following
Cai et al. [9], we prove a central limit theorem. We illustrate the practical properties of our estimator
on simulations. The performances of our new estimator are discussed and compared to the ones of
the empirical Kendall’s process based estimator, previously proposed in Di Bernardino and Prieur [17].
We conclude with two applications on real data-sets: rainfall measurements recorded at three stations
located in the south of Paris (France) and the analysis of strong wind gusts in the north west of France.

Keywords: Multivariate extreme value theory, multivariate risk measures, central limit theorem,
hydrological applications.

2000 MSC: 62H12, 62H05, 60G70.

Introduction

Multivariate risk-measures

Modeling and quantifying uncertainties related to extreme events is of main interest in environmental
sciences. In relation with oceanic and atmospheric domains, e.g., risk assessment is very important for
several concerns: hydrological extreme events, cyclonic intensity, storm surges, . . .

Most of the time, environmental risks involve several aleas which are often correlated. A flood, e.g.,
can be described by three main characteristics: the peak flow, the volume and the duration. As these
three quantities are correlated, it is important to define and to estimate the risk in a multivariate
setting. For the same reasons, the design of facilities installed alongside of rivers should be based on
multivariate extreme value analysis. In the case where the installation lies downstream the confluence
of two rivers, neglecting in the risk analysis the correlations between both rivers may lead to an over-
or under-estimation of the risk, involving either unnecessary costs or the construction of unsafe dams,
with potentially dramatic consequences.

The classical univariate frequency analysis in hydrology, and more generally in environmental sciences,
focuses on the estimation of the probably most popular risk measure: the return level. A return level
with a return period of T = 1/p years is a threshold zp whose probability of exceedance is p. It is also
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known in other communities as the Value-at Risk (VaR). An alternative, that takes into account the
intensity of an event above a given threshold, is the mean excess function which is defined as the mean
of this event given that it exceeds the threshold, i.e., E(X | X ≥ zp), with X the variable of interest
(flows, rainfall, temperature, . . . ). This measure is also known as the Conditional-Tail-Expectation
(CTE). On the opposite of VaR, it is a coherent risk measure according to Artzner et al. [2].

As already mentioned, it is often insufficient to consider a single real measure to quantify risks, especially
when the risk-problem is affected by other external risk factors whose sources cannot be controlled.
Note that moreover the evaluation of an individual risk may strongly be affected by the degree of
dependence amongst all risks and these risks may also be strongly heterogeneous. This is therefore
challenging for practitioners to estimate a multivariate return period and to select a specific design
event starting from multivariate dangerous hydrological situations. However, the notion of return
period in the multivariate setting is not univalent (see for instance Vandenberghe et al. [37]). From the
years 2000 onward, several approaches for the latter problem have evolved over the years, essentially
by proposing different multivariate risk measures, following the tendency of describing hydrological
phenomena with multiple variables. Recently, level-curves and level sets associated to the multivariate
risk vector have been proposed as risk measures in multivariate hydrological models because of their
many advantages: they are simple, intuitive, interpretable and probability-based (see Chebana and
Ouarda [11], de Haan and Huang [15]). Furthermore, as noticed by Embrechts and Puccetti [21], it
can be viewed as a natural multivariate version of the univariate quantile. The interested reader is also
referred to Tibiletti [35], Belzunce et al. [6], Nappo and Spizzichino [29].

Recently Cai et al. [9] introduced, in a financial setting, the Marginal Expected Shortfall (MES):

E[X |Y > QY (1− p) ], (1)

where X denotes the loss return on the equity of a financial institution, Y the loss return of the entire
market and QY the quantile function of Y . The MES in (1) is an important factor when measuring the
systemic risk of financial institutions and it can be considered as a bivariate version of the Conditional-
Tail-Expectation (CTE) presented above. Some other commonly used multivariate CTE measures, for
a d−dimensional vector of risks X = (X1, X2, . . . , Xd), are defined for i = 1, . . . , d as

E[Xi |S > QS(t) ], E[Xi |X(1) > QX(1)(t) ], E[Xi |X(d) > QX(d)(t) ], (2)

with S = X1 + · · · + Xd the total risk, X(1) = min{X1, . . . , Xd} and X(d) = max{X1, . . . , Xd} two
extreme risks (see for instance Cai and Li [8], Bargès et al. [4], Landsman and Valdez [27]).

Statistical inference. The problem of consistent estimation of the univariate quantile-based risk-measures
(VaR and CTE) has received attention in literature essentially in the univariate case. There are less
papers on the estimation of multivariate risk-measures, due to a number of theoretical and practical
reasons. In the recent literature, some efforts have been done to provide an estimation of the mul-
tivariate measures defined by (2) above (see, for instance, Hua and Joe [26], Asimit et al. [3]). In
Acharya et al. [1], an estimator for the MES defined in (1) is provided by assuming a specific linear
relationship between X and Y . A similar setting has been adopted in Brownlees and Engle [7], where
a nonparametric kernel estimator of the MES in (1) is proposed. Such a kernel estimation method,
however, performs well only if the risk level is not too high (i.e., the level p should be substantially
larger than 1/n, where n is the size of the considered sample). For a large nonparametric class of
bivariate distributions for (X,Y ), Cai et al. [9] construct an estimator of the risk measure in (1) and
they establish the asymptotic normality when p = p(n)→ 0, as the sample size n→∞.
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Considered multivariate Conditional-Tail-Expectation

In the following we deal with a version of the multivariate Conditional-Tail-Expectation, previously
proposed by Di Bernardino et al. [16] (see also Cousin and Di Bernardino [13], Di Bernardino and
Prieur [17]). Let I = {1, . . . , d}. It is constructed as the conditional expectation of a d−dimensional
vector of risks X = (X1, X2, . . . , Xd) following the distribution function F , given that the associated
multivariate probability integral transformation Z := F (X) is large. More precisely, for i ∈ I, we will
consider the multivariate Conditional-Tail-Expectation:

E[Xi |Z > QZ(1− p)], for p ∈ (0, 1), (3)

and p small enough. Then, we take the conditional expectation of X conditionally to the fact that it
belongs to the joint risk area {x ∈ Rd : F (x) ≥ 1− p}.

Remark that our measure is based on the Kendall’s distribution function K(t) = P[Z ≤ t], for t ∈ [0, 1].
For this reason, risk measure in (3) can be used for hydrological risk management in the same vein
of the multivariate RP in Salvadori et al. [33] and Salvadori et al. [32]. Furthermore, conversely to
risk measures in (2), the multivariate risk measure proposed in (3) is a non-aggregated risk measure.
Indeed, hydrological variables can be of different nature (e.g. precipitation, temperature, discharge,
. . . ), prohibiting the aggregation of the various components. For this reason, measure in (3) just
considers as conditioning extreme event the behavior of the copula associated to the d different risks
(for further details see Section 1). The interested reader is also referred to Cousin and Di Bernardino
[12, 13] for the study of the theoretical properties of the multivariate Conditional-Tail-Expectation in
(3).

