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Abstract

This paper focuses on the detection of likely mislabeled instances in a learn-
ing dataset. In order to detect potentially mislabeled samples, two solutions are
considered which are both based on the same framework of topological graphs.
The first is a statistical approach based on Cut Edges Weighted statistics (CEW)
in the neighborhood graph. The second solution is a Relaxation Technique (RT)
that optimizes a local criterion in the neighborhood graph. The evaluations by
ROC curves show good results since almost 90% of the mislabeled instances are
retrieved for a cost of less than 20% of false positive. The removal of samples
detected as mislabeled by our approaches generally leads to an improvement of
the performances of classical machine learning algorithms.

Keywords: Identification of mislabeled instance, relaxation, cut edges weighted,
topological learning, geometrical graphs, separability index, machine learning.

1. Introduction

In machine learning, and more specifically in the framework of supervised
learning, we more or less explicitly assume that the learning dataset might be
noisy. Moreover, we suppose that this noise lies on the data related to the pre-
dictive variables. This noise may come from the lack of relevant predictors,
from the small size of the learning sample, from the noise due to the observa-
tion/measurement tool of data acquisition, and so forth. On the other hand, we
suppose that instances of the learning dataset are correctly labeled, therefore the
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predicted attribute is not corrupted. This is a major assumption rarely discussed
in the literature of machine learning, in comparison to the noise in predictive vari-
ables. In this paper, we will deal with the noise in the labeling.

Nowadays, specifically in the world of big data, storing, managing and re-
trieving information in data warehouses require real time annotation processes for
indexing and labeling the continuous flow of data. These processes, which may
be automatic or sometimes manual, are often imperfect and therefore generate
wrong annotations and mislabeled observations. For example, manual annotation
in data stream of images, video, medical curves and so on, can generate mis-
labeling because of human limitations, especially with a high-speed work flow.
Automatic annotation processes can also produce errors in labeling objects or sit-
uations because of artifacts or because of intrinsic limitations in the automatic
process/devices. For more details about situations that cause mislabeling, see [1].
Classical machine learning algorithms are not designed to deal with such noise,
even though some algorithms are considered to be robust to the noise in labels.
Therefore, specific pre-processing must be carried out before the learning itself.
Handling mislabeled data involves at least two tasks. The first identifies samples
that are likely mislabeled and the second decides what to do with them. For this
latter task, two options are possible: (i) each supposed mislabeled sample is with-
drawn from the learning dataset, or (ii) the true label is restored for each of them
according to a specific rule. Whatever the set of tasks accomplished in order to fix
the noise in the labels, at the end of the day, what we expect is an improvement,
or at least no deterioration of the performances of any classifier, in which ”perfor-
mance” is taken to mean the accuracy of the prediction on the test sample that is
not noisy. However, we can observe that the performances of a classifier might de-
crease after the treatment of the noise. We will propose some explanations for this
later on. For now, let us focus on the process of handling the mislabeled samples
in a learning dataset.

In this paper, we will focus on the detection of likely mislabeled instances
in the dataset, which is the keystone of our work. What to do next? Removing,
restoring or doing something else with the noisy samples that have been detected
is another issue that we will discuss only briefly. We have designed two solu-
tions for detecting potentially noisy labeling samples. Both are based on the same
framework of topological graphs. The first is a statistical approach based on the
Cut Edges Weighted statistics (CEW) in the neighborhood graph. The second is
a relaxation technique (RT) that optimizes a local criterion in the neighborhood
graph. Both solutions try to provide an estimate of the probability of the class
Y for all points in the learning sample and, depending on this probability, the
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samples that likely belong to a class other than to the one given are declared sus-
picious (likely corrupted). To compare these two methods (CEW vs. RT), we use
ROC (Receiver Operating Characteristic) curves. We have also carried out some
evaluations with four classifiers: KSVM, Random Forest, 1-NN and AdaBoost.
The goal is to check to what extent each classifier is improved by removing the
suspicious samples from the learning dataset. Various levels of noise are tried.

This article provides an update on approaches dealing with class noise that are
based on topological graphs. It provides a synthesis of experiments conducted
to evaluate and compare the two methods, both regarding the quality of the fil-
tered learning set and the performance of various machine learning methods on
this filtered learning set. This paper is organized in three main parts. The first
introduces the concepts of topological learning using proximity graphs. It leads
to a valuable tool that is a statistical test for assessing the separability of classes
into a multidimensional representation space. We show that this statistic can be
used to estimate the accuracy of any machine-learning algorithm. An evaluation
of the relevance of this approach is carried out and discussed. In this first part, we
suppose that there is no noise in the labeling. The second part deals with the noise
in the labeling. It presents and compares two methods, CEW and RT using ROC
curves. The third part assesses to what extent, removing likely mislabeled (sus-
picious) samples may improve the performance of well-known classifiers. The
conclusion includes some future paths of research.

2. Definitions and Notation

Throughout this article we use the following notation and conventions.
Considering a global population Ω, the supervised learning methods aim to

produce a model that predicts the unknown belonging class label Y (i) of an in-
stance i extracted from the global population Ω using its vector representation
X(i) associated with various real predictive attributes. The construction of the
model requires a set of labeled data, called the learning set, denoted by ΩL. We
denote the size of the learning set by n, p the number of descriptive attributes,
and k the number of categories of the class variable Y . The learning dataset ΩL

is a set of pairs (X(i), Y (i)), i = 1, 2, . . . , n, where Y (i) is the class label of i
and X(i) = (X1(i), X2(i), . . . , Xp(i)) is the p-dimensional vector corresponding
to the representation of the instance i in the p-dimensional space according to the
different predictive attributes. The quality of the model obtained is assessed on a
test set, denoted by ΩT , another dataset of labeled data which was not used during
the learning step.

3



The learning ability of a given method is strongly associated with its class sep-
arability degree in X(Ω). We consider that the classes will be easier to separate,
therefore to learn, if they fulfill the following conditions:

• the instances of the same class appear mostly gathered in the same subgroup
in the representation space;

• the number of groups is nearly equal to the number of the classes;

• the borders between groups are “simple”, with few boundary points.

2.1. Proximity Graphs and Regions of Influence
To express the proximity between examples in the representation space, we

introduce the notions of regions of influence and proximity graph used by many
researchers [2, 3], especially for the research of clusters in the representation space
[4, 5, 6]. Proximity graphs are graphs in which points close to each other by some
definition of closeness are connected.

