Louis Jachiet
email: louis.jachiet@inria.fr

Pierre Genevès
email: pierre.geneves@cnrs.fr

Nabil Layaïda
email: nabil.layaida@inria.fr

Optimizing sparql query evaluation with a worst-case cardinality estimation based on statistics on the data

Keywords:

sparql is the w3c standard query language for querying data expressed in the Resource Description Framework (rdf). There exists a variety of sparql evaluation schemes and, in many of them, estimating the cardinality of intermediate results is key for performance, especially when the computation is distributed and the datasets very large. For example it helps in choosing join orders that minimize the size of intermediate subquery results. In this context, we propose a new cardinality estimation based on statistics about the data. Our cardinality estimation is a worst-case analysis tailored for sparql and capable of taking advantage of the implicit schema often present in rdf datasets (e.g. functional dependencies). This implicit schema is captured by statistics therefore our method does not need for the schema to be explicit or perfect (our system performs well even if there are a few "violations" of these implicit dependencies). We implemented our cardinality estimation and used it to optimize the evaluation of sparql queries: equipped with our cardinality estimation, the query evaluator performs better against most queries (sometimes by an order of magnitude) and is only ever slightly slower.

Introduction

sparql is the w3c standard query language for querying data expressed in the Resource Description Framework (rdf). There exists a variety of sparql evaluation schemes and, in many of them, estimating the cardinality of intermediate results is key for performance, especially when the computation is distributed and the datasets very large. For exemple it helps in choosing join orders that minimize the size of intermediate subquery results.

In this context, we propose a new cardinality estimation based on statistics about the data. Our cardinality estimation is a worst-case analysis tailored for sparql and capable of taking advantage of the implicit schema often present in rdf datasets (e.g. functional dependencies). This implicit schema is captured by statistics therefore our method does not need for the schema to be explicit or perfect (our system performs well even if there are a few "violations" of these implicit dependencies).

We implemented our cardinality estimation and used it to optimize the evaluation of queries by sparqlgx which is a top competitor in distributed sparql query evaluation [START_REF] Graux | SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache Spark[END_REF] . We benchmark sparqlgx: equipped with our cardinality estimation, the query evaluator sparqlgx performs better against most queries (sometimes by an order of magnitude) and is only ever slightly slower.

SPARQL & BGP

In this section we present a simplified version of the Basic Graph Pattern (BGP) fragment of the W3C standard sparql. The rdf defines three different types of values: Litterals, Internationalized Resource Identifiers and Blank nodes. Since the core part of the cardinality estimation problem does not depend on the distinction between those different parts we suppose a set V of valid values and in this view an rdf graph G is simply a finite subset of V 3 : the element (s, p, o) ∈ G describe an edge between the node subject s and the node object o labeled by the predicate p.

A Triple Pattern (TP) is composed of three elements: a subject, a predicate and an object. Each of these three elements is either a variable or a value. The set of valid values is V, we denote the set of valid variable names (or Column names) by C. The set of variables of TP is called its domain.

Definition 1 (mapping) A "mapping" is a function from C to V with a finite domain. Formally a "mapping" corresponds to a set of the form {k i → v i | i ∈ I} with I finite and the (k i) i∈I all distinct. The set {k i | i ∈ I} is called the domain of the mapping, written dom({k i → v i | i ∈ I}).

Definition 2 (mapping collection) A "mapping collection" is a set of mappings with the additional information of a domain d 1 , . . . , d k shared by all mappings in the collection (i.e. all the mappings in the collection have d 1 , . . . , d k as domain).

Definition 3 (multiset)

A finite multiset M = (m 1 , . . . , m k), or bag, is a generalization of a set but where the order of the elements is unimportant but where the same elements can appear several times. A finite multiset over the set S (i.e. ∀i. m i ∈ S) can be represented via its indicator function χ

M : S → N, for v ∈ S, χ M (v) = |{i ∈ 1..k | m i = v}|.
The solutions of a TP (s, p, o) on a graph G is the mapping collection whose domain is the domain of (s, p, o) and a mapping m belongs to this mapping collection if (s , p , o) ∈ G (where x = x when x ∈ V and x = m(x) otherwise).

Definition 4 (compatible mappings) Two mappings m 1 and m 2 are compatible (written

m 1 ∼ m 2 when m 1 (c) = m 2 (c) for all c ∈ dom(m 1) ∩ dom(m 2).
Given two compatible mappings m 1 and m 2 we define their sum as the mapping whose domain is dom(m 1) ∪ dom(m 2) and (m 1 + m 2)(c) = m 1 (c) when c ∈ dom(m 1) and m 2 (c) otherwise.

