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Abstract  

Fretting fatigue is characterized by combined high stress gradients induced by contact loading 

and more homogeneous stress gradients induced by bulk fatigue stressing. The stress 

gradients computed at the “hot-spot” located on the surface at the trailing contact border are 

very high, usually above 10 GPa/mm. For such uncommon stressing conditions, prediction of 

cracking risk becomes very complex and non-local fatigue approaches must be adopted. The 

purpose of the present study was to investigate how non-local strategies, such as “critical 

distance”, developed for medium stress gradient conditions such as “notch” configurations, 

were transposed to predict fretting cracking risk. Elastic crack nucleation conditions of a 35 

Ni Cr Mo 16 low alloyed steel at 10E6 cycles have been identified for various cylinder pad 

radius, contact pressure and fatigue stress conditions. The experimental crack nucleation 

conditions were then compared to predictions from analytical simulations coupling uni-axial 

and  Crossland’s multiaxial fatigue descriptions. The local “hot-spot” analysis systematically 

overestimated cracking risk and induced more than 30% error with respect to the experimental 

values. The non-local “critical distance method” based on a constant length scale value still 

displayed more than 10% dispersion suggesting that a non constant “critical distance” 

approach must be considered. By expressing the critical distance evolution as a function of the 

hydrostatic stress gradient operating next to the stress hot-spot, dispersion was reduced below 

5%. Established for the Crossland’s stress invariant formulation, this tendency is confirmed 

by comparing McDiarmid and MWCM critical plane fatigue approaches.   

 

Keywords: Fretting Fatigue Map, Crack nucleation, Stress gradient, Crossland – McDiarmid 

-MWCM fatigue criteria, Non local fatigue approach.  
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1. Introduction 

Fretting is a small-amplitude oscillatory movement which may occur between contacting 

surfaces that are subject to vibration or cyclic stress. Combined with cyclic bulk fatigue 

loading, so-called fretting-fatigue loading can induce catastrophic cracking phenomena which 

critically reduce the endurance of assemblies. Considered a plague for modern industry, 

fretting-fatigue is encountered in all quasi-static contact loadings subject to vibration and 

cyclic fatigue, and thus concerns many industrial branches (helicopters, aircraft, trains, ships, 

trucks, etc...) [1, 2, 3]. 

As illustrated in Figure 1, fretting-fatigue loading can be defined as the superimposition of  

contact stressing characterized by very high stress gradient and quasi-homogeneous fatigue 

bulk loading. During recent decades, a significant effort has been made to formalize both 

crack nucleation and crack arrest conditions [4,5]. The crack arrest condition is described by 

computing the evolution of the stress intensity factor below the interface and by predicting the 

crack arrest condition using short crack arrest formalisms [5,6]. The crack nucleation 

phenomenon is commonly addressed by transposing conventional multi-axial fatigue criteria 

[7].  However, as illustrated in Figure 1, fretting stressing conditions are characterized by very 

severe stress gradients, which may be one order of magnitude larger than common notch 

fatigue stress configurations. Non-local fatigue approaches are therefore required to predict 

cracking risk. Stress averaging approaches [4] or equivalent critical distance methods [5], 

which consist in considering the stress state at a “critical distance” from the stress “hot-spot”, 

are commonly applied to capture the stress gradient effect [8, 9]. However, these approaches 

which consider a fixed length scale value are limited when large stress gradient fluctuations 

are operating. To palliate such limitations, a new alternative strategy, based on a variable 

critical distance function of the stress gradient imposed by the contact, is presently being 

considered. To calibrate this new strategy, the crack nucleation response at 10
6
 cycles of a 

well known 35Ni CrMo16 low-alloyed steel was studied under various plain fretting and 

fretting fatigue elastic partial slip conditions, covering a wide stress gradient domain.  

 

2. MATERIAL & EXPERIMENTS 

2.1 Materials  

The studied material is a tempered 35 Ni Cr Mo 16 low-alloyed steel displaying a tempered 

Martensitic structure. The fatigue and fracture properties of this alloy and equivalent 

structures were extensively investigated by Galtier and Henaff [10, 11]. The mechanical and 
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fatigue properties are summarized in table 1. Chromium 52100 steel was chosen for the 

cylindrical pads in order to maintain elastically similar conditions whilst simultaneously 

ensuring that cracks arose only in plane and fatigue 35 Ni Cr Mo 16 specimens. Both plane 

and cylindrical pad surfaces were polished to achieve low Ra=0.05 µm surface roughness. 

 

2.2 Test Conditions 

As illustrated in Figure 2, two different test apparatuses were applied to quantify respectively 

the fretting and the fatigue influences in cracking processes. 

Plain fretting test 

Plain fretting tests were applied by imposing a nominally static normal force P, followed by a 

purely alternating cyclic displacement (), so that an alternating cyclic tangential load Q was 

generated on the contact surface [4]. During testing, P, Q and  were recorded, from which 

the  - Q fretting loop could be plotted; this cycle was characterized respectively by the 

tangential force amplitude (Q*),  displacement amplitude (*), and fiction-dissipated energy 

(Ed). By analyzing the fretting loop, the sliding condition could be identified and the loading 

condition adjusted if necessary to maintain a partial slip contact configuration. 

 

Fretting Fatigue test 

The fretting-fatigue experiments were performed using a dual actuator device [12] inspired by 

Fellows et al. [13] and Lee and Mall’s [14] experiments. This test system allowed separate 

application of fretting and fatigue loadings. Multiple sensors recorded and controlled the 

contact loads (Q, P, ) and fatigue stress, defined by maximum tensile stress max,fa also 

denoted fa , minimum fatigue tress min,fa  and the corresponding fatigue stress ratio 

famin,fafa /R  .  One original feature of the set-up developed in our laboratory is its ability 

to perform single contact fretting fatigue tests using a ball-bearing located at the opposite side 

of the contact. This system enables the application of a large diversity of combined phase and 

unphased loadings. In the present investigation, only in-phase loadings were investigated.  

 

2.3 Experimental test conditions 

The purpose of the study was to investigate fretting fatigue cracking risk, considering 

numerous aspects such as the effect of contact pressure, the relative influences of contact and 

fatigue stressing, the fatigue stress ratio and above all contact size and stress gradient effects. 

Three cylinder radius pads, R= 20, 40 and 80 mm, were studied, adjusting the normal force to 
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investigate three contact pressures, pmax= 600, 800 and 1000 MPa. This extensive plain 

fretting analysis was then transposed to fretting fatigue conditions by superimposing three 

maximum fatigue stresses fa  = 100, 200 and 400 MPa, considering two stress ratio 

conditions, faR  = 0.1 and 1 (i.e., pre-stressed conditions). The applied conditions are 

compiled in Table II and illustrated in Figure 3. The Hertzian contact radius varied from a 

=0.28 to 1.4 mm. The lateral width (L) of the cylinder pads was adjusted to maintain near 

plain strain conditions along the median axis (a/L<0.15). All the study was performed at 13 

Hz. 

 

2.4  Experimental results 

Friction analysis 

To compute the contact stress field, it is necessary first to identify the coefficient of friction 

operating in the sliding zones of the partial slip interface.  H. Proudhon et al. showed that the 

friction coefficient measured at the transition between partial and gross slip conditions (µt) 

may be used to provide a representative value of the friction under partial slip conditions (i.e. 

