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Abstract. sparql is the w3c standard query language for querying
data expressed in the Resource Description Framework (rdf). There
exists a variety of sparql evaluation schemes and, in many of them,
estimating the cardinality of intermediate results is key for performance,
especially when the computation is distributed and the datasets very
large. For example it helps in choosing join orders that minimize the size
of intermediate subquery results.
In this context, we propose a new cardinality estimation based on statis-
tics about the data. Our cardinality estimation is a worst-case analy-
sis tailored for sparql and capable of taking advantage of the implicit
schema often present in rdf datasets (e.g. functional dependencies). This
implicit schema is captured by statistics therefore our method does not
need for the schema to be explicit or perfect (our system performs well
even if there are a few “violations” of these implicit dependencies).
We implemented our cardinality estimation and used it to optimize the
evaluation of sparql queries: equipped with our cardinality estimation,
the query evaluator performs better against most queries (sometimes by
an order of magnitude) and is only ever slightly slower.
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1 Introduction

sparql is the w3c standard query language for querying data expressed in the
Resource Description Framework (rdf). There exists a variety of sparql evalu-
ation schemes and, in many of them, estimating the cardinality of intermediate
results is key for performance, especially when the computation is distributed
and the datasets very large. For exemple it helps in choosing join orders that
minimize the size of intermediate subquery results.

In this context, we propose a new cardinality estimation based on statistics
about the data. Our cardinality estimation is a worst-case analysis tailored for
sparql and capable of taking advantage of the implicit schema often present



in rdf datasets (e.g. functional dependencies). This implicit schema is captured
by statistics therefore our method does not need for the schema to be explicit
or perfect (our system performs well even if there are a few “violations” of these
implicit dependencies).

We implemented our cardinality estimation and used it to optimize the eval-
uation of queries by sparqlgx which is a top competitor in distributed sparql
query evaluation [5] . We benchmark sparqlgx: equipped with our cardinality
estimation, the query evaluator sparqlgx performs better against most queries
(sometimes by an order of magnitude) and is only ever slightly slower.

2 SPARQL & BGP

In this section we present a simplified version of the Basic Graph Pattern (BGP)
fragment of the W3C standard sparql. The rdf defines three different types of
values: Litterals, Internationalized Resource Identifiers and Blank nodes. Since
the core part of the cardinality estimation problem does not depend on the
distinction between those different parts we suppose a set V of valid values
and in this view an rdf graph G is simply a finite subset of V3: the element
(s, p, o) ∈ G describe an edge between the node subject s and the node object o
labeled by the predicate p.

A Triple Pattern (TP) is composed of three elements: a subject, a predicate
and an object. Each of these three elements is either a variable or a value. The
set of valid values is V, we denote the set of valid variable names (or Column
names) by C. The set of variables of TP is called its domain.

Definition 1 (mapping) A “mapping” is a function from C to V with a finite
domain. Formally a “mapping” corresponds to a set of the form {ki → vi | i ∈ I}
with I finite and the (ki)i∈I all distinct. The set {ki | i ∈ I} is called the domain
of the mapping, written dom({ki → vi | i ∈ I}).

Definition 2 (mapping collection) A “mapping collection” is a set of map-
pings with the additional information of a domain d1, . . . , dk shared by all map-
pings in the collection (i.e. all the mappings in the collection have d1, . . . , dk as
domain).

Definition 3 (multiset) A finite multiset M = (m1, . . . ,mk), or bag, is a gen-
eralization of a set but where the order of the elements is unimportant but where
the same elements can appear several times. A finite multiset over the set S (i.e.
∀i. mi ∈ S) can be represented via its indicator function χM : S → N, for v ∈ S,
χM (v) = |{i ∈ 1..k | mi = v}|.

The solutions of a TP (s, p, o) on a graph G is the mapping collection whose
domain is the domain of (s, p, o) and a mapping m belongs to this mapping
collection if (s′, p′, o′) ∈ G (where x′ = x when x ∈ V and x′ = m(x) otherwise).