Let Ξ be a set of points in a real space Rp. In our case, Ξ is X(Ωl) and p is the
number of attribute. The most fundamental and natural proximity graph defined
on a set of points Ξ is the nearest neighbor graph (NNG). Here, each point in Ξ is
joined by an edge to its nearest neighbor [7, 8].

Another ubiquitous proximity graph, which contains the nearest neighbor graph
as a subgraph, is the minimum spanning tree (MST) [4] (see the Figure 1(1)). Un-
like the NNG, the MST and the following graphs are connected graphs. Never-
theless for machine learning problems such as instance-based learning, the most
useful proximity graphs are adaptive in the sense that the number of edges they
contain is a function of how the data are distributed, which is not the case of the
MST. Actually the MST is a non adaptive graph, because for n points it always
contains n− 1 edges.

Let us consider two points points α and β ∈ Ξ. According to Theodoridis
and Koutroumbas [9], the edge between α and β is added to the graph if there
is no other points γ ∈ Ξ lying in the region of influence R(α, β). The region of
influence [10] of two distinct points α, β ∈ Ξ is defined as:

R(α, β) = {γ : cond[d(γ, α), d(γ, β), d(α, β)], α 6= β} (1)

where cond[d(γ, α), d(γ, β), d(α, β)] may be defined for example as:

1. max[d(γ, α), d(γ, β)] < d(α, β) (i.e., the relative neighborhood graph)
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2. d2(γ, α) + d2(γ, β) < d2(α, β) (i.e., the Gabriel graph)

The first condition defines the relative neighborhood graph (RNG) proposed
by Toussaint in 1980 as a tool for extracting the shape of a planar pattern [3]. In
this case, the region of influence is the lune between the vertices α and β (e.g., the
Figure 1(2)). The second condition defines the Gabriel graph introduced in 1969
by Gabriel and Sokal [2]. The region of influence is the sphere with the diameter
defined by the points α and β (e.g., the Figure 1(3)).

Proximity graphs have many applications in pattern recognition, and the most
well known proximity graphs, in addition to those graphs already mentioned, are
the Delaunay triangulation (DT, e.g., the Figure 1(4)) and the Urquhart graph (UG)
[5]. All these graphs are nested together in the following relationship:

NNG ⊆MST ⊆ RNG ⊆ UG ⊆ GG ⊆ DT (2)

In the following, we will use the Relative neighborhood Graph (RNG) of Tou-
ssaint [3, 11] defined in Equation 1, particularly because of its good properties for
operation in the framework of data mining [12, 13, 6].

2.2. Relative neighborhood Graph and Clusters
The relative neighborhood graph (RNG) of Ξ is a proximity graph with vertex

set Ξ, and the set of edges of the RNG of Ξ are exactly those pairs (α, β) of points
for which max[d(γ, α), d(γ, β)] ≥ d(α, β), ∀γ, γ 6= α, β, where d(α, β) denotes
the distance between two points α and β in Rp.

This definition means that the lune L(α,β) – constituted by the intersections of
hyperspheres centered on α and β with range being the edge (α, β) – is empty.
For example, on the Figure 2 (a), vertices 13 and 15 are connected because there
is no vertex on the lune L(13,15).

Unlike previous work done in the context of unsupervised learning [4, 5], we
are interested here in the use of proximity graphs in supervised learning. Con-
sequently, in the following, we define a cluster as a set of close points having
the same class. The cluster is a connected sub-graph of the neighborhood graph
where all vertices belong to the same class. There may be more clusters than the
number of classes. To build all clusters required for characterizing the structures
of the scattered data points, we proceed in two steps:

1. We generate the geometrical neighborhood graph on the learning set.
2. We remove the edges connecting two vertices belonging to different classes,

so we obtain connected sub-graphs where all vertices belong to the same
class.

5



(1) (2)

(3) (4)

Figure 1: Graphs and Regions of Influence: MST (1), RNG (2), GG (3), and DT (4)
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Figure 2: RNG and clusters with two classes: the black and the white points

The number of clusters generated gives partial information on the class sepa-
rability. If the number of clusters is low – at least equal to the number of classes
–, the classes are quite separable and we can find a learning method capable of
exhibiting the model that underlies the particular group structure. For example,
in Figure 2 (b), after cutting the four edges connecting vertices of different colors
(in dotted line), we obtain three clusters for the two classes. But if this number
tends to increase, close to the number of clusters that we might have in a random
situation, the classes can no longer be learned due to the lack of a non-random
geometrical structure.

Actually, this number of clusters cannot characterize a certain limited number
of situations that seem intuitively different. For the same number of clusters,
the situation may be very different depending on whether the clusters are easily
isolated in the neighborhood graph or not. As soon as p > 1, rather than studying
the number of clusters, we prefer to take an interest in the edges cut for building
the clusters and we will calculate the relative weight (based on the distance or
rank of the neighborhood between two vertices) of these edges in the edge set. In
our example in Figure 2 (b), we have cut four edges for isolating three clusters.

2.3. Graph-Based Indices
We will consider the following notation:

• Number of nodes in the graph: n

• Connection matrix: V = (vij), i = 1, 2, ..., n; j = 1, 2, ..., n; where vij = 1
if i and j are linked by an edge
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Table 1: Simplified Notations used for the Calculations
Notations Definition Case : W = V

S0

∑n
i=1

∑n
j=1,i 6=j wij 2a

S1
1
2

∑n
i=1

∑n
j=1,i 6=j (wij + wji)

2 4a

S2

∑n
i=1 (wi+ + w+i)

2 4
∑n

i=1 v
2
i+

• Weight matrix: W = (wij), i = 1, 2, ..., n; j = 1, 2, ..., n; where wij is the
weight of edge (i, j). The weight wij equals:

1. 1 if a weight equals a simple connection (W = V )
2. (1 + dij)

−1 when the weight is based on the distance between the ver-
tices i and j

3. ri−1 for a weight based on the rank with rj the rank of the vertex j
among the neighbors of the vertex i

Let wi+ and w+j be the sums of row i and column j. We consider that W
matrix is symmetrical (for the rank, the weights are not symmetrical, then
we will use wij = 1

2
(wij + wji))

• Number of edges: a

• Number of classes: k

• Proportion of vertices corresponding to the class yr: πr, r = 1, 2, ..., k

According to Cliff and Ord [14], we adopt the simplified notation presented
in Table 1, defining certain quantities used in the calculations. This simplification
is convenient especially when the weight W corresponds to a simple connection,
which means that this weight is equal to 1 if there is an edge, and 0 otherwise
(W = V ).