µPS=µt) [15]. To determine this value, a variable displacement method was applied keeping 

the normal load constant whilst the relative displacement amplitude (*) is progressively 

increased (Fig. 4a). For a 2D cylinder/plane configuration, the sliding transition is marked by 

discontinuity of the tangential force ratio (Q*/P) and friction energy ratio *).*Q.4(EdA  . 

Figure 4b compares the evolution of µt versus the Hertzian contact radius for different contact 

pressures.  Evolution is almost constant, which suggests that, for the studied condition, a 

constant partial slip friction value can be assumed: 8.0µµµ tPS  . 

 

Experimental identification of the crack nucleation condition 

Cracking investigation consisted in identifying the fretting loading inducing a threshold crack 

length after 10
6 

cycles. The following methodology was applied: After each fretting test, the 

plane specimen was cut along the median axis of the fretting scar. Cross section observations 

were performed, and not only the real crack length (br), but also the projected crack length 

(bp) along the normal of the surface were measured (Fig. 5a). The polishing process was then 

repeated twice so that the crack measurement was performed on 6 different planes located 

along the median axis of the fretting scar. From these 6 measurements, the maximum 

projected crack length (bp,max) was determined. This crack analysis was generalized to various 

tangential force amplitudes in order to plot the evolution of bp,max as a function of the applied 
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tangential force amplitude (Fig. 5b). Finally, the threshold crack nucleation *
CNQ  was 

determined by extrapolating the tangential force amplitude related to a bpth = 10 µm projected 

crack length. From 6 to 8 tests are usually required to estimate the threshold crack nucleation 

value with dispersion less than +/- 5 N/mm. More than one 100 fretting experiments were 

performed to compile the given fretting fatigue crack nucleation conditions *
CNQ  (Table II). 

Cross-section examinations showed that incipient crack nucleation was systematically 

observed at the contact borders for plain fretting conditions or at the trailing contact border 

(i.e., specimen side where fatigue loading is imposed) for fretting fatigue conditions. Crack 

nucleation conditions corresponded to established partial slip conditions (i.e., Table II), 

leading to negligible surface wear, which was confirmed by 3D surface profiles. Therefore the 

contact geometry could be assumed to be unchanged during the fretting test. 

 

3. CONTACT STRESS ANALYSIS 

The studied conditions were elastic, so that the Hertz, Mindlin and McEven [16, 17, 18] 

formalisms could be considered as establishing the fretting contact stress distributions 

( )t(
fr

 ). Adding the in-phase fatigue stressing ( )t(
fa

 ), the total fretting fatigue loading path 

is expressed by: 

)t()t()t(
fafr

           (1) 

For quasi-static partial slip conditions, the contact stress field was itself defined as the sum of 

a constant pressure component and an alternating shear component: 

)t()t(
QPfr

 .          (2) 

For the plain fretting situation, the fatigue component disappears so that: 

)t()t(
fr

 .           (3) 

The following analysis details some aspects of the Mindlin – McEven description. 

 

Surface pressure and shear distribution. 

Pressure field 

The Hertzian formalism is applied according that fretting and fretting-fatigue specimen 

thicknesses (t=10 mm) were assumed to be sufficient compared to the contact radius (t/a>10), 

so that no thickness corrections were required. Elastic half space hypotheses were considered 

and the contact pressure profile was assumed to be constant and immobile due to the partial 

slip conditions. A 2D plain strain cylinder/plane Hertzian formalism was applied: 
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with a, the Hertzian contact radius, and 0p = maxp  the maximum contact pressure operating at 

the center of the interface (x=0): 

2
1

*E

PR4
a 










  with 

1

2
1

1

2
1

E

1

E

1

*E

1 



        (5) 

2
1

max0
R

*E.P

a

P2
pp 













          (6) 

with P, the linear applied normal force (N/mm), R the radius of the cylinder pad, E1 =E and 

E2, the Young’s modulus of plane and pad respectively, and v1 = v and v2 the Poisson’s 

coefficient of plane and pad respectively. 

 

Surface shear distribution 

Plain fretting and pre-stressed fretting condition. 

Without cyclic fatigue loading, the shear distribution in the interface is symmetrical and can 

be expressed using the conventional Mindlin formalism. The partial slip contact consists of 

central inner stick domain bordered by two lateral sliding zones. During the fretting cycle the 

slip boundary (c’) pulses from the external contact border (a) to the inner stick (c) radius  (i.e., 

: c’: a → c). At loading (Q= +Q*) and unloading (Q= -Q*) amplitudes, the surface shear 

profiles are simplified to: 

cx  , 
c

x
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
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
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




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



     (7) 

and )c,a,x(q )c,a,x(q *Q*Q           (8) 

with 00

2
1

µpq and
µP

*Q
1

a

c
k 








 ,       (9) 

As developed in [17], the surface shear profiles can be expressed using an adequate 

superimposition of a global full sliding (a, 0q ) and stick (c, 0q
a

c
) elliptical components (Fig. 
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6). The maximum shear value maxq which is observed at the stick boundaries ( cx  ) is 

expressed by: 

  2
1

2
0max k1qq  .          (10) 

          

Fretting-Fatigue loading (Rfa < 1)  

A similar Mindlin strategy was applied to describe the surface shear profile during cyclic  

fretting fatigue. However, Nowell et al. [19] demonstrated that the bulk loading which is 

present in the fatigue specimen but not in the pad specimen promotes a strain mismatch in the 

contact zone, which induces a shift of the stick zone. This shift is quantified by an 

“eccentricity” length e. For the specific conditions where e+c ≤ a, an explicit expression can 

be achieved: 

0pµ4

a
e




  or  

0q4a

e
h




         (11) 

In the present experimental investigation, the contact was adjusted after the mean fatigue 

stress was applied, which implies that the stress variation involved in equation (11) 

corresponded to the fatigue stress amplitude, which in turn implies:  

 fafa
0

R1
q8

1
h            (12) 

This eccentricity (i.e., offset) of the stick zone induces a dissymmetry in the shear stress field 

distribution. If larger bulk stresses are applied, (i.e., h+k > 1), a complex reverse slip process 

takes place within the interface. In the present investigation, all the studied crack nucleation 

conditions were observed for non-reverse slip conditions (i.e., h+k ≤1). As previously,  

Mindlin’s description of the surface shear stress field distributions was defined by summing 

the contribution of the global contact, stick zone and pulsing sliding elliptical shear stress 

field components but taking into account the eccentricity shift (Fig. 6). Restricting analysis to 

the loading (+Q*) and unloading (-Q*) amplitude situations we have: 

axe-c  , 
a
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    (13) 
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and )e,c,a,x(q-  )e,c,a,x(q *Q*Q           (14) 

The shear profile was no longer symmetrical and the maximum shear value was observed at 

the stick boundary of the trailing contact side (x = -c + e) : 

   2
1

2
0

2
1

2

0max hk1q
a

ec
1qq 





















 
  with 1hk      (15) 

The maximum shear related to the limiting reverse-slip condition (k+h=1) is given by: 

2
1

fa

0
faRSmax_

4

1q
 q 











          (16) 

 