Definition 4 (compatible mappings) Two mappings m1 and m2 are com-
patible (written m1 ∼ m2 when m1(c) = m2(c) for all c ∈ dom(m1)∩ dom(m2).

Given two compatible mappings m1 and m2 we define their sum as the map-
ping whose domain is dom(m1) ∪ dom(m2) and (m1 + m2)(c) = m1(c) when
c ∈ dom(m1) and m2(c) otherwise.

Definition 5 (Join) Given two mapping collections A and B, the join of A and
B (written A B) is defined as (mA +mB | mA ∼ mB and (mA,mB) ∈ A×B)

A BGP is a list of TPs (t1, . . . , tn), the solution of a BGP (t1, . . . , tn) is the
collection mapping corresponding to the join of solutions of individual TP (the
join operation is associative and commutative so all join orders lead to the same
mapping collection).

3 Summaries

We will now manipulate projections of mapping collections. If c in the domain
of M = m1, . . . ,mn be a mapping collection, the values (m1(c), . . . ,mn(c)) form
a multiset which is the projection of the mapping collection M on the column
c. Our cardinality estimation is based on summaries of projection of mapping
collections.

The projections that we manipulate are often very large (as large as the query
answer), that is why, in practice, we manipulate multiset summaries. Multiset
summaries are a tight representation that over-approximates multisets.

3.1 Definitions

Given a multiset M represented via its indicator function χ over the set S, we
will compute a small set S′ ⊂ S and represent M in two parts: the elements
of M belonging to S′ and the other elements (belonging in S \ S′). In order to
represent the elements of M in S′, we simply restrict the indicator function χ to
this S′ and to represent the multiset E of elements of M in S \ S′ we use three
integers: T the Total number of elements in E, D the number of Distinct values
in E, and M the maximal multiplicitY of an element in E.

Definition 6 (Multiset summary) Formally, a multiset summary corresponds
to a quintuple < S′, χ′, T,D, Y > where S′ ⊂ S, χ′ is a function from S′ to N,
and (T,D, Y ) ∈ N3. < S′, χ′, T,D, Y > is a summary of the multiset represented
by χM : S → N when:

– χ′ over-approximates χ on S′, i.e. ∀v ∈ S′ χ(v) ≤ χ′(v);
– Y is an upper bound on χ(v) for v 6∈ S′, i.e. ∀v ∈ S \ S′ χ(v) ≤ Y ;
– T is an upper bound on the number of elements counted with multiplicity

of the multiset not in S′, i.e.
∑

v∈S\S′ χ(v) ≤ T ;
– D is an upper bound on the number of distinct elements of the multiset that

is not in S′, i.e. |{v ∈ S \ S′ | χ(v) > 0}| ≤ D.



Definition 7 (Column summary) The multiset summary < S, χ, T,D, Y >
is a column summary for the column c of the mapping collection m1, . . . ,mk

when < S,χ, T,D, Y > is a summary for the multiset m1(c), . . . ,mk(c).

Definition 8 (Collection Summary) N, s is a summary for the collection
mapping over the domain c1, . . . , ck if N ∈ N is greater than the number of
mappings in the collection and s is set of pairs s = {(c1, S1), . . . , (ck, Sk)} where
each Si is a column summary of the column ci.

3.2 Example of summaries

Let us consider the following dataset:

A memberOfTeam 1 A memberOfTeam 2 A memberOfTeam 3

B memberOfTeam 1 C memberOfTeam 1 E memberOfTeam 3

1 teamLeader B 2 teamLeader A 3 teamLeader C

4 teamLeader D 5 teamLeader E

There are two predicates: memberOfTeam and teamLeader. A possible col-
lection summary for the TP (?s memberOfTeam ?o) is 6, {?s →< {A}, {A →
3}, 3, 3, 1 >; ?o →< {1}, {1 → 3}, 3, 2, 2 >} and for the TP (?s teamLeader ?o)
one possible collection summary is 5, {?s →< {B}, {B → 1}, 4, 4, 1 >; ?o →<
{1}, {1→ 1}, 4, 4, 1 >}.