Definition 5 (Join) Given two mapping collections A and B, the join of A and B (written

A B) is defined as (m A + m B | m A ∼ m B and (m A , m B) ∈ A × B)
A BGP is a list of TPs (t 1 , . . . , t n), the solution of a BGP (t 1 , . . . , t n) is the collection mapping corresponding to the join of solutions of individual TP (the join operation is associative and commutative so all join orders lead to the same mapping collection).

Summaries

We will now manipulate projections of mapping collections. If c in the domain of M = m 1 , . . . , m n be a mapping collection, the values (m 1 (c), . . . , m n (c)) form a multiset which is the projection of the mapping collection M on the column c. Our cardinality estimation is based on summaries of projection of mapping collections.

The projections that we manipulate are often very large (as large as the query answer), that is why, in practice, we manipulate multiset summaries. Multiset summaries are a tight representation that over-approximates multisets.

Definitions

Given a multiset M represented via its indicator function χ over the set S, we will compute a small set S ⊂ S and represent M in two parts: the elements of M belonging to S and the other elements (belonging in S \ S). In order to represent the elements of M in S , we simply restrict the indicator function χ to this S and to represent the multiset E of elements of M in S \ S we use three integers: T the Total number of elements in E, D the number of Distinct values in E, and M the maximal multiplicitY of an element in E.

Definition 6 (Multiset summary) Formally, a multiset summary corresponds to a quintuple < S , χ , T, D, Y > where S ⊂ S, χ is a function from S to N, and (T, D, Y) ∈ N 3 . < S , χ , T, D, Y > is a summary of the multiset represented by χ M : S → N when:

χ over-approximates χ on S , i.e. ∀v ∈ S χ(v) ≤ χ (v); -Y is an upper bound on χ(v) for v ∈ S , i.e. ∀v ∈ S \ S χ(v) ≤ Y ; -T is an upper bound on the number of elements counted with multiplicity of the multiset not in S , i.e. v∈S\S χ(v) ≤ T ; -D is an upper bound on the number of distinct elements of the multiset that is not in S , i.e. |{v ∈ S \ S | χ(v) > 0}| ≤ D.

Definition 7 (Column summary) The multiset summary < S, χ, T, D, Y > is a column summary for the column c of the mapping collection m 1 , . . . , m k when < S, χ, T, D, Y > is a summary for the multiset m 1 (c), . . . , m k (c).

Definition 8 (Collection Summary) N, s is a summary for the collection mapping over the domain c 1 , . . . , c k if N ∈ N is greater than the number of mappings in the collection and s is set of pairs s = {(c 1 , S 1), . . . , (c k , S k)} where each S i is a column summary of the column c i .

Example of summaries

Let us consider the following dataset: With only the information of these summaries we can deduce that, in this dataset, the relation induced by memberOfTeam, is such that the subject A might appear several times but -except for this A -other team members have only one team. In addition, we know that the team 1 has 3 members and the other teams have less than 2 members.

A memberOfTeam 1 A memberOfTeam 2 A memberOfTeam 3 B memberOfTeam 1 C memberOfTeam 1 E memberOfTeam
In the summary of the relation induced by teamLeader (i.e. the relation between ?s and ?o in (?s teamLeader ?o)) we see that this relation is bijective: all the subjects ?s and all the objects ?o are each present only once.

Therefore if we need to compute the solutions of: (?member memberOf T eam ?team .

?team teamLeader ?leader) we know that there are less than 6 solutions: the relation teamLeader is bijective therefore the number of solutions of this BGP is less than the number of solutions for (?member memberOf T eam ?team).

More generally the summaries allow us to capture the "subject maximum arity" and the "object maximum arity" while first taking out a few outliers. We designed summaries this way because real datasets often have an implicit schema with a low arity for most subject or object that is violated only for a few categories. For instance, DBpedia contains 28373 triples informing of which artist belongs to which band. In this dataset no artist belongs to more than 8 bands however DBpedia has 22 special names for unknown artists (such as Guitar) that appear much more than 8 times (e.g. 164 times for Guitar).

Another example with DBpedia is movies and directors, each movie often has a few number of directors and each director has generally a relatively limited number of directed movies, except for a small number of them. On DBpedia, there are 118448 triples with the information of a movie and one of its director. There are only 150 directors with more than 50 directed movies and only 41 movies with more than 10 directors but the most prolific director has 290 directed movies and one movie has 26 directors.