Statistical inference for multivariate Conditional-Tail-Expectation in (3). Some consistent estimator of
the multivariate risk measure E[Xi |Z > t], for fixed t ∈ (0, 1), has been provided by Di Bernardino
et al. [16], who proposed a plug-in estimator based on the consistent estimation of the whole level
sets associated to the d−dimensional vector of risks X = (X1, X2, . . . , Xd). As the level sets are not
compact, their estimation procedure requires the choice of an increasing truncation sequence (Tn)n≥1.
The non-optimal rate of convergence provided by the authors depends on the rate of convergence of
(Tn)n≥1 to infinity. Making the “best choice” for (Tn)n≥1 is not trivial, and requires the knowledge of the
tail behavior of X, at least in its generic form. The interested reader is referred to Di Bernardino et al.
[16] for further details. Recently, Di Bernardino and Prieur [17] proposed a non-parametric estimator
for E[Xi |Z > t] based on the estimation of the Kendall’s process. For this estimator they provide
a functional central limit theorem without requiring the calibration of extra parameters or sequences.
However, in Di Bernardino and Prieur [17] a global good performance of the proposed estimator is
illustrated only for moderate to high (but not extreme) fixed risk levels t.

Conversely, risk analysts are frequently interested in extreme risk levels, (i.e. quantiles outside the
sample; see, e.g. Embrechts et al. [20]). For this reason, in the present paper, we will develop a
consistent estimation procedure to estimate the multivariate Conditional-Tail-Expectation defined in
Equation (3) for extreme risk levels (that is for p < 1/n, where n is the sample size). For each i ∈ I, the
approach for estimating E[Xi |Z > QZ(1−p)], is based on the bivariate estimation procedure proposed
in Cai et al. [9] for the estimation of the MES in (1). However, a main difference relies on the fact that
Z is a latent variable, which is not observed and has to be estimated. Under reasonable assumptions
on the right-upper tail dependence between Xi and Z, for i = 1, . . . , d (see, e.g., Genest and Rivest
[23]), we study the asymptotic properties of our plug-in estimator when p = p(n) decreases to zero as
the sample size n tends to infinity.
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Organization of the paper

The paper is organized as follows. In Section 1, we introduce some notation, tools and preliminary
assumptions. In Section 2.1, we propose our estimation procedure for the multivariate Conditional-Tail-
Expectation defined in (3), based on Extreme Value Theory. In Section 2.2 we establish the asymptotic
normality for the proposed semi-parametric estimator. The practical properties of our estimator are
further investigated, and compared to the ones of alternative empirical approaches, on simulated data-
sets in Section 3. Finally, in Section 4 we consider first a 3-dimensional rainfall real data-set, then a
wind data-set. Technical proofs and auxiliary results are postponed to Appendix.

1. Preliminaries and notation

Let N∗ = N \ {0}. Let X = (X1, X2, . . . , Xd) be a d−dimensional positive3 random vector with
distribution function F . Define Z = F (X) and the associated multivariate Kendall distribution function
K(t) = P[Z ≤ t], for t ∈ [0, 1]. For more details on the multivariate probability integral transformation
(or multivariate Kendall distribution), the interested reader is referred to Capéraà et al. [10], Genest
and Rivest [23], Nelsen et al. [31], Genest et al. [22] and Belzunce et al. [6].

As a consequence of Sklar’s Theorem, the Kendall distribution only depends on the dependence struc-
ture or the copula function C associated with X (see Sklar [34]). Thus, we also haveK(t) = P[C(V) ≤ t],
where V = (V1, . . . , Vd) with uniform marginals V1 = FX1(X1), . . . , Vd = FXd(Xd). The analytical for-
mulation of the Kendall distribution is in general not available. However, for the particular case of
multivariate Archimedean copulas, it can be derived explicitly (see Section 3).

Let UZ = ( 1
1−K )← be the tail quantile function of Z, where ← denotes the left-continuous inverse. In

this paper, for i ∈ I, we aim to estimate the quantity

θip := E[Xi |Z > UZ(1/p)] for p ∈ (0, 1),

on independent and identically distributed (i.i.d.) d−dimensional observations, (Xj)j∈I from F , for
small values of p in a sense detailed below.

In the whole paper we will suppose that, for all (x, z) ∈ [0,∞]2 \ {(∞,∞)}, and for all i ∈ I, the
following limits exist:

lim
t→∞

tP
[
1− Fi(Xi) ≤ x

t
, 1−K(Z) ≤ z

t

]
:= R(Xi,Z)(x, z). (4)

For i ∈ I, the function R(Xi,Z) completely determines the so-called stable tail dependence function
l(Xi,Z), as for all x, z ≥ 0,

l(Xi,Z)(x, z) = x+ z −R(Xi,Z)(x, z),

(see, e.g., Drees and Huang [18], Beirlant et al. [5]; Chapter 8.2).
Furthermore, for the marginal distribution Fi we assume that Xi follows a distribution with a heavy
right tail, i.e., there exists γi > 0 such that for all x > 0,

lim
t→∞

Ui(tx)

Ui(t)
= xγ

i
, (5)

3In the following, we restrict ourselves to Rd+. This choice is motivated essentially by our applications in environmental
risk theory, where random variables consist in rainfall measurements (in mm), thus defined on a positive support. However
the results in this paper can be adapted also in Rd.
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where Ui = ( 1
1−Fi )

←, for i ∈ I γi is the extreme value index associated to Fi.

We now introduce different Gaussian processes that will be useful in the following to state the asymptotic
normality for the estimator of θip. Let i ∈ I. Let WR be a zero mean Gaussian process on [0,∞]2 \
{(∞,∞)} with covariance structure

E[WR(Xi,Z)
(x1, z1)WR(Xi,Z)

(x2, z2)] = R(Xi,Z)(x1 ∧ x2, z1 ∧ z2).

Let

Θi = (γi − 1)WR(Xi,Z)
(∞, 1) +

(∫ ∞
0

R(Xi,Z)(s, 1) ds−γ
i

)−1 ∫ ∞
0

WR(Xi,Z)
(s, 1) ds−γ

i
, (6)

and, for q ∈ (0,+∞),

Γi(q) =
γi
√
q

(
−WR(Xi,Z)

(q,∞) +

∫ q

0
s−1WR(Xi,Z)

(s,∞)ds

)
. (7)

For q = 0 or q = +∞, Γi(q) is a N(0, γi
2
) random variable independent of WR.

2. Main results

2.1. Estimation procedure

Let n1 and n2 ∈ N∗ and the sample size n := n1 + n2. We consider (Xj)j∈I a d−dimensional i.i.d.
sample of X. For all t ∈ Rd+ we define the d−dimensional empirical distribution function of X based
on n2 observations of this sample as,

Fn2(t) =
1

n2

n1+n2∑
j=n1+1

1{Xj ≤ t}.

For all j = 1, . . . , n1 we define Zj = F (Xj) and Z̃j = Fn2(Xj).

Following classical extrapolation techniques of EVT, we construct an estimator of θip, for i ∈ I, by a
two-stage approach. Let k = k(n1) be an intermediate sequence of integers which satisfies k →∞ and
k/n1 → 0, as n1 →∞. Firstly, we consider the estimation of θik

n1

, i.e. the Conditional-Tail-Expectation

at an intermediate (not extreme) probability level k
n1

. We can estimate non-parametrically θik
n1

by

taking the empirical average of the Xi of those selected observations:

θ̂ik
n1
,n2

=
1

k

n1∑
j=1

Xi
j 1{Z̃j >Z̃n1−k,n1}

, (8)

where Z̃n1−k,n1 is the (n1 − k)-th order statistic of Z̃1, . . . , Z̃n1 .

Secondly, using an extrapolation method based on Equation (4), Proposition 1 in Cai et al. [9] applied
to the bivariate vector (Xi, Z) and a second order strengthening of Equation (5) (see Assumption (b)
below), we have that, for n1 →∞,

θip ∼
Ui(1/p)

Ui(n1/k)
θik
n1

∼
(

k

n1 p

)γi
θik
n1

. (9)
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In order to apply the asymptotic approximation in Equation (9), we need to estimate the tail index γi.
To this aim, we will consider the Hill estimator (see Hill [25]), i.e.