3. Quality Measures in Supervised Learning

3.1. Classical Separability Indices
There are different ways for measuring the separability of the classes in a

dataset. One is to use the Wilks’ λ [15], another is to measure the quality of the
kernel generated from this set. We can use the KTA index [16] and FSM index
[17].
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3.1.1. Wilks’ Lambda
The usual separability indicator is Wilks’ lambda, very often associated with

discriminant analysis [15]. The reference method is linear discriminant analysis,
which is based on the hypothesis of a Gaussian model with the same diagonal
covariance matrix for all classes. To find out if classes are separable in the repre-
sentation space, we testH0, the hypothesis of equality of conditional means, using
Wilks’ lambda.

By denoting WGC the covariance matrix within a group and BGC the co-
variance matrix between groups, the definition of Wilks’ lambda is :

λ =
|WGC|
|BGC|

(3)

Lambda is between 0 and 1. It approaches 0 as the discrimination quality im-
proves. The null hypothesis H0 is rejected if lambda is exceptionally small con-
sidering the distribution of lambda under H0. To calculate the p-value of lambda,
we can use the Bartlett transformation, which refers back to the Chi-square distri-
bution or the Rao transformation, which refers back to the Fisher distribution.

3.1.2. Kernel Target Alignment (KTA)
The Kernel Target Alignment (KTA) [16] tests the alignment between this

kernel and a supposed ideal kernel matrix. To do that, let C = (cij)1≤i,j≤n be the
matrix such that: {

cij = 1 if i and j have the same class
cij = 0 otherwise

The KTA measures the alignment between K, the Gaussian radial basis func-
tion, and C using the Frobenius product:

KTA(K) =
〈K,C〉F√

〈K,K〉F 〈C,C〉F
(4)

3.1.3. Feature Space-based Kernel Matrix Evaluation Measure (FSM)
The Feature Space-based Kernel Matrix Evaluation Measure (FSM) [17] is

an index of the quality measure of a kernel matrix in a 2-class problem. It takes
into account two factors: the distance between the class centers and the intra-class
variance in the direction between those centers.

Let η+ and η− the two centers, and e = η+−η−
|η+−η−| the unit vector in direction

between the class centers:
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FSM(K) =

√
1
n+

∑
η∈C+

〈η − η+, e〉2 +
√

1
n−

∑
η∈C− 〈η − η−, e〉

2

|η+ − η−|
(5)

3.2. Cut Edge Weight Statistic: Statistical Framework
Following our previous work [18], in a common point between supervised

classification and spatial analysis, we consider a spatial contiguity graph that plays
the role of the neighborhood graph [14]. The vertices of this graph are colored
with k distinct colors, using the color corresponding to its modality for each ver-
tex. The problem is (1) to describe the link between the adjacency of two vertices
and the fact they have the same color, and (2) to test the hypothesis of non signif-
icance. This would require us to test the hypothesis of no spatial autocorrelation
between the values taken by a categorical variable over spatial units. In the case
of a neighborhood graph, this would be the results for testing the hypothesis that
the class Y cannot be learned from neighborhood-based methods.

3.2.1. Definition of the Cut Edge Weight Statistic
In order to take into account a possible weighting of the edges, we deal with

the matrix of symmetrized weights W , which is reduced to the connection matrix
V if all the weights are equal to 1.

Edges linking two vertices of the same class (non cut edges) have to be distin-
guished from those linking two vertices of different classes (cut edges in order to
obtain clusters).

Let us denote by Ir the sum of weights relative to edges linking two vertices
of class r, and by Jr,s the sum of weights relative to edges linking a vertex of class
r and a vertex of class s.

The statistic I , corresponding to the non cut edges, is defined as:

I =
k∑
r=1

Ir (6)

The statistic J corresponding to the cut edges is defined as:

J =
k−1∑
r=1

k∑
s=r+1

Jr,s (7)

Insofar as I and J are connected by the relation I + J = 1
2
S0 (Table 1), we

have only to study the J statistic or its normalization J
I+J

= 2J
S0

. Both give the
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same result after standardization. We can see that I generalizes Mood’s test of
runs in Rp and k groups [19, 20].

3.2.2. Random Framework
Like Jain and Dubes [21], we consider binomial sampling in which the null

hypothesis is defined by:
H0 : the vertices of the graph are labeled independently of each other, accord-

ing to the same probability distribution (πr) where πr denotes the probability of
the class r, r = 1, 2, ..., k.

We could consider hypergeometric sampling by adding into the null hypothe-
sis the constraint of having to have nr vertices of the class r, r = 1, 2, ...k.

Rejecting the null hypothesis means either the classes are not independently
distributed or the probability distribution of the classes is not the same for the
various vertices. In order to test the null hypothesis H0 using statistic J (or I), we
first had to study the distribution of these statistics under H0.

3.2.3. I and J Distribution under the Null Hypothesis
To test H0 with the statistic J , we will use two-sided tests if we are surprised

by abnormally small values of J (good separability of the classes) and by abnor-
mally large values (deterministic structure or pattern presence). Hypothesis H0

is rejected when J produces an extraordinary value taking into account its dis-
tribution under H0. So, we have to establish the distribution of J under H0 in
order to calculate the p-value associated with the observed value of J as well as
to calculate the critical value of J at the significance level α0. This can be calcu-
lated either by simulation, by permutation or by normal approximation. In the last
case, we have to calculate the mean and the variance of J under H0. According to
Cliff and Ord [14], the proof of asymptotic normality for statistic J under bino-
mial sampling follows from a theorem of Noether [22]: J will be asymptotically
normally distributed if S0 − 2× V ar(J) is exactly of order n−1.