Simple operations on summaries

We define the following operations on multiset summaries:

count(cs, v): the function that returns the number of times the value v can appear in a multiset summarized by cs;

count(< S, χ, T, D, Y >, v) = χ(v) v ∈ S Y v ∈ S
truncate(cs, n): the multiset summary where we enforce that each value appear at most n times. Formally, truncate(< S, χ, T, D, Y >) = < S, min(χ, n), min(T, D×n), D, min(Y, n) > (where min(χ, n)(x) = min(n, χ(x))); limit(cs, n): the multiset summary where we enforce that there are at most n elements. More precisely we have limit(< S, χ, T, D, Y >) = < S, min(χ, n), min(T, n), min(D, n), min(Y, n) > size(cs): the estimated size of the multiset summarized by cs, size(< S, χ, T, D, Y >) = x∈S χ(x) + T .

the sum of two multisets over S represented by χ 1 and χ 2 is defined as

(χ 1 + χ 2)(x) = χ 1 (x) + χ 2 (x)
. The sum of two multiset summaries is defined as

< S 1 , χ 1 , T 1 , D 1 , Y 1 > + < S 2 , χ 2 , T 2 , D 2 , Y 2 >=< S 1 ∪S 2 , χ , T 1 +T 2 , D 1 + D 2 , Y 1 + Y 2 with: χ (x) =      χ 1 (x) + χ 2 (x) when x ∈ S 1 ∩ S 2 χ 1 (x) + Y 2 when x ∈ S 1 \ S 2 Y 1 + χ 2 (x) when x ∈ S 2 \ S 1
We have the property that if a multiset m 1 is summarized by s 1 and m 2 by

s 2 then m 1 + m 2 is summarized by s 1 + s 2 .
-Given a multiset {m 1 , . . . , m k } with its summary < S, χ, T, D, Y > we can multiply them by an integer n:

{m 1 , . . . , m k } × n is the multiset containing k ×n elements: n elements m i for each 1 ≤ i ≤ k; this multiset is summarized by < S, χ, T, D, Y > ×n =< S, χ × n, T × n, D, Y × n > (with (χ × n)(x) = χ(x) × n).
-Given a collection summary s = (t, {(c 1 , s 1), . . . , (c k , s k)}) we note: summ(s, c k) = s k the summary for the column c k ; cols(s) = {c 1 , . . . , c k } the set of columns of the summarized collection and size(s) = t the size of the summary overapproximated by s. solutions of a single TP

Computing a multiset summary from a multiset

Given a multiset defined by χ on the set S we compute its multiset summary of size K by sorting S by χ decreasing, we extract from this the set S of the K first elements (S ⊆ S, the set of size K with the biggest χ). Then the computed summary is < S , χ, T, D, Y > where

T = x∈S\S χ(x), D = |{x ∈ S \ S | χ(x) > 0}| and Y = max x∈S\S (χ(x)).
Choosing K allows to set a balance between precision of summaries and the time needed to compute them. In practice we adopt the same constant K for all summaries. We notice that computing summaries with several thousands of elements performs well in practice. In section 8, we report on practical experiments with K = 3000.

Gathering statistics

In the rdf format, the predicate carries the "semantic" relationship. In most datasets there is usually a limited number of different predicates in the datasets and in queries variable predicates are relatively rare [START_REF] Arias | An empirical study of real-world sparql queries[END_REF].

During the load phase we compute the list of all predicates P (in one pass over the data) and (in a second pass) we compute for each p ∈ P (in parallel), a collection summary corresponding to the solution of the TP (?s p ?o). To do that, we compute the list T p of triples that have p as a predicate, we then compute a multiset summary o p for the object of T p and a multiset summary s p for the subjects of T p , the collection summary is |T p |, {(?s, s p), (?o, o p)}.

Summaries are computed recursively: we start by computing summaries for individual TP and then combine them. Let (t s t p t o) be a TP, let us show how to compute its associated summary.

Fixed predicate t p = p

Let us consider first, the cases where the predicate is fixed to a value p, depending on whether the subject is fixed (either the variable ?s or the value s) and whether the object is fixed (either ?o or o) we have four cases (the case (s, ?o) is symmetrical to (?s, o) and thus not treated):

Case t s =?s and t o =?o: the returned summary is simply: size(s p), {(?s, s p), (?o, o p)}.

Case t s = s and t o = o: this TP has either 0 or 1 solution and binds 0 columns. The returned summary is (0, ∅) when count(s p , s) = 0 or count(o p , o) = 0 and (1, ∅) otherwise.