With only the information of these summaries we can deduce that, in this
dataset, the relation induced by memberOfTeam, is such that the subject A might
appear several times but – except for this A – other team members have only
one team. In addition, we know that the team 1 has 3 members and the other
teams have less than 2 members.

In the summary of the relation induced by teamLeader (i.e. the relation
between ?s and ?o in (?s teamLeader ?o)) we see that this relation is bijective:
all the subjects ?s and all the objects ?o are each present only once.

Therefore if we need to compute the solutions of:
(?member memberOfTeam ?team . ?team teamLeader ?leader) we know
that there are less than 6 solutions: the relation teamLeader is bijective therefore
the number of solutions of this BGP is less than the number of solutions for
(?member memberOfTeam ?team).

More generally the summaries allow us to capture the “subject maximum
arity” and the “object maximum arity” while first taking out a few outliers.
We designed summaries this way because real datasets often have an implicit
schema with a low arity for most subject or object that is violated only for a
few categories. For instance, DBpedia contains 28373 triples informing of which
artist belongs to which band. In this dataset no artist belongs to more than
8 bands however DBpedia has 22 special names for unknown artists (such as
Guitar) that appear much more than 8 times (e.g. 164 times for Guitar).

Another example with DBpedia is movies and directors, each movie often has
a few number of directors and each director has generally a relatively limited



number of directed movies, except for a small number of them. On DBpedia,
there are 118448 triples with the information of a movie and one of its director.
There are only 150 directors with more than 50 directed movies and only 41
movies with more than 10 directors but the most prolific director has 290 directed
movies and one movie has 26 directors.

3.3 Simple operations on summaries

We define the following operations on multiset summaries:

– count(cs, v): the function that returns the number of times the value v can
appear in a multiset summarized by cs;

count(< S,χ, T,D, Y >, v) =

{
χ(v) v ∈ S
Y v 6∈ S

– truncate(cs, n): the multiset summary where we enforce that each value ap-
pear at most n times. Formally, truncate(< S,χ, T,D, Y >) =
< S,min(χ, n),min(T,D×n), D,min(Y, n) > (wheremin(χ, n)(x) = min(n, χ(x)));

– limit(cs, n): the multiset summary where we enforce that there are at most
n elements. More precisely we have limit(< S,χ, T,D, Y >) =
< S,min(χ, n),min(T, n),min(D,n),min(Y, n) >

– size(cs): the estimated size of the multiset summarized by cs, size(< S,χ, T,D, Y > ) =∑
x∈S χ(x) + T .

– the sum of two multisets over S represented by χ1 and χ2 is defined as
(χ1 +χ2)(x) = χ1(x) +χ2(x). The sum of two multiset summaries is defined
as< S1, χ1, T1, D1, Y1 > + < S2, χ2, T2, D2, Y2 >=< S1∪S2, χ

′, T1+T2, D1+
D2, Y1 + Y2 with:

χ′(x) =


χ1(x) + χ2(x) when x ∈ S1 ∩ S2

χ1(x) + Y2 when x ∈ S1 \ S2

Y1 + χ2(x) when x ∈ S2 \ S1

We have the property that if a multiset m1 is summarized by s1 and m2 by
s2 then m1 +m2 is summarized by s1 + s2.

– Given a multiset {m1, . . . ,mk} with its summary < S,χ, T,D, Y > we can
multiply them by an integer n: {m1, . . . ,mk} × n is the multiset containing
k×n elements: n elements mi for each 1 ≤ i ≤ k; this multiset is summarized
by < S,χ, T,D, Y > ×n =< S, χ× n, T × n,D, Y × n > (with (χ× n)(x) =
χ(x)× n).

– Given a collection summary s = (t, {(c1, s1), . . . , (ck, sk)}) we note: summ(s, ck) =
sk the summary for the column ck; cols(s) = {c1, . . . , ck} the set of columns
of the summarized collection and size(s) = t the size of the summary over-
approximated by s.