3.2 Subsurface stress field distribution 

The subsurface stress loading paths were computed by coupling the above Mindlin pressure 

and shear formalism with the McEven formulations [18]. For the general fretting fatigue 

situation, contact stress analysis needs to consider the eccentricity “e” induced by cyclic 

fatigue loading. If both fretting and fatigue loading are collinear and in phase, stress analysis 

can be restricted to the trailing side of the contact (x<0).  Focusing on the two maximum 

“loading” and minimum “unloading” stages, the total maximum and minimum fretting fatigue 

stresses are expressed by: 

 famax,famax,frmax
)e*,Q,P(   

 fafamin,famin,frmin
.R)e*,Q,P(         (17) 

Figure 7a plots the surface profile distribution of the maximum principal stress ( max,1 ) and 

Tresca shear ( maxT ) imposed during the representative FF2 fretting fatigue test condition 

(Table II). From this contact stress analysis, it can be concluded that the most severe stress 

loading paths were imposed at the trailing contact border (i.e. x=-a, z=0). At this particular 

position, the stress state is bi-axial according to the plain strain hypothesis, but just outside 

this hot-spot location the stress state was clearly multi-axial (Fig. 7b). Focusing on the trailing 

contact border (TCB: x=-a, z=0), where the maximum stressings are imposed and where the 

incipient cracking processes are observed, we demonstrate by coupling Mindlin’s and 

McEven’s formalisms that the contact stress components is expressed by : 

  

fr22fr

2122
0fra1fr,max1fr,11fr

a,frmax,fr

.

hkh1q.2
  













    (18) 

with 1kh  . 
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Indeed, at the contact border, the pressure stress components disappear and contact stress is 

function only of the cyclic tangential stress components. At this specific position, contact 

stress is quasi-uniaxial (i.e., biaxial assuming the plain strain hypothesis) and alternating.  It is 

noteworthy to note that the driving contact stress fr  (18), can be expressed as a function of 

the maximum interfacial shear stress. Indeed, coupling (15) and (18) showed that: 

)k,h(f.q.2 maxfr   with  

  





























212

21

)hk(1

h

hk1

hk1
)k,h(f .   (19) 

Parametric analysis for non-reverse slip conditions (i.e. 1kh   ) showed that, for h values 

between 0.5 and 0.95 and k ratio ranging from 0 to 0.95, the f(h,k) function varied from 0.86 

up to 3.2. However, if h=0, the f(h,k) function was constant and equal to 1 whatever the k 

value. Hence, for plain fretting or pre-stressed fretting fatigue ( faR =1) configurations, contact 

stress was proportional to maximum interfacial shear: 

maxfr q.2            (20) 

Finally, the total fretting fatigue stress field was provided by summing contact and fatigue 

stress components. The maximum stressing at the trailing contact border is expressed by:  

max11,max22,

fafrmax11,

max .
  




          (21) 

So that the maximum principal stress and Tresca shear are expressed by: 

   fa

2122
0max11,maxmax1, hkh1q.2T.2 








      (22) 

The Von Mises stresses at the critical stress “hot-spot” is given by: 

   212
fa

2122
0

212
max,1max,VM )1(hkh1q2)1( 

















   (23) 

The threshold contact stresses related to the Tresca and Von Mises plastic yields are: 

 fayT_fr 2   and fa212

y

)1(VM_fr





      (24) 

The contact stress related to the reverse-slip boundary condition is expressed by: 

      fa
fa21

fafa00 R1
4

R1q2hh2q2
RS_fr




      (25) 

 

Plain Fretting Condition 
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The stress state at the trailing contact for the plain fretting condition is directly defined from 

the previous expressions, putting h=0 and 0fa  : 

 
fr22fr

212
0maxfrmax1,max1fr,11fr

a,frmax,frmax
.

k1q2q.2
  




   (26) 

Tresca shear and Von Mises stress are simplified to: 

2
T fr

max


 and 212

frmax,VM )1(         (27) 

so that the contact plastic yield limits are expressed respectively by: 

yTmax_ 2q.2
T_fr

  and  
212

y
VMmax_

)1(
q.2

VM_fr 


     (28) 

 

Crossland multiaxial criterion 

Except at the trailing contact border, the contact stressing is highly multiaxial (Fig. 7b). The 

Crossland’s multiaxial fatigue approach was used being well adapted to describe the fatigue 

response of the studied alloy [20]. The crack risk was expressed as a linear combination of the 

square root of the maximum amplitude of the second stress invariant ( a,2J ), and the 

maximum hydrostatic stress value ( max,H ). The non cracking condition was expressed by : 

dmax,HCa,2 .J           (29) 

where 












))t((trace

3

1
max

Tt
max,H

,         (30) 

























21

00
TtTt

a,2 ))t(S)t(S(:))t(S)t(S(
2

1
maxmax

2

1
J

0

,     (31) 

3

3

d

dd
C




 ,          (32) 

with, S , the deviatoric part of  .  From the fatigue values given in Table 1, .28.0C   The 

cracking risk was estimated by comparing the equivalent Crossland stress 

max,HCa,2C .J           (33) 

versus the torsion fatigue limit: 

if  dC  , there is a cracking risk.         (34) 
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Figure 8 shows the normalized distribution of C , applying local fatigue stress  analysis for 

the representative FF2 fretting fatigue crack nucleation condition (Table II). As expected from 

the previous stress analysis, the maximum equivalent Crossland stress value max,C  was 

located at the trailing contact border, and characterized by very sharp gradients. At this 

critical position, the maximum Crossland equivalent stress can be expressed using an explicit 

formulation where: 

 










 fa

fa
fra,2 R1

2
AJ  and   fafrmax,H B       (35) 

with  
3

)1(
A

2
  and 

3

)1(
B


 .       (36) 

The equivalent maximum Crossland stress is provided by: 

  















 
 BA

2

R1
BA C

fa
faCfrmax,C .     (37) 

Considering the threshold crack nucleation condition (i.e., dmax,C  ), the following 

threshold contact stress condition can be defined: 

 
  





























 



 BA

2

R1

BA

1
)k,h(f q.2 C

fa
fad

C
Cmax_C_fr  . (38) 

For pre-stressed fretting conditions, the above expressions are simplified by using faR =1 and 

h=0, so that f(h,k) =1. The plain fretting condition leads to following simplified expressions: 

maxfra,2 Aq2AJ   and frmax,H B  ,       (39) 

       BAk1q2BAq2BA C

212
0CmaxCfrmax,C  ,  (40) 

so that 
 BA

 q.2
C

d
Cmax_C_fr




 .       (41) 

 

4. DISCUSSION 

4.1 Local stress analysis 

4.1.1 Crack nucleation description using contact force parameters: Q*- P  fretting map 

and Q*- fa  fretting fatigue map 

A common approach to quantifying fretting cracking response consists in reporting the crack 

nucleation boundary in a tangential force – normal force diagram (i.e., Q*- P chart) [15] or 

using an equivalent tangential force – fatigue stress representation (i.e.,  Q*- fa  fretting 
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fatigue map) [21]. Such a mapping approach is very convenient for comparing, for a given 

contact geometry, the effect of normal force and synergic interactions between fretting and 

fatigue stressing or for evaluating the performance of bulk materials and palliatives such as 

shot-preened or surface coatings.  Figure 9a shows that, for a given contact radius, the normal 

force tends to increase the *
CNQ   condition whereas an increase in fatigue loading reduces the 

*
CNQ  threshold (Fig. 9b).  Comparison between cylinder various geometries is more complex.  