3.2.4. Boolean Case
The two classes defined by Y are denoted 1 and 2. According to Moran [23],

Ui = 1, if the class of the ith vertex is 1 and Ui = 0 if the class is 2, i = 1, 2, ..., n.
We denote π1 the vertex proportion of class 1 and π2 the vertex proportion of class
2. Thus:

J1,2 =
1

2

∑
2

wij (Ui − Uj)2 =
1

2

∑
2

wijZij (8)
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Table 2: Results related to the Statistic J1,2

Variable Mean Variance
Ui π1 π1π2

Zij = (Ui − Uj)2 2π1π2 2π1π2 (1− 2π1π2)
J1,2 S0π1π2 S1π

2
1π

2
2 + S2π1π2

(
1
4
− π1π2

)
J1,2 if wij = vij 2aπ1π2 4aπ2

1π
2
2 + π1π2 (1− 4π1π2)

∑n
i=1 v

2
i+

where Ui are independently distributed according to Bernoulli’s distribution
of parameter π1, denoted B(1, π1). It should be noted that the variables Zij =
(Ui − Uj)2 are distributed according to the distribution B(1, 2π1π2), but are not
independent. Actually, the covariances Cov(Zij, Zkl) are null only if the four
indices are different. Otherwise, when there is a common index, one can obtain:

Cov(Zij, Zil) = π1π2(1− 4π1π2) (9)

Table 2 summarizes the various results related to the statistic J1,2.
The p-value of J1,2 is calculated from standard normal distribution after center-

ing and reducing its observed value. The critical values for J1,2 at the significance
level α0 are:

J1,2;α0/2
= S0π1π2 − u1−α0/2

√
S1π2

1π
2
2 + S2π1π2

(
1

4
− π1π2

)
(10)

J1,2;1−α0/2
= S0π1π2 + u1−α0/2

√
S1π2

1π
2
2 + S2π1π2

(
1

4
− π1π2

)
(11)

3.2.5. Multiclass Case
To extend these results to the multi-class case, according to Cliff and Ord [14],

we reason with the I and J statistics already defined. These statistics are I and J
defined on formula 12 and formula 13:

I =
k∑
r=1

Ir =
1

2

∑
2

wijTij (12)

J =
k−1∑
r=1

k∑
s=r+1

Jr,s =
1

2

∑
2

wijZij (13)
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Table 3: Test Statistics and their Means
Test statistic Mean
I =

∑k
r=1 Ir

1
2
S0

∑k
r=1 π

2
r

J =
∑k−1

r=1

∑k
s=r+1 Jr,s S0

∑k−1
r=1

∑k
s=r+1 πrπs

where Tij and Zij are random boolean variables that indicate if the vertices
i and j are of the same class (Tij) or not (Zij). From previous results, we easily
obtain the mean of I and J , as presented in Table 3.

Because I and J are connected by the relation I+J = 1
2
S0, these two variables

have the same variance, denoted σ2 = V ar(I) = V ar(J). The calculation of σ2

is complicated due to the need to consider the covariances. In accordance with
Cliff and Ord [14], we obtain the following results for binomial sampling:

4σ2 = S2

k−1∑
r=1

k∑
s=r+1

πrπs (14)

+ (2S1 − 5S2)
k−2∑
r=1

k−1∑
s=r+1

k∑
t=s+1

πrπsπt (15)

+ 4 (S1 − S2)

[
k−1∑
r=1

k∑
s=r+1

π2
rπ

2
s − 2

k−3∑
r=1

k−2∑
s=r+1

k−1∑
t=s+1

k∑
u=t+1

πrπsπtπu

]
(16)

3.2.6. Complexity of the Test
Different steps are taken into consideration: computing the matrix distance is

in O(p × n2), with n the number of examples and p the attributes, and building
the neighborhood graph in Rp is in O(n3). Because the number of attributes p is
very small compared to the number of instances n, the test is in O(n3).

Several solutions are possible to apply CEW and RT methods to big data. The
first one, especially useful for online learning of data flows is to use incremen-
tal construction procedures of topological graphs [24]. The second solution is to
adapt sampling graph methods [25] to our problem and to work with only a sam-
ple of the training data. A sample, particularly a stratified sample, is enough to
provide a good idea of the class separability in the database. We intend to develop
these approaches in our future work.
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4. Tests on Benchmark Datasets

4.1. Benchmark Description
The Cut Edge Weight (CEW) statistic and other classical separability indices

were studied experimentally on 22 benchmarks (see Table 4) from the UCI Ma-
chine Learning Repository [26]: Arcene, Bupa (Liver Disorders, BUPA), Ecoli,
Glass Identification, Image Segmentation, Ionosphere, Iris, Letter Recognition
(subset R vs. B), Musk (Version 1), Parkinsons, Pima Indians Diabetes, Planning
Relax (EEG records during two mental states: planing/relax), Ringnorm Bench-
mark Problem, Connectionist Bench (Sonar, Mines vs. Rocks), Spam base, Three-
norm Benchmark Problem, Blood Transfusion Service Center, Twonorm Bench-
mark Problem, Waveform Database Generator (Version 1), Wine, Breast Cancer
Wisconsin (Original), and Yeast. Note that the datasets “Ringnorm Benchmark
Problem”, “Three norm Benchmark Problem”, and “Two norm Benchmark Prob-
lem” are generated by the R functions mlbench.ringnorm, mlbench.threenorm,
and mlbench.twonorm respectively from the mlbench R package [27, 28, 26].
These databases were chosen because they have only digital attributes and a sym-
bolic class. Because the geometrical neighborhood is sensitive to the scale mea-
sure, we standardized all the attributes of the domains.

4.2. Test Values on a Benchmark Set
The normalized values obtained on the Cut Edge Weight (CEW) statistic were

compared to error rates obtained by different supervised machine learning algo-
rithms on all these benchmarks:

1. AdaBoost [29]
2. C4.5 [30, 31]
3. 1-NN (KNN with K=1) [32, 33]
4. SVM [34, 35]
5. Random Forest [36, 37]
6. Logistic Model Trees [38, 31]
7. LogitBoost [39, 31]
8. Mean error of the classifiers [40]
9. Majority Committee of the classifiers [40]

The results are presented in Figures 3 to 5. Each point in these figures repre-
sents a benchmark using the value of a classification index (as Y-axis) and machine
learning algorithm (X-axis). First, Figure 3 and Tables 5 and 6 present the error
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Table 4: Dataset Description: numbers of instances, of attributes and classes, mean of the neigh-
bours obtained for the Relative neighborhood Graph (RNG) and for the Gabriel Graph (GG)