Case t s =?s and t o = o: this TP has, at most, count(o p , o) solutions and only binds the column ?s. The returned summary is count(o p , o), {(?s, truncate(s p , 1))}.

Variable predicate t p =?p

Let us note r, the collection summary for the solutions of (t s t p t o), the idea is to combine the summaries s i (summary for (t s p i t o)) for each p i ∈ P . We build r such that size(r) = pi∈P size(s i) and for each eventual bounded column c (c ∈ {?s, ?o}), then summ(r, c) = pi∈P summ(s i , c) and, finally, the summary for the column ?p, is < P, χ p , 0, 0, 0 > where χ p (p i) = size(s i).

Duplicated variable

It is possible in sparql to have a variable that is present twice (or thrice). Since there are only three parts to If t p is the duplicated variable, we apply the replacement scheme proposed in 4.4 but we replace all the duplicated part (and not only t p).

If the predicate is not duplicated but we have a duplicated variable then the triple is of the form (?s p ?s) (if the predicate is variable we first apply the replacement scheme).

Let T p , {(?s, s p), (?o, o p)} be the collection summary pre-computed for the TP (?s p ?o) with s p =< S s , χ s , T s , D s , Y s >. Then we compute the possible number of different values in the intersection of the multiset represented by s p and o p : n = min(n s , n o) where

n s = min(D s , |{x ∈ S o \ S s | χ s (x) > 0}|) and n o = min(D o , |{x ∈ S s \ S o | χ o (x) > 0}|) the collection summary is n, {?s, < S s ∩ S o , min(χ s , χ o , 1), min(n o , n s), min(n o , n s), 1 >}

The multiplicative factor

Given two collection summaries s A (resp. s B) summarizing two collections mappings A = {A 1 , . . . , A n } (resp. B = {B 1 , . . . , B m }) we want to compute a collection summary for the solutions of A In order for this summary to be precise, we will introduce in this section the "multiplicative factor" and in the next section we will show how to use the multiplicative factor to compute a relatively precise summary for A B.

The collection mapping A B can be seen as a cartesian product A×B where we removed mappings (m A , m B) that do not agree on all the common columns of A and B. Each mapping m is thus built using a unique pair (m A , m B) ∈ A×B (but such a pair does not necessarily correspond to a mapping of A B). If we track which mappings of A and B were used to build which mappings of A B, we can count for each mapping A ∈ A its "multiplicative factor": the number of mappings in A B that were built using m A . The i-th multiplicative factor of A toward B is defined as the i-th greatest multiplicative factor of an element of A (or 0 if |A| < i).

As summaries work with over-approximation we will show in this section how to compute, with only the summaries for A and B, a bound for the i-th multiplicative factor mult(s A , s B , i), i.e. an over-approximation to mult(A, B, i) for any A and B such that A (resp. B) is summarized by s A (resp. s B).

A common column

Let c be a column shared between A and B (note that such c a does not necessarily exist). A mapping m A ∈ A can only be combined with mappings m B ∈ B to form mappings of A B when m A (c) = m B (c). Therefore, a mapping m A ∈ A can only be used to build, at most, count(summ(s B , c), m A (c)) mappings of A B.

Let

cs A =< S A , χ A , T A , D A , Y A > (resp. cs B =< S B , χ B , T B , D B , Y B >
) be the column summary for the column c in s A (resp. in s B) then for each v ∈ S A ∪ S B there are, at most, count(s A , v) mappings of A and each can be combined with count(cs B , v) mappings of B. To that we need to add that the, at most, T A mappings m ∈ A with m(c) ∈ S A ∪ S B can each be joined with, at most, Y B elements.

In total this gives us T A + v∈S A ∪S B count(cs A , v) values that over-approximate the various multiplicative factors of elements of A. By sorting these values, the i-th greatest value gives us a bound on mult(s A , s B , i).

Note that the mappings with values for the columns c falling into S B \ S A might be counted twice: each of the T A elements produce Y B mappings of A B, but for each v ∈ S B \ S A we also counted that Y A mappings produced χ B (x) each. However, this is not an actual issue since we combine the several bounds on mult(s A , s B , i), in particular, i > size(s A) implies mult(s A , s B , i) = 0 and size(s A) ≤ T A + v∈S A count(cs A , v).