Figure 9a shows that, keeping the normal force constant, an increase in contact radius from 

R=20 mm to R=40 mm, sharply increases the *
CNQ  threshold. Indeed, applying a constant 

normal force, an increase in contact size reduces maximum contact pressure, contact stressing 

and therefore cracking risk. This tendency is confirmed in the Q*- fa   fretting fatigue chart 

where, although similar maximum pressures are imposed, the tangential force threshold is 

lower for the smaller cylinder radius. However, the shift of the *
CNQ  boundaries is smaller 

when the contact size is becoming very small (e.g. comparison between R=40 and R=20 mm 

in Figure 9a). To interpret this tendency, it must be underlined that crack nucleation is 

controlled by maximum stress intensity but also by the material process volume over which 

this maximum stressing is operating. On the other hand, while an increase in contact radius 

reduces peak pressure, it also extends the influence of contact stress below the surface, and 

therefore increases the cracking process volume. This opposing tendency may explain the 

non-monotonic evolution of *
CNQ  in the Q*- P fretting chart. Finally, it can be said that if the 

Q*- P and Q*- fa  contact force fretting charts are pertinent to compare surface treatment 

palliatives for a given contact geometry, they are not relevant to quantifying contact size or 

stress gradient effects according that they are not providing a global stress description of the 

fretting loading.  

 

 4.1.2 Contact stress description: Introduction of the fr - pmax  fretting map and 

 fr - fa  fretting fatigue mapping approach  

Depending on whether the fretting fatigue contact stressing can be represented by the C  

contact stress variable, equivalent fr - maxp  and fr - fa  charts can be introduced.  These 

representations enable dissociation of the two tensile contributions induced at the trailing 

contact by the contact stressing, characterized by very severe stress gradients, and the 

homogeneous tensile fatigue loading. Besides, using these two representations, the various 
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experimental crack nucleation conditions can be compared versus a single theoretical crack 

nucleation boundary ( C_fr ) (Eq. 41, 38) and plastic yield limit ( VM_fr ) (Eq. 28, 24). In 

contrast to the previous Q*- fa  representation, the reverse-slip boundary is now related to a 

single master curve independent of cylinder radius (Eq. 25). 

 

Assuming that local fatigue stress analysis can predict plain fretting crack nucleation risk, all 

of the experimental crack nucleation conditions can be expected to be aligned along a single 

the vertical boundary fr = C_fr (Fig. 10a). By contrast, different quasi parallel evolutions 

according to the cylinder geometry were observed. Moreover, the experimental crack 

boundaries were not vertical, as predicted by the model, but displayed significant contact 

pressure dependencies, with a positive slope  maxfr p/  ≈ 0.4. The experimental crack 

nucleation conditions were systematically above the theoretical Crossland prediction and 

sometimes exceeded the plastic yield limit. To interpret this evolution, we need to consider 

Neuber’s theory [8] which shows that the crack nucleation process generated in a severe stress 

gradient configuration, such as those imposed by notched specimens or fretting contacts, is 

controlled by the maximum “hot spot” stress state but also by the process volume over which 

this maximum stressing condition is operating. The smaller the process volume (i.e., the 

higher the stress gradient), the higher the expected “hot spot” stress value to generate crack 

nucleation. Assuming a Hertzian contact description, it can be intuited that the effective 

process volume increases with contact size. Therefore, keeping the maximum contact pressure 

constant, an increase in contact size due to larger cylinder radius will reduce the fr  cracking 

stress threshold.  The pressure effect is more complex to interpret. Indeed, for a given cylinder 

radius, an increase in contact pressure by extending the contact size would be expected to 

reduce the fr  stress threshold, whereas the contrary is in fact observed. To explain this 

tendency, it must be underlined that the higher the peak pressure for a given contact radius, 

the sharper the stress gradient generated in the sliding zone next to the contact border. The 

positive slope which characterizes the fr - pmax evolution suggests that this stress-gradient 

sharpening effect compensates for the contact extension influence, so that the corresponding 

process volume is reduced and consequently the fr  fretting contact stress threshold increases 

with applied peak pressure.  

Similar conclusions can be drawn from the fr - fa  fretting fatigue chart (Fig. 10b). Whereas 

similar contact pressures are imposed, the smaller R=40 mm radius configuration leads to 
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larger threshold fr  values. Using a larger cylinder radius, the process volume enduring 

maximum stress is increased, and consequently threshold contact stress is reduced. It is 

interesting to note that the proposed fr - pmax chart is equivalent to the maxq - pmax 

representation proposed by Amargier et al. in [22] according that the fr  stress is directly 

proportional to the maximum interfacial shear value when h=0 (20). This correlation cannot 

be transposed for varying fatigue conditions (i.e., h>0). Significant fluctuations of the f(h,k) 

factor can be observed depending on the h and k variables (19). This suggests that an 

equivalent maxq - fa  fretting fatigue chart is not suitable for formalizing the fretting fatigue 

cracking process.    

 

Equivalent Haigh fretting fatigue chart 

As usually observed in the literature, the studied fretting fatigue conditions imply that both 

fretting ( fr ) and fatigue ( fa ) stresses are in phase and collinear. This allows an equivalent 

Haigh fretting fatigue representation to be considered where the crack nucleation boundary 

can be expressed as a function of a total stress amplitude and a total mean stress: 

 fa
fa

fra R1
2




  and  fa
fa

m R1
2




       (42) 

Which, combined with (18), leads to 

    fa
fa

2122
0a R1

2
hkh1q.2 










 .       (43) 

Figure 11 compares the experimental ( a , m ) results with the Goodman (M) and Gerber 

(G) approximations: 















u

m
dM_a 1  and 




























2

u

m
dG_a 1      (44) 

As expected from Neuber’s theory, the two uniaxial fatigue approximations lead to critical 

overestimations of cracking risk. Again, the largest difference with respect to the theoretical 

prediction is observed for the smallest contact radius, which also displays the highest stress 

gradient.  This analysis underlines the fact that, despite the simplicity of the proposed uniaxial 

description involving the fr - pmax  and fr - fa  fretting charts or the equivalent a - m  

Haigh representation, a local fatigue stress description is unable to capture the stress gradient 

effect and therefore is not suitable for predicting the fretting crack nucleation risk.  
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4.2 Non local Crossland multiaxial fatigue stress analysis 

Figure 7 confirms that, except at the local trailing contact border location, the fretting stress 

path is highly multiaxial and a function of both tangential and normal loads. A multiaxial 

fatigue description is therefore required. Crossland’s fatigue criterion is here adopted. A local 

description is first considered, to quantify the gain in prediction obtained when non-local 

strategies are successively adopted (Fig. 12a). 

4.2.1 a,2J - max,H   “hot spot” local stress field description 

Crossland analysis of the different crack nucleation conditions was performed applying the 

formulations developed for the “hot-spot” contact stress conditions (Eq. 35 to 41).  As 

expected from the above uni-axial stress description, the experimental data were highly 

dispersed and systematically above the material boundary (Fig. 12b). This local Crossland 

fatigue approach did not integrate the severe stress gradients operating next to the ”hot spot” 

and therefore it could not provide relevant predictions. To quantify the stability of the 

prediction, the mean value and the square root variance of the equivalent Crossland stress 

obtained for the 16 test conditions were computed. 