γ̂i =
1

ki

ki∑
j=1

ln(Xi
n1−j+1,n1

)− ln(Xi
n1−ki,n1

), (10)

where ki = ki(n1) is an intermediate sequence of integers and Xi
j,n1

, for j = 1, . . . , n1, is the j-th order

statistic of Xi
1, . . . , X

i
n1

.
Finally, using Equations (8), (9) and (10), we estimate θip by

θ̂ip(n1),n2
=

(
k

n1 p

)γ̂i
θ̂ik
n1
,n2
. (11)

The asymptotic normality of our estimator is stated in Theorem 2.1 below, for n1, n2 →∞. The limit
process can be written as a combination of both processes Θi and Γi(q) (see Equations (6) and (7)).
In particular, the process Θi plays a central role in Proposition 2.1 which describes the asymptotic
behavior of θ̂ik

n1
,n2

. The process Γi(q) is related to the asymptotic behavior of γ̂i.

To conclude this section, we remark that the split-up of the data in two samples of sizes n1 and n2,
respectively, seems artificial. One would like to consider the estimator

θ̌ik
n

=
1

k

n∑
j=1

Xi
j 1{Ẑj >Ẑn−k,n}, (12)

where Ẑn−k,n is the (n − k)-th order statistic of Ẑ1, . . . , Ẑn, with for j = 1, . . . , n and Ẑj = Fn(Xj).
However, the theoretical study of its asymptotic properties still remains an open issue, even with the
knowledge of recent studies such as the one in [36].

2.2. Asymptotic normality

In this section we characterize the limit distribution of θ̂ip(n1),n2
in Equation (11). The proof of our

main result, i.e., Theorem 2.1 below, requires the following conditions:

(a.1) There exist β > maxi∈I γ
i and τ < 0 such that, for any i ∈ I, as t→∞,

sup
{0<x<∞, 1/2≤ z≤2}

∣∣tP [1− Fi(Xi) ≤ x
t , 1−K(Z) ≤ z

t

]
−R(Xi,Z)(x, z)

∣∣
xβ ∧ 1

= O(tτ ).

(a.2) The Kendall distribution function K(t), t ∈ [0, 1] of Z = F (X) admits a continuous density K
′
(t)

on (0, 1].

(a.3) There exist p0 < 1
maxi∈I γi

, 1/p0 + 1/q0 = 1 and ε > 0 such that

sup{ n1√
k
n
−1+ε

2
2 ,

√
n1

(
k
n1

) 1
p0
− 1

2
n
−1+ε
2q0

2 } → 0, as n1 →∞ and n2 →∞.

(b) For i ∈ I, there exist ρi < 0 and an eventually positive or negative function Ai such that as
t→∞, Ai(t x)/Ai(t)→ xρi for all x > 0 and

sup
x>1
|x−γi Ui(t x)

Ui(t)
− 1| = O(Ai(t)).
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(c) For i ∈ I, as n1 → ∞,
√
kiAi(n1/ki) → 0, where ki(n1) is the intermediate sequence of integers

in Equation (10).

(d) For i ∈ I, as n1 → ∞, k = O(nα1 ) for some α < min
(
−2 τ
−2 τ+1 ,

2 γi ρi
2 γi ρi+ρi−1

)
, where k(n1) is the

intermediate sequence of integers in Equation (8).

Under assumptions presented above, we now introduce the central limit theorem for our estimator θ̂ip(n1),n2
.

Theorem 2.1 Let i ∈ I and p = p(n1) → 0, for n1 → ∞. Assume that Assumptions (a.1)-(d) hold

true and γi ∈ (0, 1/2). Assume dn1 := k
n1 p
≥ 1, r := limn1→∞

√
k ln(dn1 )√

ki
∈ [0,+∞] and q = limn→∞

ki
k ∈

[0,+∞]. If limn1→∞
ln(dn1 )√

ki
= 0, then for n1, n2 →∞,

vn1

(
θ̂ip(n1),n2

θip(n1)

− 1

)
→
{

Θi + r Γi(q), if r ≤ 1,
1
r Θi + Γi(q), if r > 1,

(13)

where vn1 = min(
√
k,

√
ki

ln(dn1 )
), and for q ∈ (0,+∞), Var(Θi) = ((γi)2 − 1)− b2

∫∞
0 R(Xi,Z)(s, 1) ds−2 γ

i
,

Var(Γi(q)) = (γi)2, Cov(Γi(q),Θi) = γi√
q (1−γi+ b

qγi )R(Xi,Z)(q, 1)− γi(1−γi)b√
q

∫ q
0 R(Xi,Z)(s, 1)s−1−γids−

γi(1−γi)√
q

∫ q
0 R(Xi,Z)(s, 1)s−1ds−γi

2
b√
q

∫ q
0 R(Xi,Z)(s, 1) ln( qs) s−1−γids, with b =

(∫∞
0 R(Xi,Z)(s, 1) ds−γ

i
)−1

.

Remark 1 We now comment Assumptions (a.1), (a.2), (a.3), (b), (c) and (d) introduced above.

- Assumption (a.1) is a second order strengthening of the condition in (4) (see also Condition (7.2.8)
in de Haan and Ferreira [14]). It is classically required in EVT to derive central limit theorems.
Note that this second order assumption is required on the bivariate vectors (Xi, Z), for i ∈ I.
Moreover, the constants β and τ do not depend on i ∈ I.

- Assumption (a.2) is a regularity assumption on the Kendall density K
′
(t). Note that this

assumption is satisfied for a large class of multivariate distributions, as the class of Archimedean
copulas, bivariate extreme copulas, Farlie-Gumbel-Morgenstern class of distributions.

- Assumption (a.3) describes the relationship between the sample sizes n1 and n2 (see Proposi-
tion A.1).

- Assumption (b) is a second order strengthening of the tail behaviour condition for Xi in Equation
(5) (see also Condition (3.2.4) in de Haan and Ferreira [14]).

- Assumptions (c) and (d) deal with the intermediate sequences ki and k respectively (see also Cai
et al. [9]).

The proof of Theorem 2.1 above is mainly based on arguments in de Haan and Ferreira [14], Cai et al.
[9], as far as on Proposition 2.1 below, whose proof is postponed to Appendix for sake of clarity.

Proposition 2.1 Let i ∈ I. Under conditions of Theorem 2.1, we get for n1, n2 →∞,

√
k

 θ̂ikn1 ,n2

θik
n1

− 1

 P→ Θi,

where Θi is defined in Equation (6).
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The proof of Proposition 2.1 is postponed to Appendix.

Proof of Theorem 2.1: We write

θ̂ip(n1),n2

θip(n1)

=
dγ̂

i

n1

dγ
i

n1

×
θ̂ik
n1
,n2

θik
n1

×
dγ

i

n1 θ
i
k
n1

θip(n1)

:= Ln1
1 × L

n1,n2
2 × Ln1

3 .

We now analyse these three factors separately.
Under Assumptions (b) and (c), since Ln1

1 does not depend on n2 then, as in the proof of Theorem
4.3.8 in de Haan and Ferreira [14], we get for n1 →∞,

√
ki

ln(dn1)
(Ln1

1 − 1)− Γi(q)
P→ 0, (14)

where Γi(q) is defined in Equation (7).
The asymptotic behaviour of Ln1,n2

2 , for n1, n2 →∞ is stated in Proposition 2.1 above.
Finally for Ln1

3 , by Equations (4), (5), and their second order strengthening given by Assumptions (b)
and (d), we know from the proof of Theorem 1 in Cai et al. [9] that

Ln1
3 = 1 + o

(
1√
k

)
. (15)

Now, combining (14), (15) and Proposition 2.1 we obtain the convergence result of Theorem 2.1, where
the covariance matrix of (Θi, Γi(q)) follows from straightforward computation. �

Remark 2 (Asymptotic independence and range of γi) We discuss here two problematic points
in the assumptions of our main result (see Theorem 2.1).