4 Computing collection summaries representing the
solutions of a single TP

4.1 Computing a multiset summary from a multiset

Given a multiset defined by χ on the set S we compute its multiset summary
of size K by sorting S by χ decreasing, we extract from this the set S′ of the
K first elements (S′ ⊆ S, the set of size K with the biggest χ). Then the
computed summary is < S′, χ, T,D, Y > where T =

∑
x∈S\S′ χ(x), D = |{x ∈

S \ S′ | χ(x) > 0}| and Y = maxx∈S\S′(χ(x)).
Choosing K allows to set a balance between precision of summaries and the

time needed to compute them. In practice we adopt the same constant K for all
summaries. We notice that computing summaries with several thousands of ele-
ments performs well in practice. In section 8, we report on practical experiments
with K = 3000.

4.2 Gathering statistics

In the rdf format, the predicate carries the “semantic” relationship. In most
datasets there is usually a limited number of different predicates in the datasets
and in queries variable predicates are relatively rare [2].

During the load phase we compute the list of all predicates P (in one pass
over the data) and (in a second pass) we compute for each p ∈ P (in parallel),
a collection summary corresponding to the solution of the TP (?s p ?o). To
do that, we compute the list Tp of triples that have p as a predicate, we then
compute a multiset summary op for the object of Tp and a multiset summary sp
for the subjects of Tp, the collection summary is |Tp|, {(?s, sp), (?o, op)}.

Summaries are computed recursively: we start by computing summaries for
individual TP and then combine them. Let (ts tp to) be a TP, let us show how
to compute its associated summary.

4.3 Fixed predicate tp = p

Let us consider first, the cases where the predicate is fixed to a value p, depend-
ing on whether the subject is fixed (either the variable ?s or the value s) and
whether the object is fixed (either ?o or o) we have four cases (the case (s, ?o)
is symmetrical to (?s, o) and thus not treated):

Case ts =?s and to =?o: the returned summary is simply: size(sp), {(?s, sp), (?o, op)}.

Case ts = s and to = o: this TP has either 0 or 1 solution and binds 0 columns.
The returned summary is (0, ∅) when count(sp, s) = 0 or count(op, o) = 0 and
(1, ∅) otherwise.

Case ts =?s and to = o: this TP has, at most, count(op, o) solutions and only
binds the column ?s. The returned summary is count(op, o), {(?s, truncate(sp, 1))}.



4.4 Variable predicate tp =?p

Let us note r, the collection summary for the solutions of (ts tp to), the idea is
to combine the summaries si (summary for (ts pi to)) for each pi ∈ P . We build
r such that size(r) =

∑
pi∈P size(si) and for each eventual bounded column c

(c ∈ {?s, ?o}), then summ(r, c) =
∑

pi∈P summ(si, c) and, finally, the summary
for the column ?p, is < P,χp, 0, 0, 0 > where χp(pi) = size(si).

4.5 Duplicated variable

It is possible in sparql to have a variable that is present twice (or thrice).
Since there are only three parts to If tp is the duplicated variable, we apply the
replacement scheme proposed in 4.4 but we replace all the duplicated part (and
not only tp).

If the predicate is not duplicated but we have a duplicated variable then the
triple is of the form (?s p ?s) (if the predicate is variable we first apply the
replacement scheme).

Let Tp, {(?s, sp), (?o, op)} be the collection summary pre-computed for the
TP (?s p ?o) with sp =< Ss, χs, Ts, Ds, Ys >. Then we compute the possible
number of different values in the intersection of the multiset represented by sp
and op: n = min(ns, no) where ns = min(Ds, |{x ∈ So \ Ss | χs(x) > 0}|)
and no = min(Do, |{x ∈ Ss \ So | χo(x) > 0}|) the collection summary is
n, {?s,< Ss ∩ So,min(χs, χo, 1),min(no, ns),min(no, ns), 1 >}

5 The multiplicative factor

Given two collection summaries sA (resp. sB) summarizing two collections map-
pings A = {A1, . . . , An} (resp. B = {B1, . . . , Bm}) we want to compute a col-
lection summary for the solutions of A B. In order for this summary to be
precise, we will introduce in this section the “multiplicative factor” and in the
next section we will show how to use the multiplicative factor to compute a
relatively precise summary for A B.