Name (UCI) # inst. # attr. # classes RNG neighb. GG neighb.
Arcene 200 1017 2 3 174
Bupa 345 5 2 3 12
Ecoli 336 7 8 3 10
Glass 214 9 6 3 10
Image Segm. 2309 18 7 3 17
Ionosphere 351 33 2 2 23
Iris 150 4 3 2 6
Letter R vs. B 1524 16 2 4 49
Musk 1 476 166 2 3 121
Parkinsons 195 22 2 3 18
Pima 768 8 2 4 30
Planning Relax 182 12 2 3 10
Ringnorm 2128 20 2 4 359
Sonar 208 60 2 3 18
Spam base 4601 57 2 5 105
Threenorm 2128 20 2 6 561
Transfusion 748 4 2 13 17
Twonorm 2128 20 2 6 530
Waveform 5000 21 3 6 581
Wine 178 13 3 3 27
Wisc. Breast Cancer 681 9 2 20 56
Yeast 1484 8 10 4 23
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rates obtained by these methods on a 10-cross validation with the benchmarks and
the CEW statistical values previously calculated without weighting, which means
by using only the simple connection between two vertices of the computed graph:
1 if there is an edge between these vertices, otherwise 0. Second, the Figure 4
presents the results obtained by the supervised learning methods while changing
the method of computing the weights of the CEW statistic (without weighting =
simple connection, by using the distance or by using the rank). Third, Figure 5
presents the results obtained with other indices known for giving an idea of the
separability of the classes on a dataset presented in the previous section.

In Figure 3, the error rates for the different learning methods, and particulary
the mean of these methods, are well correlated with the relative cut edge weight
(J/(I + J)). Except for AdaBoost, there is a linear relation between the classifi-
cation methods and the values obtained for the CEW statistic. In the Table 5 and
Table 6, the values of the coefficient of determination (the adjusted R2) are very
close to 1, which confirms the linear relationship between the error rate obtained
by standard supervised machine learning methods and the CEW statistic. This lin-
ear relationship between another standard class separability index (FSM, KTA or
Wilks’ Lambda) and the error rate obtained by the classification methods cannot
be found as shown in the Figure 5. Moreover, as shown in Figure 4, there is no
significant difference between the different ways of computing the weights of the
CEW statistic. In the following, we will then use the simplest way for computing
the weight of the CEW statistic: the simple connection.

We can conclude from all these results that the CEW statistic is a good indica-
tor of the separability of classes. Moreover, It provides us with a way to estimate
the accuracy rate of any classifier. Hence, knowing the linear relation between
CEW and any classifier among those we have tested, we may identify which one
will be the best for a given dataset.

5. Noisy Data – Experimental Validation

Keeping the framework of neighborhood graphs and CEW indicator in mind,
we will now introduce two methods for identifying suspicious samples, i.e. sam-
ples that may have been mislabeled. Contrary to the previous section, where the
noise was assumed to lie in the predictive attributes, and not on the predicted one,
here we assume the inverse. We will present two methods. One is based on the
CEW criterion and the other on a relaxation technique. Both will be evaluated
according to the same protocol and the same dataset. First, we describe the eval-
uation process.
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Figure 3: CEW Values and Classification Method Error rate on a Benchmark Set
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Figure 4: CEW Values and Weights: Simple Connection, Distance or Rank
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Figure 5: Other Classification Indices and Mean of the Error Rate obtained by the Classification
Methods: Feature Space-based Kernel Matrix Evaluation Measure (FSM), Kernel Target Align-
ment (KTA) and Wilks’ Lambda
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Table 5: Mean Error Rates obtained by Cross-Validation on the Datasets (1/2)

Dataset RF KSVM 1-NN 3-NN C4.5 LMT adaBoost LogitBoost Majority
Arcene 0.175 0.210 0.190 0.215 0.330 0.255 0.300 0.300 0.185
Bupa 0.285 0.318 0.379 0.347 0.335 0.329 0.312 0.300 0.271
Ecoli 0.124 0.127 0.188 0.167 0.176 0.164 0.361 0.152 0.136
Glass 0.205 0.314 0.286 0.295 0.286 0.290 0.590 0.271 0.229
Image segm. 0.020 0.057 0.034 0.042 0.029 0.036 0.732 0.040 0.018
Ionosphere 0.066 0.046 0.134 0.163 0.106 0.080 0.080 0.086 0.066
Iris 0.053 0.047 0.053 0.060 0.073 0.033 0.033 0.060 0.040
Letter RvsB 0.018 0.016 0.019 0.018 0.058 0.030 0.089 0.089 0.015
Musk1 0.104 0.098 0.117 0.113 0.164 0.126 0.243 0.221 0.091
Parkinsons 0.105 0.116 0.042 0.089 0.163 0.147 0.121 0.132 0.089
Pima 0.236 0.241 0.299 0.275 0.243 0.226 0.254 0.246 0.233
Planning relax 0.317 0.283 0.356 0.333 0.283 0.283 0.283 0.339 0.283
Ringnorm 0.052 0.015 0.333 0.397 0.141 0.147 0.239 0.185 0.094
Sonar 0.150 0.180 0.140 0.140 0.340 0.245 0.250 0.210 0.185
Spam base 0.047 0.067 0.084 0.090 0.070 0.064 0.098 0.082 0.048
Threenorm 0.139 0.129 0.216 0.180 0.282 0.165 0.323 0.303 0.144
Transfusion 0.247 0.212 0.297 0.239 0.212 0.226 0.236 0.219 0.218
Twonorms 0.032 0.026 0.057 0.035 0.178 0.025 0.133 0.135 0.031
Waveform 0.144 0.134 0.236 0.205 0.244 0.130 0.292 0.168 0.143
Wine 0.018 0.018 0.041 0.035 0.076 0.018 0.129 0.035 0.012
Wisc. Breast Cancer 0.03 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.03
Yeast 0.37 0.4 0.46 0.44 0.43 0.41 0.59 0.4 0.39
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Table 6: Mean Error Rates obtained by Cross-Validation on the Datasets (2/2)