1. Assumption (a.1) excludes asymptotic independence, i.e., the case R(Xi,Z) ≡ 0. However, the
robustness with respect to this assumption will be illustrated by an example in Section 3.

2. Let i ∈ I. The assumption γi ∈ (0, 1/2) is necessary for Theorem 2.1, i.e., the result does not
hold true when γi = 1/2 (see proof of Proposition A.2). For the consistency of θ̂ip(n1),n2

this

assumption can be relaxed to γi ∈ (0, 1). Indeed, if we assume that (Xi, Z) satisfies condition in

(4) and (b), R
(Xi, Z̃)

(1, 1) > 0, limn1→∞
log(dn1 )√

ki
= 0 and γi ∈ (0, 1), then

θ̂ip(n1),n2

θip(n1)

P→ 1,

for n1, n2 →∞. To illustrate this situation, in our simulation study we provide an example with
γi 6∈ (0, 1/2) (see Section 3).

3. Simulation Study

In this section, a simulation and comparison study is implemented to investigate the finite sample
performance of our estimator of the multivariate Conditional-Tail-Expectation in (11). We focus in the
following on different 2-dimensional distribution functions. Note that in Section 4 we will provide a
multivariate analysis for a real data-set in larger dimensions.
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To illustrate the finite sample properties of our estimator, we draw 500 samples from each considered
distribution. Based on each sample, we estimate θip(n1)

for different values of n1 and p(n1). We present

the boxplots of the ratio between the estimates and the true values, i.e., θ̂ip(n1),n2
/θip(n1)

.

The asymptotic normality proved in Theorem 2.1, will be also investigated. For r < ∞, Theorem 2.1
can be expressed as

√
k

(
θ̂i
p(n1),n2

θi
p(n1)

− 1

)
→ Θi + r Γi(q),

for n1, n2 → ∞. Notice that the limit distribution is a centered normal distribution. Let (σip)
2 :=

1
k Var(Θi+ r Γi(q)). Then, we compare using Q-Q plots, the distribution of 1

σip
ln
(
θ̂ip(n1),n2

/θip(n1)

)
with

the limit distribution N(0, 1). Specific values for k(n1) and ki(n1) are chosen for each sample size n1,
accordingly to a selection procedure similar to that described in the real data application (see Section
4).

Finally in this section, we compare the performance of our estimator with the empirical one, i.e.,

θ̂ip,emp =
1

bn pc

n∑
j=1

Xi
j 1{Z̃j>Z̃n−bn pc,n}

, (16)

with Z̃j = Fn(Xj) and Z̃n−k,n the associated order statistic. Remark that this estimator is the empirical
counterpart of θip.

We also investigate the performance of the proposed estimator when assumptions required in Theorem
2.1 are partially violated (see Section 3.3) and we analyse the performance estimation for some choices
of sample sizes n1 and n2.

3.1. Copula 4.2.2 in Nelsen [30]

We assume that the bivariate vector (X1, X2) follows Copula 4.2.2 in Nelsen [30]. In this case we have

C(X1,X2)(s, t) = 1 − ((1 − s)θ + (1 − t)θ)
1
θ , for θ ∈ [1,+∞). When θ = 1, CX1,X2 = W (i.e., counter-

monotonicity copula), when θ = +∞, CX1,X2 = M (i.e., comonotonicity copula). Furthermore, for
θ > 1, we have

R(X1,Z)(x, z) =

 z, if x ≥ θz
θ−1

x− xθ

θθ( z
θ−1)

θ−1 , if x < θz
θ−1 .

(17)

Assume now that θ = 2. In this case R(X1,Z)(1, 1) = 0.75. Thus the vector (X1, Z) presents an
asymptotic dependence structure. Furthermore X1 and X2 have marginal Pareto distributions with
parameter 3, i.e., the tail index is γ1 = γ2 = 1/3 and ρ1 = ρ2 = −1 (see Assumption (b) in Section 2.2).
Remark that ∀ θ ∈ (1,+∞), R(Xi,Z) in (17) satisfy Assumption (a.1) in Section 2.2, for any β > γ1 and
any τ < 0.

In Figures 1 and 2 show the quality of our estimator for different values of risk level p and sample size
n (i.e., n1 + n2) both in terms of boxplots and of QQ-plots on 500 Monte-Carlo simulations.
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Figure 1: Copula 4.2.2 in Nelsen [30] with parameter θ = 2 and Pareto marginals. Here we take 500 Monte-Carlo
simulations and different values of sample sizes n1 and n2 and risk level p. First row: p = 1/4n1 = 1/2n;
second row: p = 1/10n1 = 1/5n. First column: n1 = 50, n2 = 50; second column: n1 = 250, n2 = 250;
third column: n1 = 750, n2 = 750.
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Figure 2: Copula 4.2.2 in Nelsen [30] with parameter θ = 2 and Pareto marginals. Here we take 500 Monte-Carlo
simulations and different values of sample sizes n1 and n2 and risk level p. First row: p = 1/4n1 = 1/2n;
second row: p = 1/10n1 = 1/5n. First column: n1 = 50, n2 = 50; second column: n1 = 250, n2 = 250;
third column: n1 = 750, n2 = 750.
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Comparison with the empirical estimator. In the following, we compare the performance of the presen-
ted estimator with the Kendall process based one, i.e., θ̂ip,emp in Equation (16). Clearly, θ̂ip,emp is not
applicable when np < 1 and is not expected to perform well if np is “too small” (the reader is also
referred to Di Bernardino and Prieur [17]). Results are gathered in Figure 3. We remark that the
empirical estimator θ̂ip,emp underestimates the multivariate CTE and is consistently outperformed by

the proposed EVT estimator θ̂ip(n1),n2
.
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Figure 3: Copula 4.2.2 in Nelsen [30] with parameter θ = 2 and Pareto marginals. Here we consider 500 Monte-
Carlo simulations, different values of sample sizes n1 and n2 and p = 1/2n1 = 1/n.

Some choices for n1 and n2. We analyse the performance of our estimator for different choices of the
sample sizes n1 and n2. In Figure 4, we consider the boxplots of ratios between estimates and true
values for fixed values of n1 and n2 varying in a range. We take n1 = 250 (Figure 4, left panel) and
n1 = 50 (Figure 4, right panel). We remark that n2 can be chosen particularly much smaller than
n1. Indeed, we see that with n2 = 15 (resp. n2 = 10), our estimator has only a very small bias.
Furthermore, the part of the bias due to the discrepancy between Z and Z̃, reduces quickly with n2.
The second remark is that, as expected, the variance in the estimation reduces with n1.

A similar simulation study is developed for Copula 4.2.15 in Nelsen [30]. The results are completely
analogous to those gathered in this section, then for sake of brevity, they are omitted.
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Figure 4: Copula 4.2.2 in Nelsen [30] with parameter θ = 2 and Pareto marginals with γ1 = γ2 = 1/3. Boxplots
of ratios of estimates and true values, with 500 Monte Carlo samples for risk level p = 1/12n1, n1 = 250 and
n2 ∈ [2, 800] (left panel); p = 1/10n1, n1 = 50 and n2 ∈ [2, 20] (right panel). We take the auxiliary sequences
k = 100 and ki = 150 (left panel); k = 30 and ki = 35 (right panel).
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3.2. Not-Archimedean example: HRT Copula

Let us consider the HRT copula (also called Clayton survival copula in the insurance and finance
literature), i.e.,

C(u, v) = u+ v − 1 + ((1− u)−1/θ + (1− v)−1/θ − 1)−θ, for θ > 0.