The collection mapping A B can be seen as a cartesian product A×B where
we removed mappings (mA,mB) that do not agree on all the common columns
of A and B. Each mapping m is thus built using a unique pair (mA,mB) ∈ A×B
(but such a pair does not necessarily correspond to a mapping of A B). If we
track which mappings of A and B were used to build which mappings of A B,
we can count for each mapping mA ∈ A its “multiplicative factor”: the number
of mappings in A B that were built using mA. The i-th multiplicative factor
of A toward B is defined as the i-th greatest multiplicative factor of an element
of A (or 0 if |A| < i).

As summaries work with over-approximation we will show in this section
how to compute, with only the summaries for A and B, a bound for the i-th
multiplicative factor mult(sA, sB , i), i.e. an over-approximation to mult(A,B, i)
for any A and B such that A (resp. B) is summarized by sA (resp. sB).



5.1 A common column

Let c be a column shared between A and B (note that such c a does not necessar-
ily exist). A mapping mA ∈ A can only be combined with mappings mB ∈ B to
form mappings of A B when mA(c) = mB(c). Therefore, a mapping mA ∈ A
can only be used to build, at most, count(summ(sB , c),mA(c)) mappings of
A B.

Let csA =< SA, χA, TA, DA, YA > (resp. csB =< SB , χB , TB , DB , YB >)
be the column summary for the column c in sA (resp. in sB) then for each
v ∈ SA ∪ SB there are, at most, count(sA, v) mappings of A and each can be
combined with count(csB , v) mappings of B. To that we need to add that the,
at most, TA mappings m ∈ A with m(c) 6∈ SA ∪ SB can each be joined with, at
most, YB elements.

In total this gives us TA+
∑

v∈SA∪SB
count(csA, v) values that over-approximate

the various multiplicative factors of elements of A. By sorting these values, the
i-th greatest value gives us a bound on mult(sA, sB , i).

Note that the mappings with values for the columns c falling into SB \ SA

might be counted twice: each of the TA elements produce YB mappings of A B,
but for each v ∈ SB \ SA we also counted that YA mappings produced χB(x)
each. However, this is not an actual issue since we combine the several bounds
on mult(sA, sB , i), in particular, i > size(sA) implies mult(sA, sB , i) = 0 and
size(sA) ≤ TA +

∑
v∈SA

count(csA, v).

5.2 General case

There are no more than size(sA) mappings in A and each can be used in at
most size(sB) mappings of A B, we have a first bound:

mult(sA, sb, i) ≤

{
size(sB) when i ≤ size(sA)

0 otherwise

Then, we simply use the technique presented earlier on each column shared
between the domains of A and B. Each column giving us a new bound on
mult(sA, sB , i) and we combine all of them: ifmult(sA, sB , i) ≤ k1 andmult(sA, sB , i) ≤
k2 then mult(sA, sB , i) ≤ min(k1, k2).

Finally we compute a bound total(sA, sB , n, k) on the number of mappings
of A B that can be built using n different mappings of A when we know that
each of those mappings has a multiplicative factor bounded by k ∈ N ∪ {∞}:

total(sA, sB , n, k) =
∑
i≤n

min(k,mult(sA, sB , i))

6 Joining summaries

Given two collection summaries sA (resp. sB) summarizing two collections map-
pings A = {A1, . . . , An} (resp. B = {B1, . . . , Bm}) we want to compute a col-
lection summary for the solutions of A B.



We suppose that we computed a bound for total(sA, sB , n, k). The total num-
ber of mappings ofA B can be bounded bymin(total(sA, sB , size(A), size(B)),
total(sB , sA, size(B), size(A)).