Dataset CEW s. connex. CEW dist. CEW rank Wilks’ λ KTA FSM
Arcene 0.260 0.269 0.237 – 0.099 0.000
Bupa 0.392 0.384 0.387 0.880 0.350 2.088
Ecoli 0.223 0.204 0.212 0.005 0.539 –
Glass 0.356 0.325 0.334 0.079 0.374 –
Image segm. 0.083 0.062 0.062 0.000 0.372 –
Ionosphere 0.137 0.083 0.136 0.380 0.194 1.304
Iris 0.090 0.078 0.073 0.023 0.695 –
Letter RvsB 0.075 0.056 0.047 0.296 0.098 0.785
Musk1 0.167 0.150 0.136 – 0.065 0.103
Parkinsons 0.121 0.114 0.086 0.507 0.125 0.508
Pima 0.310 0.296 0.302 0.697 0.199 1.112
Planning relax 0.455 0.429 0.420 0.979 0.113 0.198
Ringnorm 0.188 0.145 0.235 0.914 0.032 0.046
Sonar 0.226 0.195 0.182 0.379 0.098 0.003
Spam base 0.082 0.039 0.100 0.440 0.060 2.406
Threenorm 0.258 0.255 0.237 0.496 0.031 0.001
Transfusion 0.279 0.281 0.297 1.761 0.422 1.748
Twonorms 0.091 0.089 0.074 0.199 0.031 0.002
Waveform 0.250 0.249 0.243 0.293 0.025 –
Wine 0.093 0.074 0.068 0.019 0.153 –
Wisc. Breast Cancer 0.0067 0.0034 0.026 0.15 0.68 0.58
Yeast 0.52 0.51 0.5 0.079 0.25 –

Table 7: Characteristics of the Linear Relationship between the CEW Statistic and the Error
Rate obtained by Classification Methods: Coefficient, Constant and Adjusted R2 (Measure of
Goodness-of-Fit of Linear Regression)

coefficient constant adjusted R2

Random Forest 0.748 -0.0253 0.921
SVM 0.788 -0.0266 0.865
1-NN 0.902 -0.00953 0.848
C4.5 0.737 0.0376 0.765

Logist. Mod. Tree 0.789 -0.00971 0.882
AdaBoost 0.742 0.103 0.267

LogitBoost 0.731 0.0272 0.845
Majority committee 0.748 -0.0247 0.945

Mean 0.780 0.00823 0.950
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5.1. CEW Test: Identification of Suspect Examples
As shown in [41], an example label is subject to caution when its class is

different from that of the examples belonging to its geometrical neighborhood,
even more so as the classes are easily discernible in the representation space. In
order to identify such an example, we propose calculating the sum of the cut edges
weights that run from this example (i.e., edges which link this example to other
examples in its geometrical neighborhood that do not have the same label).

Let i be an example whose class is yr(i). We denote by πr(i) the global propor-
tion of the class yr(i) in the learning set. The labeling of an instance i is considered
as a non suspicious if, in its geometrical neighborhood, the proportion of examples
that do not have the same label yr(i) is significantly smaller than 1− πr(i).

We denote the matching null hypothesis as H0. Thus, for a non suspicious
example the weight of cut edges is significantly smaller than its expected value
under H0.

Under H0, in the neighborhood of i, the probability of an instance being dif-
ferent from the class of i is 1 − πr(i). We note as ni the number of examples
belonging to the neighborhood of i, wij is the weight of the edge connecting the
vertices i and j, and Ji is the absolute weight of cut edges running from i.

Ji =

ni∑
j=1

wijIi(j) (17)

where Ii(j) are independent and identically distributed random variables, ac-
cording to Bernouilli’s law of parameters 1 − πr(i), under H0. The mean E and
the variance V ar of Ji under H0 are given by:

E(Ji/H0) =
(
1− πr(i)

) ni∑
j=1

wij (18)

V ar(Ji/H0) = πr(i)
(
1− πr(i)

) ni∑
j=1

w2
ij (19)

We propose ranking all examples i, i = 1, 2, ..., n, according to the level of
the normal distribution function to which the realization of Ji corresponds under
H0 (left unilateral p-value). In so doing, we define ideally three categories of
examples: likely uncorrupted examples located in the left rejection region (signif-
icantly less cut edges than expected under H0, and consequently more neighbors
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of the same label), doubtful examples that do not contradict H0 and likely cor-
rupted examples located in the right rejection region (significantly more cut edges
than expected under H0, and consequently fewer neighbors with the same label).

If ni is large enough and the weights are not too unbalanced, we can use the
normal approximation of Jsi (Ji standardized). Otherwise, we can proceed by
simulation in order to calculate the associated p-values to each Ji. In order to
characterize those three types of examples efficiently, we chose to control two
parameters that are fixed by the user:

• θ1, the left risk, poses the boundary between likely uncorrupted and doubtful
examples;

• θ2, the complement of the right risk, poses the boundary between doubtful
and likely corrupted examples.

An example will be considered as likely uncorrupted, doubtful or likely cor-
rupted, depending on Jsi left unilateral p-value being smaller than θ1, between θ1

and θ2 or greater than θ2. By varying θ1 and θ2, we can modulate the definition
of each type of example. The closer θ1 is to 0, the more severe the definition of
likely uncorrupted examples. The closer θ2 is to 1, the more severe for the likely
corrupted examples. The closer θ2 is to θ1, the less room there is for doubtful
examples.

5.2. Relaxation Principle
The second method we propose for detecting samples that belong to a suspi-

cious class considers a criterion termed label consistency [42]. The underlying
assumption of classification is that similar individuals in the representation space
should have have the same labels.

Suppose the predicted attribute Y has k labels. First we can define a profile for
each instance i by li = li1, . . . , lik where lij is the proportion of examples labeled
yj in the neighborhood of i. Then

L =


l1
l2
...
ln


be the n × k matrix containing all the profile for each instance of the learning
dataset. We need to change the profile to a new matrix L′ in order to improve the
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local consistency. The consistency is a combination of two criteria, termed local
similitude and global similitude defined as follows:

Let Ni be the neighborhood of each individual i, in [42], Zighed et al. try to
minimize a combination of 2 functions:

• local similitude:

Floc =
∑
i∈Ω

1

# (Ni)
∑
j∈Ni

∣∣l′i − l′j∣∣2 (20)

• global similitude:
Fglob =

∑
i∈Ω

|l′i − li|
2 (21)

Let pi = 1
#(Ni)

then we need to minimize

F (L) = αFloc + (1− α)Fglob (22)

= α
∑
i∈Ω

pi
∑
j∈Ni

∣∣l′i − l′j∣∣2 + (1− α)
∑
i∈Ω

|l′i − li|
2 (23)