This copula has low correlation in the left tail but high correlation in the right one, i.e. for large losses.
The HRT copula is not an Archimedean copula. It was invented by Gary Venter in 2001 to model the
dependence on events of strong intensity (see, e.g., Section 3.8 in Gorge [24]).
Notice that in this case, we can not use the Archimedean generator in order to write the Kendall
distribution K(t). However, Assumptions (a.1) and (a.2) in Theorem 2.1 can be at least empirically
accepted in this HRT copula setting.

We consider here Pareto marginal distributions with γ1 = γ2 = 1/4. We draw 500 samples from this
distribution with sample sizes n1 = n2 = 750, 250, 50. Based on each sample, we estimate θip(n1)

for

p = 1/10n1 = 1/5n. Results are gathered in Figure 5 where we present boxplots of the ratio of the
estimates and the true values and associated Q-Q plots in order to illustrate the good finite sample
performance of our estimator.
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Figure 5: HRT copula with parameter θ = 1 and Pareto marginals. Here we take 500 Monte-Carlo simulations
and p = 1/10n1 = 1/5n. First column: n1 = n2 = 750; second column: n1 = n2 = 250; third column:
n1 = n2 = 50.

3.3. Estimation when our assumptions are partially violated

In the last part of this section, we investigate the performance of our estimator when assumptions of
Theorem 2.1 are partially violated. Firstly, we consider (X1, X2) with Copula 4.2.2 in Nelsen [30] (see
Section 3.1) with parameter θ = 2 and Pareto marginals with γ1 = γ2 = 1/2. In this case, the estimator
θ̂ip(n1),n2

is still consistent (see Remark 2). Results are gathered in Figure 6, where we present boxplots

of the ratio of the estimates and the true values θip(n1)
for n1 = 750, n2 = 750 and p = 1/2n1 (left

panel), p = 1/4n1 (central panel), p = 1/10n1 (right panel).
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Figure 6: Copula 4.2.2 in Nelsen [30] with parameter θ = 2 and Pareto marginals with γ1 = γ2 = 1/2. Here we
take n1 = 750, n2 = 750 and 500 Monte-Carlo simulations. Left panel p = 1/2n1; center panel p = 1/4n1; right
panel p = 1/10n1.

Secondly, we consider the asymptotically independent bivariate distribution defined by an Independent
copula and Pareto distributed marginals with γ1 = γ2 = 1/4. Notice that R(Xi,Z) ≡ 0, then this
distribution does not satisfy Assumption (a.1) in Theorem 2.1. In this case, the proposed EVT estim-
ator overestimates the theoretical multivariate Conditional-Tail-Expectation θip(n1)

(see Figure 7; for a

similar behavior the reader is also referred to Figure 3 in Cai et al. [9]).
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Figure 7: Independent copula and Pareto distributed marginals. Here we take n1 = n2 = 750 and 500 Monte-Carlo
simulations. Left panel p = 1/n1; center panel p = 1/2n1; right panel p = 1/4n1.

4. Applications to environmental real data

Analysis of rainfall measurements
In this first real application we consider the monthly mean of the rainfall measurements recorded in 3
different stations of the region Bièvre, located in the south of Paris (France), from 2003 to 2013 (see also
Di Bernardino and Prieur [17]). This data-set was provided by the SIAVB (Syndicat Intercommunal
pour l’Assainissement de la Valle de la Bièvre, http://www.siavb.fr/). The unit of measurements is
mm. The temporal series of monthly mean data are denoted by X1 at Station 1, X2 at Station 2 and
X3 at Station 3. The length of the data-set is n = 125. We take in the following n1 = 63, n2 = 62,
so that n = n1 + n2. Recall that our estimation of the risk measure θip is based on independent and
identically distributed d−dimensional observations. Di Bernardino and Prieur [17] illustrated the reas-
onability of the temporal independence assumption for this data set.

The 3−dimensional data-set is represented in Figure 8 (left). We apply our estimation procedure to es-
timate the multivariate CTE, i.e., θip = E[Xi |Z > UZ(1−p)], where i = 1, 2, 3 and Z = F (X1, X2, X3).
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Figure 8: Left: Scatterplot of considered 3−dimensional mean monthly rainfall data-set. Right: Hill estimates γ̂i in
Equation (10) for i = 1, 2, 3. Horizontal line represents the upper-bound of 1/2.

Before applying our estimation procedure, let us validate some of the required assumptions. First of all,
remark that r.vs. Xi, for i = 1, 2, 3, take positive values. For the assumption γi < 1/2, for i = 1, 2, 3,
we plot the Hill estimations γ̂i against various values of the intermediate sequence of integers ki (see
Figure 8, right). A usual practice to choose ki, for each i = 1, 2, 3, is then to select a range corres-
ponding to the first stable region of this plot. Here we choose ki ∈ [7, 17] for the first station (i.e., X1)
and ki ∈ [20, 40] for the second and third stations (i.e., X2 and X3). Then, to gain in stability, we
average the estimations γ̂i corresponding to ki in the selected range. The results are reported in Table 1.

Furthermore, we check the asymptotic dependence between (Xi, Z̃), for i ∈ {1, 2, 3} (see Remark 2),
by depicting in Figure 9 (left) the estimated tail dependence coefficient

R̂
(Xi,Z̃)

(1, 1) = 1
k

∑n1
j=1 1{Xi

j >X
i
n1−bkc,n1

, Z̃j >Z̃n1−bkc,n1}
,

where Z̃j = Fn2(Xj), for j = 1, . . . , n1 and b·c denotes the integer part. Figure 9 (left) shows that the
estimations are stable around the value 0.8, for i ∈ {1, 2, 3}. This strongly indicates that right-upper
asymptotic dependence is present in this 3-dimensional real data-set.

Using the values γ̂i gathered in Table 1, we estimate the Multivariate CTE and also plot the estimates
against various values of the intermediate sequence k. Obtained results are gathered in Figure 9 (right).
Following the same idea on balancing bias and variance, we choose k ∈ [20, 45]. The final estimates
based on averaging the estimates from this region are reported in Table 1 for different values of the risk
level p = p(n1).

Values gathered in Table 1 represent the averaged monthly precipitations with return period of around
10 years (for p = 1/2n1), 21 years (for p = 1/4n1), 52 years (for p = 1/10n1). We remark an import-
ant contribution of the second and third stations (i.e., X2 and X3) which strongly contribute to the
multivariate stress scenario represented here by the event {Z > UZ(1/p)} (or equivalently by the event
{(X1, X2, X3) belong to their multivariate upper level set at risk level UZ(1/p)}), for small values of
risk level p.
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Figure 9: Left: R̂(Xi,Z̃)(1, 1) in term of k for the 3−dimensional mean monthly rainfall data-set, for i = 1, 2, 3. Right:
Estimated multivariate CTE against various values of the intermediate sequence k, for i = 1, 2, 3 and for different values
of risk level p. Full line corresponds to Station 1, dotted to Station 2 and dashed-dotted to Station 3.