6.1 Combining summaries for non common columns

Let c be a column in the domain of A but not in the domain of B, let csA =<
SA, χA, TA, DA, YA > be the summary for the column c of A, the summary we
compute for the column c of A B is < Sa, χ

′, T ′, DA, Y
′ > where:

– T ′ = total(sA, sB , TA,∞)
– Y ′ = total(sA, sB , YA,∞)
– χ′ = total(sA, sB , χ(x),∞)

Columns that are in the domain of B but not in the domain of A are treated
symmetrically.

6.2 Combining summaries for a common column

Let c be a column in the domain of bothA andB, let csA =< SA, χA, TA, DA, YA >
(resp. csB =< SB , χB , TB , DB , YB >) be the summary for the column c of A
(resp. of B). Each mapping m of A will be used in at most count(csB ,m(c))
mappings of A B, therefore the count(csA,m(c)) mappings sharing the value
m(c) will be used in, at most, total(sA, sB , count(csA,m(c)), count(csB ,m(c)))
mappings of A B. Note that by symmetry between A and B we also have
that it will be used in, at most, total(sB , sA, count(csB ,m(c)), count(csA,m(c)))
mappings of A B.

Our summary for the column c ofA B is< Sa∪Sb, χ
′, T ′,min(DA, DB), Y ′ >

where:

– T ′ = min(total(sA, sB , TA, YB), total(sB , sA, TB , YA))
– Y ′ = min(total(sA, sB , YA, YB), total(sB , sA, YB , YA))
– χ′(x) = min(total(sA, sB , count(csA, x), count(csB , x)),

total(sB , sA, count(csB , x), count(csA, x)))

7 Optimization of distributed BGP query plans with
summaries

In this section, we present how to use a cardinality estimation to optimize the
query plan of sparql-gx [5] a distributed sparql query evaluator.

7.1 Query plan

We suppose that the evaluator has access to the four following primitives:

– TP (t) take a TP t and returns the mapping collection solution of t;



– HashJoin(a, b) take two terms a and b and return the join of the mapping
collections return by a and b;

– Distribute(v, a, b) take two terms a and b, stores the mapping collection
returned by a into v and then evaluates b;

– LocalJoin(a, v) returns the join of mapping collection returned by a and the
mapping collection stored into v.

The idea behing the Distribute(v, a, b) primitive is to compute once the solu-
tion for a store it into the variable v that is distributed to all computing nodes.
This way, during the computation of b, if we come across a LocalJoin(c, v) then
each computing node holds the whole mapping collection v and the join can be
done locally.

7.2 Query plan cost

We now present how to compute the cost of a query plan. We note sol(a) the
mapping collection return by evaluating the query plan a and size(a) its size.
We do not have access to the actual size of the mapping collection solution of a
query plan but all query plans corresponds to BGP and we know how to estimate
their size: given a BGP, we compute a collection summary s and its estimated
cardinality is just size(s). Since our cardinality estimation is a worst case, our
query plan cost estimation also constitutes a worst-case analysis.

Our query plan cost analysis is conditioned by three constants:

– shuffleCost we suppose that the cost of shuffling a mapping collection has
a cost linear in its size with a coefficient shuffleCost,

– distributeCost we also suppose that the cost of distributing a mapping col-
lection is linear with a coefficient distributeCost, however the Distribute
operation breaks when the mapping collection does not fit into RAM, that
is why we have:

– broadcastThreshold that indicates the maximum size of a mapping collec-
tion that we can distribute.

In our translation, the individual TP are all translated exactly once, we set
their cost to 0.

For a HashJoin(a, b) we need to compute a and b then shuffle a (resp. b) so
that they are hashed on dom(sol(a))∩dom(sol(b)), this costs shuffleCost×size(a)
(resp. shuffleCost×size(b)) but only if a (resp. b) is not already correctly shuf-
fled. We also need to materialize HashJoin(a, b, ) (even if both component are
already shuffled) which costs size(HashJoin(a, b)).