= α
∑
i∈Ω

pi
∑
j∈Ni

k∑
l=1

(l′il − l′jl)2 + (1− α)
∑
i∈Ω

k∑
l=1

(l′il − lil)2 (24)

=
k∑
l=1

[
α
∑
i∈Ω

pi
∑
j∈Ni

(l′il − l′jl)2 + (1− α)
∑
i∈Ω

(l′il − lil)2

]
︸ ︷︷ ︸

Fl

(25)

Each term Fl may be minimized separately, which means that ∀l ∈ {1, . . . , k} we
have to find the vector l′l = t(l′1l, . . . , l

′
nl) minimizing Fl. Since Fl is a sum of

convex functions, it is convex and admits a general minima for which the gradient
is null. This implies that ∀i ∈ Ω, ∂Fl

∂l′ik
= 0 and, consequently, l′l is the solution of

the linear equation:
∀i ∈ {1, . . . , n},

αl′il
∑
j∈Ni

(pi + pj)− α
∑
j∈Ni

l′jl(pi + pj) + (1− α)(l′il − lil) = 0 (26)

Note that this equation is possible thanks to the symmetry of the neighborhood
graphs as i ∈ Nj ⇔ j ∈ Ni.
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The optimum profile of each individual is to be compared to the original pro-
file, a vector of classes where only one component is 1, which corresponds to the
initial belonging class, while the other components are null since at the beginning
each sample belongs to only one class.

5.3. Evaluation
Here we wish to assess the ability of both methods to find instances with a

noisy label (instances with corrupted label). For each instance, our methods pro-
vide a way to compute a suspicion index, but the chance to detect the corrupted
instances depends on the chosen decision threshold. We carried out several com-
parisons on different databases:

• First we carried out a comparison based on the ROC curve. We chose the
ROC curve because it provides an overall assessment of performance and
integrates the various trade-offs between benefits (true positives) and costs
(false positives). In addition, the area under the ROC curve is insensitive to
class imbalance.

• For information purposes, we compute recall, precision and F-measure for
some remarkable decision thresholds (0.25, 0.50, 0.75 for both CEW and
RT). The corresponding values are reported in Table 8 for the Cut Edge
Weight (CEW) and Table 9 for the Relaxation Technique (RT).

Table 8: Precision and Recall for different Values of the Threshold using CEW
Database Noise Threshold=0.25 Threshold=0.5 Threshold=0.75

Rate Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure
Bupa 0.1 0.54 0.14 0.22 0.77 0.12 0.21 0.88 0.10 0.19
Bupa 0.25 0.55 0.31 0.40 0.76 0.27 0.40 0.92 0.26 0.41
Bupa 0.40 0.48 0.43 0.46 0.71 0.41 0.52 0.89 0.41 0.56
Iris 0.10 0.85 0.67 0.75 0.93 0.37 0.53 0.99 0.23 0.37
Iris 0.25 0.77 0.69 0.73 0.94 0.51 0.66 0.98 0.38 0.55
Iris 0.40 0.65 0.68 0.66 0.86 0.56 0.68 0.96 0.48 0.64

Spam base 0.1 0.85 0.39 0.54 0.94 0.24 0.38 0.98 0.16 0.27
Spam base 0.25 0.72 0.49 0.58 0.87 0.38 0.53 0.96 0.31 0.47
Spam base 0.4 0.55 0.51 0.53 0.78 0.45 0.57 0.94 0.43 0.59
Twonorms 0.1 0.91 0.64 0.75 0.96 0.41 0.58 0.98 0.25 0.40
Twonorms 0.25 0.78 0.66 0.72 0.92 0.50 0.65 0.97 0.37 0.54
Twonorms 0.4 0.56 0.59 0.58 0.79 0.51 0.62 0.93 0.45 0.61
Waveform 0.1 0.77 0.52 0.62 0.88 0.35 0.50 0.94 0.24 0.38
Waveform 0.25 0.70 0.67 0.68 0.86 0.52 0.65 0.94 0.41 0.57
Waveform 0.4 0.60 0.69 0.64 0.82 0.58 0.68 0.93 0.51 0.66
Wisc. B. C. 0.1 0.94 0.70 0.80 0.98 0.47 0.64 0.99 0.32 0.49
Wisc. B. C. 0.25 0.88 0.74 0.80 0.93 0.58 0.72 0.97 0.47 0.64
Wisc. B. C. 0.4 0.63 0.67 0.65 0.83 0.57 0.68 0.94 0.50 0.65

Six classical datasets were used for this. The labels were corrupted at the
rate of 10% with respect to the initial distribution of the classes. The Figure 6
presents the ROC (Receiver Operating Characteristics) curves of both methods

24



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bupa 10% of noise

False positives

Tr
ue

 p
os

iti
ve

s

Using p−value of CEW
Using relaxation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iris 10% of noise

False positives
Tr

ue
 p

os
iti

ve
s

Using p−value of CEW
Using relaxation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

spam 10% of noise

False positives

Tr
ue

 p
os

iti
ve

s

Using p−value of CEW
Using relaxation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Twonorms 10% of noise

False positives

Tr
ue

 p
os

iti
ve

s

Using p−value of CEW
Using relaxation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Waveform 10% of noise

False positives

Tr
ue

 p
os

iti
ve

s

Using p−value of CEW
Using relaxation

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wisc. Breast Cancer 10% of noise

False positives

Tr
ue

 p
os

iti
ve

s

Using p−value of CEW
Using relaxation

Figure 6: Receiver Operating Characteristic (ROC) for 6 Datasets with 10% of Noise
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Table 9: Precision and Recall for different Values of the Threshold using Relaxation
Database Noise Threshold=0.25 Threshold=0.5 Threshold=0.75

Rate Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure
Bupa 0.1 0.11 0.22 0.14 0.50 0.18 0.27 0.85 0.11 0.20
Bupa 0.25 0.08 0.38 0.14 0.45 0.36 0.40 0.87 0.27 0.41
Bupa 0.4 0.08 0.52 0.14 0.38 0.45 0.41 0.85 0.41 0.55
Iris 0.1 0.68 0.86 0.76 0.91 0.64 0.75 0.99 0.30 0.46
Iris 0.25 0.58 0.88 0.70 0.92 0.70 0.80 1.00 0.41 0.58
Iris 0.4 0.41 0.80 0.54 0.84 0.69 0.76 0.98 0.49 0.65