Station i γ̂i θ̂ip=1/(2n1),n2
θ̂ip=1/(4n1),n2

θ̂ip=1/(10n1),n2

1 0.259 65.579 78.524 99.637

2 0.363 108.782 139.964 195.307

3 0.359 105.331 135.133 187.845

Table 1: The estimates γ̂i are computed by taking the average for ki ∈ [7, 17] for the first station (i.e., X1) and ki ∈ [20, 40]
for the second and third stations (i.e., X2 and X3). The estimates of the multivariate CTE are based on these values of

γ̂i. We report the average of θ̂ip(n1),n2
for k ∈ [20, 45] and for different values of p(n1).

Analysis of high wind gusts
In this second real data application we focus on the study of strong wind gusts. We consider the 2
weeks-max wind speed (WS) in meter per second (m/s), wind gust (WG) in m/s and positive increment
air pressure (IP) at the sea level in millibar (mbar) recorded in Parcay-Meslay city in the north west
of France, from July 2004 to July 2013 (see Figure 10, left). The length of the data-set is n = 232.
We take in the following n1 = n2 = 116. This data set comes down from a large data-set previously
analysed in Marcon et al. [28].

Remark that this 3-dimensional data-set is composed by hydrological variables of different nature pro-
hibiting the aggregation of the various components. However, in this situation, our multivariate CTE
measure can be useful since it just considers as conditioning extreme event the behavior of the copula
associated to the 3 different risk variables (see discussion in the Introduction section).

As illustrated before, we firstly study the Hill estimator against various values of the intermediate
sequence of integers ki for these 3 positive series (see Figure 10, right). Here we choose ki ∈ [10, 60]
for WS and WG (i.e., i = 1, 2) and k3 ∈ [10, 40] for IP. Then, to gain in stability, we average the
estimations γ̂i corresponding to ki in the selected range. The results are reported in Table 2.

Then we analyse the asymptotic dependence between (WS, Z̃), (WG, Z̃) and (IP, Z̃) (see Remark 2), by
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Figure 10: Left: Scatterplot of considered 3−dimensional wind gusts data-set. Right: Hill estimates γ̂i in Equation (10).
Horizontal line represents the upper-bound of 1/2.

using the estimated tail dependence coefficient R̂(1, 1), Figure 11 (left) shows that the estimations are
stable around the value 0.8. This strongly indicates that right-upper asymptotic dependence is present
in this wind gusts data-set. Using the values γ̂i gathered in Table 2, we estimate the Multivariate CTE
and also plot the estimates against various values of the intermediate sequence k (see Figure 11, right).
Following the same idea on balancing bias and variance, we choose k ∈ [40, 80]. The final estimates
based on averaging the estimates from this region are reported in Table 2 for different values of the risk
level p = p(n1).
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Figure 11: Left: R̂(1, 1) in term of k for the 3−dimensional wind gusts data-set, for i = 1, 2, 3. Right: Estimated
multivariate CTE against various values of the intermediate sequence k and for different values of risk level p. Full line
corresponds to WS, dotted line to WG and dashed-dotted one to IP.
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Variables γ̂i θ̂ip=1/(2n1),n2
θ̂ip=1/(4n1),n2

θ̂ip=1/(10n1),n2

WS 0.174 18.927 21.346 25.024

WG 0.204 39.127 45.056 54.295

IP 0.246 32.323 38.347 48.067

Table 2: The estimates γ̂i are computed by taking the average for ki ∈ [10, 60] for i = 1, 2 (i.e., WS and WG) and
k3 ∈ [10, 40] (i.e., for IP). The estimates of the multivariate CTE are based on these values of γ̂i. We report the average

of θ̂ip(n1),n2
for k ∈ [40, 80] and for different values of p(n1).

A. Technical proofs and auxiliary results

This appendix is devoted to the proof of Proposition 2.1 stated in Section 2. This proof requires
different preliminary results, introduced and proved below.

Proposition A.1 Let en1,n2 := n1
k (1 −K(Z̃n1−k,n1)), with k = k(n1), Z̃n1−k,n1 the (n1 − k)-th order

statistic of Z̃1, . . . , Z̃n1 and Z̃j = Fn2(Xj). Under Assumptions (a.2) and (a.3), en1,n2

P→ 1, as n1, n2 →
∞.

Proof: Applying the d-dimensional extension of Kolmogorov-Smirnov Theorem and the properties of
ordered statistics, we know that, for all ε > 0∣∣∣Zn1−k,n1 − Z̃n1−k,n1

∣∣∣ = |(F (X))n1−k,n1 − (Fn2(X))n1−k,n1 | = o(
√
n2
−1+ε), (A.1)

where the ordered statistics are defined from the samples (Zj)j=1,...,n1 = (F (Xj))j=1,...,n1
and (Z̃j)j=1,...,n1 =

(Fn2(Xj))j=1,...,n1
. Then we write

|en1,n2 − 1| ≤
∣∣n1
k (1−K(Zn1−k,n1))− 1

∣∣+
∣∣∣n1
k (K(Zn1−k,n1)−K(Z̃n1−k,n1))

∣∣∣ .
Since 1 − K(Zn1−k,n1) is the k−th order statistic of a random sample of size n1 from the standard

uniform distribution, we get
∣∣n1
k (1−K(Zn1−k,n1))− 1

∣∣ P→ 0.
We now study the second term. From Assumption (a.2), by applying a first-order Taylor approximation
we get∣∣∣n1
k

(K(Zn1−k,n1)−K(Z̃n1−k,n1))
∣∣∣ =

n1
k
K
′
(Zn1−k,n1)

∣∣∣(Z̃n1−k,n1 − Zn1−k,n1) + oP(Z̃n1−k,n1 − Zn1−k,n1)
∣∣∣ .

(A.2)
Since, K(Zn1−k,n1) ∼ 1− k

n1
in probability, for n1 →∞, then, from Assumption (a.2), K

′
(Zn1−k,n1) =

K
′
(K−1(K(Zn1−k,n1))) is bounded for large value of n1. Then, by using (A.1) and (A.2),∣∣∣n1

k
(K(Zn1−k,n1)−K(Z̃n1−k,n1))

∣∣∣ = o

(
n1
k
n
−1+ε

2
2

)
,

which tends to zero as n1 and n2 tend to infinity from Assumption (a.3). Hence the result. �

Lemma A.1 below is a variation of Lemma 1 in Cai et al. [9] in our setting. The interested reader
is also referred to Proposition 3.1 in Einmahl et al. [19]. The limit process is characterized by the
aforementioned WR-process. For convenient presentation, all the limit processes that are involved in
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Lemma A.1 are defined on the same probability space, via the Skorohod construction. However, they
are only equal in distribution to the original processes.

Define, for i ∈ I,

Rin1
(x, z) :=

n1
k

P
[
1− Fi(Xi) <

k x

n1
, 1−K(Z) <

k z

n1

]
. (A.3)

A non-parametric pseudo-estimator of Rin1
(with unknown margins) is given by

T in1,n2
(x, z) :=

1

k

n1∑
j=1

1{1−Fi(Xi
j)<

k x
n1
, 1−K(Z̃j)<

k z
n1
}, (A.4)

where Z̃j = Fn2(Xj). Its asymptotic behavior is stated in Lemma A.1 below.