For a Distribute(v, a, b) we need to compute a, distribute it to all workers and
then compute b, therefore the cost ofDistribute(v, a, b) is distributeCost×size(a)+
size(b) (plus the cost of compute a and b). However Distribute(v, a, b) can break
if a is not small enough to fit into RAM, that is why we impose size(a) <
broadcastThreshold.

For a LocalJoin(a, v) we need to compute a and join it with v (that is already
computed) it costs size(LocalJoin(a, v)) (plus the cost of computing a).



7.3 Finding the best query plan

Given a BGP (t1, . . . , tn) the naive translation is to simply join TP (ti) using at
each step a hash-join algorithm:HashJoin(TP (t1), HashJoin(. . . , TP (tn)) . . . ).

The naive translation is often not the most efficient plan: we might have to
materialize large intermediate results (that could be avoided by using a different
join order) and it might also yields shuffles that could be avoided. For instance, if
t1 and t4 bind ?a, t2 binds ?a and ?b, t3 binds ?b and ?c, then the naive translation
shuffles t1 and t2 on ?a then it shuffles t1 t2 and t3 on ?b and finally it shuffles
t1 t2 t3 and t4 on ?a whilst the order (((t1 t4) t2) t3) implies one less
(potentially costly) shuffle.

Furthermore, the HashJoin algorithm is not always the most appropriate
join algorithm [3]: when one mapping collection is large enough compared to
the other then a broadcast-join (i.e. Distribute the small dataset to all workers
then do a LocalJoin) avoids a costly shuffle of the large dataset to the price of
sending a small mapping collection to all workers.

Finally, when a triple ti binds only one variable v, has a small number of so-
lutions and at least one of the tj , with j 6= i, contains v in its domain, it might be
more efficient to broadcast-filter ti. Broadcast-filtering ti consists in computing
Distribute(vi, TP (ti), P ) where P is a term computing t′1 . . . t′i−1 t′i+1 . . . t

′
n

and TP (t′j) = LocalJoin(TP (tj), vi) if v is in the domain of tj and TP (t′j) =
TP (tj) otherwise.

To find the query plan minimizing our cost estimation, we essentially enu-
merate possible plans: that filter-broadcast or not triples, with all possible join
orders and for each join we consider the hash-join and the broadcast-joins. Our
algorithm thus enumerate an exponential number of plans. However, with a few
simple heuristics to cut down the number of plans and the heavy use of memo-
ization, performs well in practice as we now illustrate.

8 Experimental results

8.1 Prototype

We implemented the aforementioned algorithms in the sparqlgx query evalu-
ator and benchmark the impact our cardinality estimation on the performance.
The source code of our prototype is available online at the address: https:

//github.com/tyrex-team/sparqlgx/.

Our Cardinality Estimator “summaries” was compared to the “stats” version
of sparqlgx [5] that re-organizes TP using statistics about the dataset collected
at load time plus general heuristic to obtain a fast query execution plan. We
also compared “summaries” to the “NoCartesian” that simply avoid cartesian
products.
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Fig. 1: Time spent to answer Lubm and WatDiv queries

8.2 Setup

Our prototype uses Spark version 2.1.0 in a cluster of two computing nodes
running debian each equipped with 20 GB of RAM and 24 cores of computation.
The dataset was stored using Hadoop 2.7.3.



8.3 Datasets and queries

sparqlgx was tested against the benchmark Lubm [6] 10k that contains 1.38
billions triples and weight 232 GB uncompressed while the WatDiv [1] 10k con-
tains 1.10 billions triples and weight 149GB.

In Lubm, most queries (Q4 to Q13) compute an empty answer unless the
dataset is extended with reasoning. We did not extend the dataset with reasoning
but we left those queries as it is an interesting use-case of our method to detect
empty answers (which it fails to do in Q6 and Q11).

The times spent in evaluating each query of this benchmark are shown in
figure 1. These times do not include the translation time that took less than one
second for all queries. Notice that the time axis of the figure 1 is logarithmic.