 



N

1i
max,Cm,C )i(

N

1
  and  

 

1N

)i(

V

N

1i
m,Cmax,C

C







      (45) 

as well as the corresponding relative variable defined by: 

100xE%
d

dm,C
C 














  and 100x

V
V%

m,C

C
C 

















 .      (46) 

CE%   estimates the global error of prediction versus the theoretical material prediction, 

whereas CV%   provides a relative estimation of dispersion. For the given local fatigue 

description,  CE%   was +36 % and CV%   was 16% which, corresponded to critical 

overestimation and large dispersion of the predictions.  

This analysis demonstrated that, whatever the fatigue formulation, a local stress description 

fails to predict fretting cracking risk. 

 

4.2 Constant critical distance fatigue approach 

4.2.1 Taylors’s approximation 
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Different strategies can be applied to provide non local fatigue descriptions. The most 

common approach consists in defining a length scale dimension over which the stress loading 

path is averaged before being transposed in fatigue analysis. An volume averaging strategy 

[4] or critical distance method [23, 24] can be considered to predict the fretting cracking 

process. These two approaches lead to equivalent predictions if the corresponding length scale 

values are correctly identified [21]. The present analysis used the critical distance method, 

which consists in defining the stress state at a certain distance below (  ) the contact “hot- 

spot” (i.e., x=-a, z=  ) (Fig. 12a). This stress loading path, which indirectly takes into account 

the stress gradient effect, is then transposed to the Crossland multiaxial fatigue analysis to 

estimate the relevant crack nucleation risk. A major difficulty of this method is to determine 

an optimum critical distance length. A first approach consists in applying a constant value, 

according to the microstructure but independent of contact size and related stress gradient 

conditions. The critical distance can be approximated using Taylors’s theory [9], developed 

from notch fatigue specimens, where it is assumed to be equal to half the value of the long 

crack propagation length 0b . This threshold transition is expressed as a function of the fatigue 

d  limit and the long crack threshold 0K : 

µm5
K

2

1

2

b
2

d

00
T 
















 .        (47) 

This strategy previously applied par Araujo et al. in [24] is now considered for the given 

Crossland’s fatigue analysis (Fig. 13a). As expected, the experimental results were closer to 

the material boundary and the dispersion was reduced. Substituting max,C  by ),a( TC   so 

called )( TC 

 

in equations (45) and (46) the statistical analysis led to )(E% TC  = 11% and 

 TCV%   = 12%.  The global predictions were less conservative but still dispersed. After 

this analysis, it could be concluded that Taylor’s approximation tends to underestimate the 

effective critical distance that would center the predictions on the material boundary. An 

alternative strategy developed in [21] consists in identifying the critical distance directly from 

the fretting experiments. Hence, for each i
th

 fretting and fretting fatigue test, an inverse 

iterative computation method was applied to estimate the corresponding critical distance C  

which satisfying the crack nucleation condition: 

 dCC )(   .           (48) 
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The different C
 

 values found for each test condition were determined and compiled in 

Table II. The corresponding mean value m,C
 

and related square root variance were 

computed: µm 68.10m,C  . This suggests that the best prediction is obtained if the critical 

distance is equal to the long crack transition (i.e. 0m,C b  ). However, if the global 

prediction was centered on the material boundary ( )(E% m,CC  = 1%), the dispersion is still 

very large (  m,CCV%   = 10%). To interpret the difference with the Taylor’s approximation 

it must be underlined that the Araujo et al. [24] analysis was done using critical plane fatigue 

base models whereas a stress invariant model is here considered. This confirms that different 

critical distance values need to be applied depending on the chosen multiaxial fatigue 

approach [26]. This aspect will be later discussed in section 4.3.4.  

 

4.3 Development of a “stress gradient” dependent critical distance approach 

A major limitation of the above critical distance description is that a constant length scale 

value variable is used. Our results suggest that, in addition to depending on the material 

microstructure (i.e., fatigue properties), the effective critical distance is also a function of the 

stress gradient condition operating in the crack nucleation process volume. Hence, a new 

approach, involving a variable critical distance parameter according to the stress gradient 

condition was considered. Figure 14a plots the evolution of the different C
 

critical distance 

values as a function of the mean hydrostatic stress gradient value computed around the hot-

spot trailing contact border .max,H  This hydrostatic stress gradient is averaged over a cubic 

volume with an edge size equivalent to the crack nucleation length [22]. In the present 

investigation, this averaged length scale also corresponds to the long crack transition 

0pth bb  and is very close to the grain size.    

2
max,H

2
max,H

2
max,H

max,H
zyx 






































 with µm10bzyx pth   (49) 

Figure 14a shows that both plain fretting and fretting fatigue results are following a single 

trend which shows an significant increase of the critical distance value with the applied 

hydrostatic stress gradient. The optimum critical distance is not constant but seems function 

of the stress gradient condition. An alternative strategy would be to consider the stress 

gradient of the equivalent Crossland stress itself. However, confirming previous 

Papadopoulos developments [25], it was shown that the plain hydrostatic stress parameter, 
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which is easier to determine and more convenient to transpose for fatigue approach 

comparisons, is suitable [22].  

 

 

4.3.1 Linear approximation 

A linear correlation was first assumed to express the critical distance evolution (Fig. 14a). The 

following expression was considered: 

 res,Hmax,Hl,Cl,C K           (50) 

with res,H = 4.9 MPa/µm  and l,CK =0.813 µm²/MPa. 

Using this linear approximation, the corresponding Crossland analysis of both plain fretting 

and fretting fatigue tests are reported in the corresponding )(J l,Ca,2  - )( l,Cmax,H    

diagram (Fig. 14b). The correlation between the experimental values and the material 

boundary was improved. The mean prediction was centered next to the material boundary 

with  )(E% l,CC   = -0.5%, whereas the dispersion was now significantly reduced, with 

 l,CCV%   = 5.4%. 

 

4.3.2 “Staircase” threshold approximation 

The above linear approximation is simple and useful, but unable to provide a physical 

description of the critical distance / stress gradient correlation.  For instance, it suggests that 

below a threshold res,H = 4.9 MPa/µm stress gradient condition, the critical distance is zero 

so that a plain local fatigue description could be considered, which is not consistent with the 

actual experiments and other fatigue notch investigations. Besides, it predicts an infinite 

evolution of critical distance with the applied stress gradient, which is physically not 

admissible. To palliate such limitations, a discontinuous “staircase” description involving 

three different stress gradient domains was considered to describe the asymptotic evolution of  

C  (Fig. 15a): 

I: Low stress gradient condition: Below a threshold low )I(H  stress gradient value 

estimated around 12 MPa/µm the critical distance is assumed to be constant and equivalent to  

Taylor’s notch approximation: µm52b0T)I(C   .      
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II: Intermediate stress gradient condition: For medium stress gradient conditions 

( )I(H < max,H < )II(H ), the critical distance displays a linear evolution linking the two 

low (I)  and high (III) stress gradient domains. 

III: High stress gradient condition: Above a second stress gradient threshold 

µm/MPa20)II(H  , the critical distance tends to stabilize around a constant dimension  

0)III(C b2µm18  .        