Lemma A.1 Let i ∈ I. Suppose that condition in (4) and Assumptions (a.2) and (a.3) hold true. Let
T > 0 and η ∈ (maxi∈I γ

i, 1/2). Then, with probability 1, for n1, n2 →∞,

sup
x, z∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(x, z)−Rin1
(x, z))−WR(Xi,Z)

(x, z)

xη

∣∣∣∣∣ → 0,

sup
x∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(x,∞)− x)−WR(Xi,Z)
(x,∞)

xη

∣∣∣∣∣ → 0,

sup
z∈(0,T ]

∣∣∣∣∣
√
k (T in1,n2

(∞, z)− z)−WR(Xi,Z)
(∞, z)

zη

∣∣∣∣∣ → 0,

where Rin1
(x, z) and T in1,n2

(x, z) are defined by (A.3) and (A.4) respectively.

Proof: Let us write
T in1,n2

(x, z) = T in1
(x, z) + T in1,n2

(x, z)− T in1
(x, z),

with T in1
(x, z) := 1

k

∑n1
j=1 1{1−Fi(Xi

j)<
k x
n1
, 1−K(Zj)<

k z
n1
} and Zj = F (Xj). Remark that, by using Lemma

1 in Cai et al. [9], Lemma A.1 above holds true by replacing T in1,n2
(x, z) by T in1

(x, z), T in1,n2
(x,∞) by

T in1
(x,∞) and T in1,n2

(∞, z) by T in1
(∞, z).

Let us thus study the term

Di
n1,n2

(x, z) :=
√
k
(
T in1,n2

(x, z)− T in1
(x, z)

)
= 1√

k

∑n1
j=1

(
1{1−Fi(Xi

j)<
k x
n1
, 1−K(Z̃j)<

k z
n1
} − 1{1−Fi(Xi

j)<
k x
n1
, 1−K(Zj)<

k z
n1
}

)
= 1

n1

∑n1
j=1 Ln1,n2,k,j ,

with

Ln1,n2,k,j =
n1√
k

(
1{1−Fi(Xi

j)<
k x
n1
, 1−K(Z̃j)<

k z
n1
} − 1{1−Fi(Xi

j)<
k x
n1
, 1−K(Zj)<

k z
n1
}

)
.

One can deduce that, under Assumptions (a.2) and (a.3),

1

n1

n1∑
j=1

(Ln1,n2,k,j − E (Ln1,n2,k,j))
a.s−−−→
n1,n2

0. (A.5)
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Thus, we now focus on 1
n1

∑n1
j=1 E (Ln1,n2,k,j). Using Hölder’s Inequality, we get:∣∣∣∣∣∣ 1

n1

n1∑
j=1

E (Ln1,n2,k,j)

∣∣∣∣∣∣ ≤ n1√
k

(
P
[
Fi(X

i
j) > 1− k x

n1

])1/p

·

·
(
E
[∣∣1

1−K(Z̃j)<
kz
n1
,1−K(Zj)≥ kzn1

∣∣+
∣∣1

1−K(Z̃j)≥ kzn1 ,1−K(Zj)<
kz
n1

∣∣]q)1/q

= o

(
n1√
k

(
k x

n1

)1/p (
n
−1+ε

2
2

)1/q
)

= o

(
√
n1

(
k

n1

) 1
p
− 1

2

x
1
p n

−1+ε
2q

2

)
(A.6)

Then, from Assumption (a.3) it is possible to choose p0 <
1

maxi∈I γi
and η ∈ (maxi∈I γi, 1/2) such that

supx, z∈(0,T ]
|Din1,n2 (x,z)|

xη = o

(
√
n1

(
k
n1

) 1
p0
− 1

2
n
−1+ε
2q0

2 x1/p0−η
)

tends to zero. �

Finally, we define

θ
i
k z
n1
,n2

:=
1

k z

n1∑
j=1

Xi
j 1{Z̃j >UZ(

n1
k z

)}. (A.7)

Proposition A.2 below provides a central limit theorem for θ
i
k z
n1
,n2

in Equation (A.7) and it will be useful

below to archive the proof of Proposition 2.1.

Proposition A.2 Let i ∈ I. Suppose that condition in (4) and Assumptions (a.2) and (a.3) hold with
γi ∈ (0, 1/2). Then, for n1, n2 →∞,

sup
1/2≤ z≤ 2

∣∣∣∣∣
( √

k

Ui(
n1
k )

)
(θ
i
k z
n1
,n2
− θik z

n1

) +
1

z

∫ ∞
0

WR(Xi,Z)
(s, z) ds−γ

i

∣∣∣∣∣ P→ 0 ,

with θ
i
k z
n1
,n2

as in Equation (A.7) and θik z
n1

= E
[
Xi |Z > QZ

(
1− k z

n1

)]
.

Proof: Let sn1(x) := n1
k (1 − Fi(Ui(

n1
k )x−γ

i
)), for x > 0. Remark that, from the regular variation

condition in (5), sn1(x) → x, as n1 → ∞. Furthermore Lemma 3 in Cai et al. [9] states that, when
handling proper integrals, sn1(x) can be substituted by x in the limit. We get

z θik z
n1

=

∫ ∞
0

n1
k

P
[
Xi > s,Z > UZ

( n1
k z

)]
ds =

∫ ∞
0

Rin1

(n1
k

(1− Fi(s)), z
)

ds =

= −Ui
(n1
k

) ∫ ∞
0

Rin1
(sn1(x), z) dx−γ

i
, (A.8)
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with Rin1
as in (A.3). Similarly, z θ

i
k z
n1
,n2

= −Ui(n1
k )
∫∞
0 T in1,n2

(sn1(x), z) dx−γ
i
, with T in1,n2

as in (A.4)

and θ
i
k z
n1
,n2

as in (A.7). For any T > 0

sup
1/2≤ z≤ 2

∣∣∣∣∣
( √

k

Ui(
n1
k )

)(
z θ

i
k z
n1
,n2
− z θik z

n1

)
+

∫ ∞
0

WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣∣
≤ sup

1/2≤ z≤ 2

∣∣∣∣∫ ∞
T

WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣+ sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z)) dx−γ

i

∣∣∣∣
+ sup

1/2≤ z≤ 2

∣∣∣∣∫ T

0

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z))−WR(Xi,Z)

(x, z) dx−γ
i

∣∣∣∣
:= I1(T ) + In1,n2

2 (T ) + In1,n2
3 (T ).

It is sufficient to prove that for any ε > 0, there exist T0 = T0(ε) such that

P[I1(T0) > ε] < ε (A.9)

and n1,0, n2,0 such that for any n1 > n1,0 and n2 > n2,0,

P[In1,n2
2 (T0) > ε] < ε, (A.10)

P[In1,n2
3 (T0) > ε] < ε. (A.11)

(A.9) holds true by application of Lemma 2 in Cai et al. [9] with η = 0.

We now deal with (A.10). Once more we use the decomposition

T in1,n2
(sn1(x), z) = T in1

(sn1(x), z) + T in1,n2
(sn1(x), z)− T in1

(sn1(x), z)

= T in1
(sn1(x), z) + 1√

k
Di
n1,n2

(sn1(x), z).

Then, we deduce that In1,n2
2 (T0) is bounded by

sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T0

Di
n1,n2

(sn1(x), z) dx−γ
i

∣∣∣∣+ sup
1/2≤ z≤ 2

∣∣∣∣∫ ∞
T0

√
k(T in1

(sn1(x), z)−Rin1
(sn1(x), z)) dx−γ

i

∣∣∣∣ .
Then using the bound in (A.6) for p = +∞ and q = 1, we get

sup1/2≤ z≤ 2

∣∣∣∫∞T0 Di
n1,n2

(sn1(x), z) dx−γ
i
∣∣∣ = O

(
1

T γ
i

0

n1√
k
n
−1+ε

2
2

)
,

which tends to zero from Assumption (a.3). We conclude for the term In1,n2
2 (T0) by using the result of

Proposition 2 in Cai et al. [9] for sup1/2≤ z≤ 2

∣∣∣∫∞T0 √k (T in1
(sn1(x), z)−Rin1

(sn1(x), z)) dx−γ
i
∣∣∣.