8.4 Experimentation

Between each query the spark cluster was stopped and relaunched. However the
OS did not restart between queries and stores a cache of recently read files in
RAM. We ran all queries three times and interleaved the different methods so
that all methods benefit equally from this cache. We took the best of the three for
each method (other metrics would give an advantage to the last tested method).
All experiments were stopped after 20 minutes of computation.

The statistics we collected with a double pass on the data during the load
phase and the size of the collected statistic weight 2.6MB for WatDiv and 2.8MB
for Lubm.

8.5 Results

On all almost all queries, the sparqlgx query evaluator equipped with our
“summaries” goes faster than both the NoCartesian and the “stats” approaches.
The exception are the complex WatDiv queries where the “stats” approach beats
our “summaries” approach: C1 (40s versus 30s), C2 (49s versus 46s) and C3
(292s versus 263s). But even in those cases our algorithm is slower by only a
reasonable margin.

On the opposite there are several queries with a non-empty result where our
method vastly outperforms the “stats” module, on Lubm10k: on Q2 (175s vs
1680s) and on WatDiv10: the star shaped queries (e.g. 13s versus 56s for S1),
for L3 (6.5s versus 13.2s), for F5 (19s versus 35s), etc.



Lubm Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Summaries 29.96 174.9 23.99 0.72 0.67 14.33 0.727 0.699 0.69 0.727 15.37 0.67 0.698 20.82
Stats 45.96 1200 60.15 474.78 20.16 14.37 181.1 140.2 304.5 28.67 20.89 31.67 14.88 20.77

WatDiv Query C1 C2 C3 S1 S2 S3 S4 S5 S6 S7
Summaries 40.089 49.102 292.348 13.498 11.149 11.456 9.613 10.036 9.632 7.607
Stats 29.188 46.107 263.76) 56.29 17.225 12.735 13.65 12.085 16.944 16.833

WatDiv Query F1 F2 F3 F4 F5 L1 L2 L3 L4 L5
Summaries 14.462 15.573 27.756 19.273 19.428 9.718 9.285 6.519 6.781 9.303
Stats 20.256 26.872 29.638 26.808 35.241 13.201 9.176 13.247 8.949 9.282

Fig. 2: Query time results for sparql-gx against Lubm10k and WatDiv 10k with
the “stats” and “summaries” optimizers

9 Related work

Estimating the number of solutions for a query has long been viewed as a key
element in the optimization of queries and it is a well-studied problem in the
relational world [13]. Various techniques successful in the relational world (e.g.
histograms [8,12]) have been less successful for the semantic web [4,10] . The
main reasons for that is the heterogeneous and string nature of rdf [10] and the
fact that sparql queries usually contain a lot of self-joins that are notoriously
hard to optimize [14].

Various works have tackled the specific issue of cardinality estimation for
sparql. A line of work [15] introduced the “selectivity estimation” now in use
in several sparql evaluators [16] (and close to what the “stats” module does
for sparqlgx to which we compare “summaries”). The “selectivity estimation”
assumes the statistical independence of the various parts of a TP. Variants of
this method have been implemented in popular sparql query evaluators (e.g.
in RDF-3X [11]).

A second line of work [9] takes as input an actual schema and produces an
optimized query plan based based on information extracted from the schema.

A third line of work [10] tries to derive the implicit schema of an rdf graph
by fitting nodes into characteristic sets, or by summarizing [7] the graph into
large entities. These approaches are the closest to our approach in spirit but they
tend to focus on finding an implicit schema type for nodes while our approach
is more focused on finding an implicit schema for edges.

The “summaries” approach presented in this paper can also be seen as a
complement of existing methods. Indeed, we provide a worst-case analysis and
a worst-case analysis can always be easily combined with any other analysis.

10 Conclusion

We introduced a new concept: collection summaries. We showed how to com-
pute collection summaries for Basic Graph Patterns and how they can be used



to estimate the cardinality of query answers. Experimental results show that
this cardinality estimation allows to improve the performance of sparql query
evaluation.
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