This “staircase evolution” can be expressed using the following equation: 

If max,H ≤ )I(H  then  sc,C =
)I(C , 

If )I(H ≤ max,H ≤ )II(H  then  
)I(C)I(Hmax,Hsc,Csc,C )(K    

    with  )/()(K )I(H)II(H)I(C)III(Csc,C  1.86 µm²/MPa. 

If max,H ≥ )II(H  then 
)III(Csc,C          (51) 

The application of this staircase approximation provided very good and stable predictions 

(Fig. 15b). All the experimental results were aligned along the material boundary.  

 

The mean prediction was equivalent to the shear fatigue limit ( )(E% sc,CC   = -1%) whereas 

the dispersion was again reduced in comparison to the linear approximation, with 

 sc,CCV%   = 4.2%. The error in prediction, which was now below 5%, was in fact 

equivalent to the dispersion of the experimental values of the crack nucleation identification. 

Hence, in addition to providing a very good prediction of fretting and fretting fatigue crack 

nucleation through a very large spectrum of fatigue stresses and contact stress gradient 

conditions, the proposed “staircase” formulation solved most of the restrictions induced by a 

plain linear approximation.  It linked the low stress gradient conditions related to the common 

fatigue notch situations and provided a limited distance value for the very high stress gradient 

conditions. 

 

4.3.3 Simplified bilinear approximation   

The former “staircase” description requires a large quantity of experimental data to be 

established. An alternative low-cost strategy, consisting in calibrating the critical distance / 

stress gradient function using the two test conditions defining the extreme stress gradient 

conditions (i.e., bracketing all the studied stress gradient conditions) and a third test condition 

related to the intermediate stress gradient situation was introduced (Fig. 16a). These 3 “key” 
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stress gradient situations (so-called lower, medium and upper stress gradient bounds) can be 

derived from a dedicated low-cost plain fretting experimental investigation. The present 

analysis found that the lower, medium and upper stress gradient bounds corresponded 

respectively to the PF6 (R=80mm, pmax=600 MPa),  PF4 (R=40mm, pmax=800 MPa) and 

PF2(R=20 mm, pmax=1000 MPa)  fretting test (Fig. 3, Table II). Using these three reference 

conditions, the following bilinear formulation was introduced: 

If lb,H ≤ max,H ≤ mb,H  then lb,Clb,Hmax,H)I(bl_Cbl,C )(K    

If mb,H ≤ max,H ≤ up,H  then mb,Cmb,Hmax,H)II(bl_Cbl,C )(K    

where  and 
lb,Hmb,H

lbmb
)I(bl_CK







 and  

mb,Hub,H

mbub
)II(bl_CK







   (52) 

with )6FS(Clb   , )4FS(Cmb   , )2FS(Cub    and )6FSmax(,Hlb,H  , 

)4FSmax(,Hmb,H  , )2FSmax(,Hub,H  .  

Figure 16a confirms a rather good description of critical distance evolution using this 

simplified bi-linear approximation. Comparison with experimental results in the 

)(J bl,Ca,2  - )( bl,Cmax,H   diagram (Fig. 16b) shows a very nice correlation with the 

material boundary.  The mean prediction is close to the shear fatigue limit whereas the 

dispersion is just slightly higher than the reference “staircase” approximation ( )(E% bl,CC   = 

+4%,  bl,CCV%  = 5%). Smooth conservative predictions are obtained, which is a positive 

aspect for industrial applications. Like the linear approach, this formulation is restricted to the 

studied stress gradient domain (i.e., 
ubbl,Clb   ) and cannot be extended to lower or 

higher stress gradient domains.  However, using only 3 adequate fretting test conditions 

bracketing the studied stress gradient range, reliable predictions can be achieved. 

 

4.3.4 Comparison with critical plane approaches 

The analysis suggests that the critical distance changes with the applied stress gradient 

conditions contradicting the Neuber’s and Taylor’s theories which assume a constant critical 

distance value. One explanation could be related to the chosen multiaxial fatigue approach. 

Indeed, the Crossland’s stress invariants formulation is fast and very convenient for FEM 

fatigue analysis.  However, Susmel and Taylor show that the fatigue stress invariant 

formulations are not suitable for theory of critical distance [26] and critical plane fatigue 

approaches must be preferred. To clarify this aspect, the given reverse identification strategy 
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is applied for the McDiamid [27, 28] and MWCM [26] critical plane fatigue criteria. The 

corresponding equivalent stresses are expressed respectively by: 

23
a,nMcDa

2/1

u

m,n
McD *)n(.*)n(

2/

*)n(
1 

























     (53) 

and  

*)n(

*)n(
.*)n(

a

max,n
MWaMW




 ,        (54) 

with 
  23

d

dd
McD

2/

2/




 , 

2

d
dMW


 ,       (55) 

*)n(a , the shear stress amplitude relative to the plane of maximum shear stress amplitude 

(i.e. ))n((max:*n a
n

 ) and *)n(X,n  the stress normal to the plane of maximum shear stress 

amplitude (X=a: amplitude value, X=m: mean value, X=max : maximum value). 

Like for the Crossland’s analysis, the critical distance related to each fretting and fretting 

fatigue crack nucleation conditions are computed solving the following expressions: 

 McDMcD  = d  and  MWMW  = d        (56) 

The obtained McD  and MW  values are compiled in table (II). The averaged values are 

respectively m,McD   16.8 ± 7.7 µm and m,MW  16.4 ± 7.3 µm. The two critical plane 

approaches, based on an equivalent formalism, lead to similar mean critical distance values. 

Like for the Crossland analysis, these values are significantly larger than the Taylor’s 

approximation and show significant dispersions. Figure 17 confirms that even applying 

critical plane fatigue approaches, a variable evolution of the critical distance versus the stress 

gradient condition must be considered. Again, asymptotic evolutions are observed which can 

be approximated using a equivalent staircase formulation. It is interesting to note that in the 

low stress gradient domain (I), the critical distance converged to the Taylor’s prediction, 

whereas  in the high stress gradient conditions (i.e., domain III), the critical distance stabilized 

at a longer threshold values (i.e. )III(McD  ≈ 25µm and  )III(MW ≈ 20 µm). Again, applying this 

staircase description, the predictions converges to the material boundary (i.e.,  

)(E% sc,MWMW  ≈ )(E% sc,McDMcD  ≤1%) with very low dispersions (i.e.,  sc,MWMWV%   

≈  sc,McDMcDV%   ≤ 5%). Coupling the Crossland analysis the following approximation of 

the critical distance evolution can be derived:   

If max,H ≤ )I(H  ≈ 12 MPa/µm  then  C ≈ McD ≈ MW ≈ T ≈ 2/b0  
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If max,H ≥ )III(H ≈ 20 MPa/µm  then  C ≈ McD ≈ MW ≈ 2 to 2.5 0b    (57) 

With linear evolutions in the intermediate stress gradient domain. 

The convergence of multi-axial fatigue criteria is explained by noting that the largest critical 

distances remain smaller than 30µm which correspond to a  /a ratio smaller than 0.06. Figure 

7 confirms that for such small subsurface distances, the fretting stress field is nearly uniaxial 

which obviously reduces the variation between multi-axial fatigue descriptions.  