Spam base 0.1 0.51 0.71 0.59 0.85 0.53 0.65 0.96 0.29 0.44
Spam base 0.25 0.28 0.78 0.42 0.71 0.65 0.68 0.93 0.39 0.55
Spam base 0.4 0.14 0.65 0.23 0.51 0.59 0.55 0.88 0.45 0.60
Twonorms 0.1 0.60 0.96 0.74 0.94 0.72 0.82 0.99 0.30 0.46
Twonorms 0.25 0.19 0.96 0.32 0.88 0.81 0.84 0.99 0.34 0.51
Twonorms 0.4 0.08 0.81 0.14 0.65 0.72 0.68 0.97 0.42 0.59
Waveform 0.1 0.67 0.77 0.72 0.91 0.36 0.51 0.99 0.15 0.26
Waveform 0.25 0.56 0.87 0.68 0.92 0.53 0.67 0.99 0.28 0.44
Waveform 0.4 0.38 0.84 0.52 0.93 0.57 0.71 1.00 0.41 0.58
Wisc. B. C. 0.1 0.79 0.92 0.85 0.95 0.80 0.87 0.99 0.50 0.66
Wisc. B. C. 0.25 0.36 0.95 0.52 0.90 0.87 0.88 0.98 0.42 0.59
Wisc. B. C. 0.4 0.06 0.80 0.12 0.74 0.81 0.77 0.96 0.43 0.59

applied, respectively, with the six datasets. As we can see, results are very good
since we retrieve around 90% of the corrupted labels for only around 20% of false
detection. Both methods behave similarly and their results are very close even
though the method based on relaxation slightly outperforms the other one. The
results are stable even though we vary the percentage of corrupted labels up to
30%.

6. Prediction from Filtered Training Set

In the literature, many authors have already shown that some machine learning
algorithms are resistant to the label noise in the training set. We have also observed
these results on many datasets.

6.1. Removing Suspicious Instances
We have aimed to assess to what extend the removal of suspicious instances

might improve the accuracy of a given machine learning method. We selected
four machine learning algorithms (MLA): SVM, Random Forest, 1-NN and Ad-
aBoost. Four datasets (D) from machine learning repository were used. For each
(MLA,D) pair, we carried out tree experiments with corrupted labels of the learn-
ing dataset. The noise was not processed in the first experiment, the second ex-
periment removed those instances detected as mislabeled by CEW and the third
removed the instances detected as mislabeled by the relaxation method. The labels
of the learning datasets were corrupted at several levels up to 40% in respect to
the original distribution of the classes. At each noise level up to 40%, a 10-cross
validation was performed. The labels of the 10 test samples of the cross valida-
tion remained at the original values without alteration, contrary to the 10 learning
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datasets generated. On the “Spam” Dataset, the Figure 7 shows the results of the
four classifiers: AdaBoost (top-left), 1-NN (top-right), SVM (bottom, left) and
Random Forest (bottom, right) are shown. On this dataset, removing instances
deemed corrupted by our methods does not significantly improve either AdaBoost
nor SVM as the tree curves are almost superposed. These two MLAs seem not to
be sensitive to the noise of the labeling on this case. Nevertheless, removing in-
stances deemed mislabeled improves the accuracy of Random-Forest and 1-NN in
cross validation. We observe a slight advantage when the detection is done by the
CEW method. For the “two norms” dataset, the Figure 8, there are slight improve-
ments for all MLAs specially for 1-NN. For the “waveform” dataset, a significant
improvement for AdaBoost and 1-NN whereas KSM and Random Forest behave
similarly and remain almost insensitive to the noise.

6.2. Filter or Relabeling
Since we detected suspicious points, it is possible to relabel them instead of

removing them. For the relaxation algorithm, this is quite natural as the obtained
profile gives a label which maximizes the similitude. But for the CEW filtering,
this leads to several issues:

• Which relabeling algorithm should be used?

• To relabel a given point, should we consider the other suspicious point or
not?

In preliminary test, we tried several solutions to these problems. During these
tests, the relabeling technique did not give any better results than the filtering
technique. For example, for “Waveform” dataset and Random Forest, relabeling
using CEW statistic gives results similar to filtering: slightly worse for small per-
turbation (15.5% err. rate vs 14.9% error rate) and slightly better for bigger ones
(20% vs 22%). In other examples, the relabeling technique is always the worst!
Using waveform, with 1-NN algorithm, the error rate of filtering using CEW is
always smaller (by 10%) than the one using relabeling. To our mind, these poor
results are due to the fact that relabeling may add errors. As the filtering technique
is not perfect, the relabeled points may be good ones. In that case, filtering may
be considered as a resumption of the learning set (it suppresses the border points)
while relabeling may just add errors. This is especially the case when the wrong
points are quite rare and this explains that relabeling is generally worse for small
perturbations.
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Figure 7: Filtering Improvement on Spam Dataset
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Figure 8: Filtering Improvement on Twonorm Dataset
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Figure 9: Filtering Improvement on Waveform Dataset
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7. Conclusion and Future Work

In this paper we have proposed two solutions for detecting noisy labels in
learning datasets. An extensive evaluation has shown that both methods proposed
here are very efficient since they are able to detect around 90% of the noise for
about 20% false alerts.

Several possibilities may be considered to improve our methods:

• SVM shows insensitivity to the correction of the label corruption performed
by our methods. We think that some improvements might be achieved in the
way that detected mislabeled instances are removed.

• The class imbalance is a major problem in machine learning [43]. Depend-
ing on the learning method used, different strategies have been proposed to
deal with class imbalance (e.g., for decision trees [44] or for self-organizing
learning [45]). Can the class imbalance affect CEW and RT methods? CEW
is only partially affected by the class imbalance: it compares an observed
proportion and a global fixed proportion. The class imbalance can only have
an impact through the size of the geometrical neighborhood of the consid-
ered instance. This size is probably smaller if the considered instance be-
longs to the minority class, which affects the statistical significance of the
test statistic. The same applies to RT which is based on two criteria, local
similarity and global similarity. Only the overall similarity may be affected
by the class imbalance. An interesting idea would be to distinguish the
outliers on the majority class and the minority class outliers.

• The adaptation of CEW and RT methods to big data is an important issue,
which should be sorted out through the use of graph sampling methods.
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