It remains to handle the term (A.11). We get

P[In1,n2
3 (T ) > ε] = P

[
sup

1/2≤ z≤ 2

∣∣∣∣∫ T

0

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z))−WR(Xi,Z)

(x, z) dx−γ
i

∣∣∣∣ > ε

]

≤ P

[
sup

1/2≤ z≤ 2

∣∣∣∣∫ T

0

√
k (T in1,n2

(sn1(x), z)−Rin1
(sn1(x), z))−WR(Xi,Z)

(sn1(x), z) dx−γ
i

∣∣∣∣ > ε/2

]

+ P

[
sup

1/2≤ z≤ 2

∣∣∣∣∫ T

0
WR(Xi,Z)

(sn1(x), z)−WR(Xi,Z)
(x, z) dx−γ

i

∣∣∣∣ > ε/2

]
= pn1,n2

31 + pn1
32 .
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Firstly we consider pn1,n2
31 . Notice that for any T , there exists ñ1 = n1(T ), such that for all n1 > ñ1,

sn1(T ) < T + 1. Hence for n1 > ñ1 and for η0 ∈ (maxi∈I γ
i, 1/2),

pn1,n2
31 ≤ P

 sup
1/2≤ z≤ 2,
0<s≤T+1

∣∣∣∣∣
√
k (T in1,n2

(s, z)−Rin1
(s, z))−WR(Xi,Z)

(s, z)

sη0

∣∣∣∣∣
∣∣∣∣∫ T

0
(sn1(x))η0dx−γ

i

∣∣∣∣ > ε/2

 .
Notice that, by Lemma 3 in Cai et al. [9],

∣∣∣∫ T0 (sn1(x))η0dx−γ
i
∣∣∣ → γi

η0−γi T
η0−γi , as n1 → ∞. By

application of Lemma A.1, we conclude the proof for pn1,n2
31 . Finally, since pn1

32 does not depend on n2
and we can conclude using Lemma 2 in Cai et al. [9]. �

We now use the auxiliary results above to prove Proposition 2.1 stated in Section 2.

Proof of Proposition 2.1: From Proposition 1 in Cai et al. [9] applied to the bivariate vector (Xi, Z), we

have that limn1→∞
θi
k/n1

Ui(n1/k)
=
∫∞
0 R(Xi,Z)(x

−1/γi , 1) dx. Then, to prove Proposition 2.1 it is sufficient
to prove that, for n1, n2 →∞

√
k

Ui(n1/k)

(
θ̂ik
n1
,n2
− θik

n1

)
P→ Θi

∫ ∞
0

R(Xi,Z)(x
−1/γi , 1) dx.

Note that θ̂ik
n1
,n2

= en1,n2 θ
i
k en1,n2

n1

. From Proposition A.1, we know that en1,n2

P→ 1, as n1, n2 → ∞.

Using the analytical expression of process Θi in Equation (6), we can write:

√
k

Ui(n1/k)

(
en1,n2 θ

i
k en1,n2

n1

− θik
n1

)
−Θi

∫ ∞
0

R(Xi,Z)(x
−1/γi , 1) dx

=

( √
k

Ui(n1/k)

(
en1,n2 θ

i
k en1,n2

n1

− en1,n2θ
i
k en1,n2

n1

)
+

∫ ∞
0

WR(Xi,Z)
(s, 1) ds−γ

i

)

+

( √
k

Ui(n1/k)

(
en1,n2θ

i
k en1,n2

n1

− θik
n1

)
−WR(Xi,Z)

(∞, 1)(γi − 1)

∫ ∞
0

R(Xi,Z)(s
−1/γi , 1) ds

)
=: J

(n1,n2)
1 + J

(n1,n2)
2 .

We prove that both J
(n1,n2)
1 and J

(n1,n2)
2 converge to zero in probability as n1, n2 →∞. Using Lemma

A.1, since T in1,n2
(∞, en1,n2) = 1, we get, as n1, n2 →∞:

√
k (en1,n2 − 1)

P→ −WR(Xi,Z)
(∞, 1) . (A.12)

This implies that limn1,n2→+∞ P(|en1,n2 − 1| > k−1/4) = 0. Thus

|J (n1,n2)
1 | ≤ sup

|z−1|<k−1/4

∣∣∣∣∣
√
k

Ui(n1/k)

(
z θ

i
k z,n2
n1

− z θik z
n1

)
+

∫ ∞
0

WR(Xi,Z)
(s, z) ds−γ

i

∣∣∣∣∣
+ sup
|z−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(Xi,Z)
(s, z)−WR(Xi,Z)

(s, 1) ds−γ
i

∣∣∣∣ .
The first term of the right hand term above converges to zero in probability by Proposition A.2. The
second term can be handled as in the proof of Proposition 3 in Cai et al. [9], using Lemma 2 in Cai
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et al. [9].

We now focus on J
(n1,n2)
2 . Firstly recall that, using Assumption (a.1), as n1 →∞

sup
1/2≤ z≤ 2

√
k

∣∣∣∣∫ ∞
0

Rin1
(sn1(x), z)−R(Xi,Z)(x, z) dx−γ

i

∣∣∣∣→ 0, (A.13)

(see Equation (27) in Cai et al. [9]). Combining (A.8) and (A.13), we get:

en1,n2 θ
i
k en1,n2

n1

Ui(n1/k)
= −

∫ ∞
0

Rin1
(sn1(x), en1,n2) dx−γ

i
= −

∫ ∞
0

R(Xi,Z)(x, en1,n2) dx−γ
i

+ oP(1/
√
k),

where the last term oP(1/
√
k) does not depend on n2. Using the homogeneity of R function, we have:

en1,n2 θ
i
k en1,n2

n1

= e1−γ
i

n1,n2
θik
n1

+ oP

(
Ui(n1/k)√

k

)
,

still with the last term not depending on n2. By applying (A.12) and Proposition 1 in Cai et al. [9] for
the bivariate vector (Xi, Z), as far as the Cramér’s delta method, we get as n1, n2 →∞,

√
k

Ui(n1/k)

(
en1,n2θ

i
k en1,n2

n1

− θik
n1

)
=
√
k
(
e1−γ

i

n1,n2
− 1
) θik

n1

Ui(n1/k)
+ oP(1)

P→ (γi − 1)WR(Xi,Z)
(∞, 1)

∫ ∞
0

R(Xi,Z)(s
−1/γi , 1) ds ,

uniformly in n2. Hence J
(n1,n2)
2 converges to zero in probability as n1, n2 →∞. Hence the result. �
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[16] Di Bernardino, E., Laloë, T., Maume-Deschamps, V., and Prieur, C. (2013). Plug-in estimation of
level sets in a non-compact setting with applications in multivariable risk theory. ESAIM: Probability
and Statistics, (17):236–256.

[17] Di Bernardino, E. and Prieur, C. (2014). Estimation of multivariate Conditional-Tail-Expectation
using Kendall’s process. Journal of Nonparametric Statistics, 26(2):241–267.

[18] Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimators of the stable
tail dependence function. J. Multivariate Anal., 64(1):25–47.

[19] Einmahl, J. H. J., de Haan, L., and Li, D. (2006). Weighted approximations of tail copula processes
with application to testing the bivariate extreme value condition. Ann. Statist., 34(4):1987–2014.
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