Alternatively, the evolution of the critical distance with the stress gradient condition can be 

interpreted considering the following remarks: 

- The stress gradient weigh function approach introduced by Papadopoulos [25] and co-

authors suggests that the crack nucleation process is function of the stress gradient condition 

and therefore it cannot be restricted to a single physical length scale.      

- The studied fretting stress gradient conditions are much more severe than the ones observed 

in conventional fatigue notch configurations. For such unusual high stress gradient conditions, 

it can be assumed a stress gradient influence on the critical distance parameter. Note that for 

the low stress gradient domain (I) the given results converge to the Taylor’s approximation. 

- Finally, the Taylor approach is established for a cracking failure situation linking both 

fatigue limit and crack arrest conditions. By contrast, the given analysis defines the crack 

nucleation condition as the activation of an incipient 10 µm length micro-crack which can 

leads or not to a final failure. This difference in terms of crack nucleation definition can 

explain the divergence between the given conclusions and the constant critical distance 

description predicted by the Taylor’s theory. 

 

 

 

5. CONCLUSIONS 

An extensive experimental study was performed to investigate the high cycle crack nucleation 

conditions induced by elastic plain fretting and fretting fatigue cylinder/plane contact for a 

large spectrum of contact pressure, fatigue stress, and stress gradient conditions. The 

following results were obtained: 

- Explicit formulations of the critical stress path operating at the “hot-spot” trailing contact 

border are provided by coupling Mindlin and Mc Even formalisms.  An equivalent explicit 

formulation of Crossland’s multixial fatigue criterion is also derived. 
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- Considering the quasi-unixial stress condition which is applied at the trailing contact border, 

useful fr - pmax  fretting map,  contact stress / fatigue stress fr - fa  fretting fatigue chart 

and equivalent a - m  Haigh fretting fatigue representations were introduced. However, 

such local uniaxial description, which does not take into account the very severe contact stress 

gradients, critically overestimates the cracking risk. 

- The application of the non-local critical distance approach shows that the Taylors’s 

formalism slightly overestimates the crack nucleation risk. A reverse approach established 

from a Crossland’s modeling of experimental plain fretting and fretting fatigue crack 

nucleation conditions leads to a mean critical distance value significantly larger than the 

prediction provided by the Taylor theory.  Besides, large dispersions exceeding 10% were 

observed. This conclusion was confirmed applying both McDiarmid and MWCM critical 

plane fatigue formulations.     

- Plotting the evolution of optimal critical distance versus the applied mean hydrostatic stress 

gradient imposed at the crack nucleation location shows that the critical distance is not 

constant but tends to increase asymptotically with stress gradient level. A basic “staircase” 

formulation is introduced to describe the critical distance evolution from low to high 

hydrostatic stress gradient situations. Using this simple description, the dispersion in 

prediction is reduced below 5%, which corresponds to the experimental value of crack 

nucleation detection scattering. 

The proposed variable critical distance approach appears to be an interesting strategy for 

predicting the incipient cracking phenomena generated in very severe stress gradient 

situations such as fretting contact. Deeper investigations are, however, required to transpose 

this “engineering” description to a more physical approach where both stress gradient and 

microstructure aspects could be correlated and formalized.  
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NOMENCLATURE 

Material properties  

  Young's modulus  

  Poisson’s coefficient  

u  Ultimate tensile stress 

d  Traction – compression fatigue limit (R= min/max=-1, 10
7
 cycles) 

y =y0.2%  Tensile yield stress (0.2%) 

y  Shear yield stress 

d  Shear fatigue limite (R=-1, 10
7
 cycles) 

K0  Range of the threshold value stress intensity factor (Mode I, R=-1) 

 

Contact loadings & Crack parameters 

P  Linear normal force 

Q  Fretting linear tangential force 

Q*  Fretting linear tangential force amplitude 
*
CNQ   Fretting linear tangential force amplitude related to the crack nucleation  

  condition (bp≥ bpth = 10µm) 

R   Radius of the cylinder pad 

  Fretting displacement

*   Fretting displacement amplitude 
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µ=µt   Coefficient of friction (gross slip transition) 

a   Hertzian contact radius 

c   Radius of the stick zone 

e   Eccentricity of the stick zone induced by the fatigue strain 

k=c/a   Stick ratio 

h=e/a   Eccentricity ratio 

pmax  =p0 Hertzian maximum peak pressure   

qmax   Maximum interfacial shear stress at x=-c+e 

q0=µp0  Maximum interfacial shear stress at the gross slip transition (Q*=µP, x=0)  

bp   Projected crack length (to the normal of the surface) 

bp,max   Maximum projected crack length  

bpth   Threshold crack nucleation projected crack length (10µm)  

 

 

Stress & critical distance parameters 

    Total plain fretting or fretting fatigue stress tensor 

fr
    Fretting stress tensor 

fa
    Fatigue stress tensor 

fa = max,fa  Maximum fatigue stress 

min,fa   Minimum fatigue stress 

faR    Fatigue stress ratio ( famin,fa / ) 

fr    Maximum contact fretting stress imposed at the trailing contact border (Rfr=-1) 

Tmax   Tresca shear stress 

VM    Equivalent Von Mises stress 

a,2J   Square root of the maximum amplitude of the second stress invariant 

H    Hydrostatic stress, 

max,H

 

Maximum hydrostatic stress, 

max,H  Maximum hydrostatic stress gradient averaged over a cubic volume (bpth) 

C

 

  Crossland equivalent stress 

McD

 

 McDiarmid equivalent stress 

MW

 

 MWCM equivalent stress 

a

 

  Total amplitude stress (Haigh’s analysis) 

m

 

  Total mean stress (Haigh’s analysis) 

    Critical distance from the “hot spot” stress where the fatigue analysis is  

  performed (i.e. x=-a, z=  )   

T    Taylor’s estimation of   

 

C    Crossland’s reverse identification of  

McD    McDiarmid’s reverse identification of    

MW    MWCM’s reverse identification of    
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Subscripts 

_T    Tresca shear yield limit 

_VM   Von Mises yield limit 

_RS   Reverse slip limit (h+k=1) 

_C   Crossland’s crack nucleation limit 

,a   Amplitude value 

,max   Maximum value 

,m   Mean value 

,l   Linear approximation of  )(f max,H   

,sc   Staircase approximation of  )(f max,H  

,bl   Bilinear approximation of  )(f max,H  
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Fig. 1 : Illustration of the very severe stress gradient conditions induced by fretting fatigue.  
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Fig. 2 : Experimental strategy based on combined plain fretting and fretting fatigue analysis involving 

similar contact configurations (schematics of the specimen geometries (Table II)). 
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Fig. 3: Illustration of the matrix of tests developed in this fretting fatigue investigation; (ub), 

(mb), (lb) : respectively, upper, medium and lower stress gradient bounds conditions. 
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Fig. 4: Analysis of the coefficient of friction (COF) using plain fretting experiments:  (a) Variable 

displacement method; (b) Evolution of the coefficient of friction at the sliding transition as a function 

of  contact radius and maximum Hertzian pressure. 
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Fig. 5:  Fretting crack examination:  (a) Illustration of the destructive methodology; (b) Identification 

of the crack nucleation condition for a given fretting fatigue condition (PF3 test condition). 
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Fig. 6 : Illustration of Mindlin’s surface shear distributions generated in partial slip cylinder/plane 

contact under plain fretting and fretting fatigue loading conditions. 
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Fig. 7 : Total stress field analysis ( ) of  a representative fretting fatigue test condition (FF 

2, Table II): (a) Surface maximum principal stress and Tresca shear generated during the fretting 

fatigue cycle; (b): Subsurface stress distributions along the z axis at the trailing contact border (x=-a) 

at the maximum loading stage(+Q*, fa  ,
max

 ). 
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Fig. 8 : Subsurface distribution of the Crossland criterion computed for a representative crack 

nucleation fretting fatigue condition (Table II,  FF2 condition, max,C = 476 MPa ). 
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Fig. 9:  “Q*-”contact force representation of the crack nucleation conditions (Table II): (a)   Q*- P  

fretting chart; (b) Q*- fa  fretting fatigue map (pmax=600 MPa). 
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Fig. 10: “ fr ”contact stress representation of the crack nucleation conditions (Table II ): 

(a) fr - maxp   fretting chart; (b) fr - fa  fretting fatigue chart ( maxp =600 MPa). 
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Fig. 11: Illustration of the equivalent “Fretting Fatigue Haigh’s” diagram. 
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Fig. 12 (a) Illustration of local “hot-spot” and non-local critical distance approach transposed to 

fretting fatigue crack analysis ; (b) a,2J - max,H ” hot spot” stress analysis of the plain fretting and 

fretting fatigue experiments (Table II). 
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(a)       (b) 

Fig. 13 : Application of the Critical distance approach (a) Taylor’s approximation 

( µm52b0T  ); (b) Reverse Fretting calibration ( 0m,C bµm8.10  ). 
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Fig. 14 : (a) Evolution of the critical distance extracted from the reverse Crossland analysis of fretting 

tests as a function of the gradient of the hydrostatic stress (identification of a linear approximation) 

(Table II); (b) Application of the linear approximation of the critical distance evolution versus the 

hydrostatic stress gradient. 
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Fig. 15 :  Application of the “staircase’  critical distance description: (a) Formulation of  the staircase 

sc
C variable as a function of the hydrostatic stress gradient; (b) Application of the “staircase” 

formulation  to characterize the crack nucleation response.  
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Fig. 16:  Application of the simplified bilinear approximation of the critical distance evolution with the 

applied hydrostatic stress gradient: (a) Formulation of  bl,C  bilinear approximation from plain fretting 

experiments, (b) Application of the bilinear approximation to predict plain fretting and fretting fatigue 

crack nucleation results. 

 



  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

36 

 

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Plain Fretting

Fretting Fatigue

ℓ M
W

(µ
m

)

)µm/MPa( max,H

(I) (III)(II)

)I(H )II(H

sc,MW
0)III(MW b.2

2

b
             0

T)I(MW



 

        

0

5

10

15

20

25

30

35

40

0 10 20 30 40

Plain Fretting

Fretting Fatigue

ℓ M
c
D

(µ
m

)

)µm/MPa( max,H

sc,McD

)I(H )II(H

2

b
             0

T)I(McD



 

0)III(McD b5.2

(I) (III)(II)

 

(a)        (b) 

Fig. 17:  Evolution of critical distance as a function of the applied hydrostatic stress gradient: (a)  

MWCM criterion reverse identification , (b) McDiarmid criterion reverse identification, (I: low stress 

gradient domain, II: medium  stress gradient domain, III : high stress gradient domain).  
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TABLES 

 

 

Table I : Mechanical and fatigue properties of the sstudied 35 Ni Cr Mo 16 low-alloyed steel.  

E(MPa) 

y0.2% 

(MPa) u (MPa) 

d = dtc(-1) 

(MPa) 

d = d(-1) 

(MPa) 

K0 

(MPa√m) 

205000 0.3 950 1130 575 386 3.2 

Young's modulus; Poisson’s coefficient, y0.2% : Yield stress (0.2%); u: ultimate stress; d: 

traction – compression fatigue limit (R= min/max=-1, 10
7
 cycles); dshear fatigue limite (R=-1, 

10
7
 cycles);  K0: long crack threshold (R=-1). 

 

 

 

 

Table II : Compilation of the studied test conditions (PF: plain fretting, FF: fretting fatigue). 

      
R  

(mm) 
L 

(mm) 
P  

(N/mm) 

 
fa   

(MPa) faR  pmax 

(MPa) a (mm) µt 

 *
CNQ  

(N/mm) a

c
k 

 

a

e
h 

 

Y

VM




 

fr


 (MPa)

 

)µm/MPa(

max,H
 

(µm)

C

 
(µm)

McD

 
(µm)

MW

 

PF_1 20 3 353 0 0 800 0.28 0.8 186 0.58 - 0.97 1039 29.6 17.5 22.81 14.77 

PF_2 20 3 552 0 0 1000 0.35 0.8 218 0.71 - 1.05 1125 33.4 20.5 28.15 24.17 

PF_3 40 5 398 0 0 600 0.42 0.85 271 0.38 - 0.83 887 18.0 17.97 28.39 24.4 

PF_4 40 5 707 0 0 800 0.56 0.88 287 0.70 - 0.85 913 21.1 15.94 23.11 19.55 

PF_5 40 5 1100 0 0 1000 0.70 0.75 310 0.80 - 0.89 949 23.8 16.04 23.72 19.9 

PF_6 80 8 795 0 0 600 0.84 0.79 305 0.72 - 0.62 665 12.9 1.24 3.86 2.62 

PF_7 80 8 1414 0 0 800 1.12 0.78 399 0.80 - 0.71 761 15.0 7.14 11.66 8.78 

PF_8 80 8 2209 0 0 1000 1.40 0.74 470 0.85 - 0.77 826 16.9 12.08 17.67 11.29 

FF_1 80 8 795 100 0.1 600 0.84 - 273 0.75 0.023 0.69 
 

640 13 3.03 6.97 6.97 

FF_2 80 8 795 200 0.1 600 0.84 - 261 0.76 0.046 0.78 
 

637 13 8.17 11.31 11.31 

FF_3 80 8 795 400 0.1 600 0.84 - 137 0.88 0.093 0.87 
 

525 13 8.02 15.71 20.83 

FF_4 40 8 398 100 0.1 600 0.42 - 210 0.58 0.023 0.83 
 

785 18.1 12.05 15.5 15.2 

FF_5 40 8 398 200 0.1 600 0.42 - 192 0.62 0.046 0.90 
 

757 18.2 15.48 24.74 24.74 

FF_6 40 8 398 400 0.1 600 0.42 - 100 0.83 0.093 0.93 
 

596 18.4 9.55 15.9 25.42 

FF_7 80 8 795 200 1 600 0.84 - 300 0.72 - 0.80 
 

659 12.95 3.18 7.97  

FF_8 80 8 795 400 1 600 0.84 - 280 0.74 - 0.97 
 

637 12.97 4.51 10.89  

 

 

 



  

 

 

 

> We define new fretting charts to describe the fretting fatigue crack nucleation 

> Non local fatigue approaches are required to consider stress gradient effects  

> Constant critical distance approaches fail to provide low dispersive predictions 

> The optimal critical distance length varies with the hydrostatic stress gradient 

> New variable critical distance approaches reduce the dispersion from 16% to 4% 