General case

There are no more than size(s A) mappings in A and each can be used in at most size(s B) mappings of A B, we have a first bound:

mult(s A , s b , i) ≤ size(s B) when i ≤ size(s A) 0 otherwise
Then, we simply use the technique presented earlier on each column shared between the domains of A and B. Each column giving us a new bound on mult(s A , s B , i) and we combine all of them: if mult(s A , s B , i) ≤ k 1 and mult(s

A , s B , i) ≤ k 2 then mult(s A , s B , i) ≤ min(k 1 , k 2).
Finally we compute a bound total(s A , s B , n, k) on the number of mappings of A B that can be built using n different mappings of A when we know that each of those mappings has a multiplicative factor bounded by k ∈ N ∪ {∞}:

total(s A , s B , n, k) = i≤n min(k, mult(s A , s B , i))

Joining summaries

Given two collection summaries s A (resp. s B) summarizing two collections mappings A = {A 1 , . . . , A n } (resp. B = {B 1 , . . . , B m }) we want to compute a collection summary for the solutions of A B.

We suppose that we computed a bound for total(s A , s B , n, k). The total number of mappings of A B can be bounded by min(total(s A , s B , size(A), size(B)), total(s B , s A , size(B), size(A)).

Combining summaries for non common columns

Let c be a column in the domain of A but not in the domain of B, let cs A =< S A , χ A , T A , D A , Y A > be the summary for the column c of A, the summary we compute for the column c of A B is < S a , χ , T , D A , Y > where:

-T = total(s A , s B , T A , ∞) -Y = total(s A , s B , Y A , ∞) -χ = total(s A , s B , χ(x), ∞)
Columns that are in the domain of B but not in the domain of A are treated symmetrically.

Combining summaries for a common column

Let c be a column in the domain of both A and B, let

cs A =< S A , χ A , T A , D A , Y A > (resp. cs B =< S B , χ B , T B , D B , Y B >
) be the summary for the column c of A (resp. of B). Each mapping m of A will be used in at most count(cs B , m(c)) mappings of A B, therefore the count(cs A , m(c)) mappings sharing the value m(c) will be used in, at most, total(s A , s B , count(cs A , m(c)), count(cs B , m(c))) mappings of A B. Note that by symmetry between A and B we also have that it will be used in, at most, total(s B , s A , count(cs B , m(c)), count(cs A , m(c))) mappings of A B.

Our summary the column c of A B is < S a ∪S b , χ , T , min(D A , D B), Y > where:

-T = min(total(s A , s B , T A , Y B), total(s B , s A , T B , Y A)) -Y = min(total(s A , s B , Y A , Y B), total(s B , s A , Y B , Y A)) -χ (x) = min(total(s A , s B , count(cs A , x), count(cs B , x)), total(s B , s A , count(cs B , x), count(cs A , x)))

Optimization of distributed BGP query plans with summaries

In this section, we present how to use a cardinality estimation to optimize the query plan of sparql-gx [START_REF] Graux | SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache Spark[END_REF] a distributed sparql query evaluator.

Query plan

We suppose that the evaluator has access to the four following primitives:

-T P (t) take a TP t and returns the mapping collection solution of t;

-HashJoin(a, b) take two terms a and b and return the join of the mapping collections return by a and b; -Distribute(v, a, b) take two terms a and b, stores the mapping collection returned by a into v and then evaluates b; -LocalJoin(a, v) returns the join of mapping collection returned by a and the mapping collection stored into v.

The idea behing the Distribute(v, a, b) primitive is to compute once the solution for a store it into the variable v that is distributed to all computing nodes. This way, during the computation of b, if we come across a LocalJoin(c, v) then each computing node holds the whole mapping collection v and the join can be done locally.

Query plan cost

We now present how to compute the cost of a query plan. We note sol(a) the mapping collection return by evaluating the query plan a and size(a) its size. We do not have access to the actual size of the mapping collection solution of a query plan but all query plans corresponds to BGP and we know how to estimate their size: given a BGP, we compute a collection summary s and its estimated cardinality is just size(s). Since our cardinality estimation is a worst case, our query plan cost estimation also constitutes a worst-case analysis.

Our query plan cost analysis is conditioned by three constants:

-shuffleCost we suppose that the cost of shuffling a mapping collection has a cost linear in its size with a coefficient shuffleCost, -distributeCost we also suppose that the cost of distributing a mapping collection is linear with a coefficient distributeCost, however the Distribute operation breaks when the mapping collection does not fit into RAM, that is why we have: -broadcastThreshold that indicates the maximum size of a mapping collection that we can distribute.

In our translation, the individual TP are all translated exactly once, we set their cost to 0.

For a HashJoin(a, b) we need to compute a and b then shuffle a (resp. b) so that they are hashed on dom(sol(a))∩dom(sol(b)), this costs shuffleCost×size(a) (resp. shuffleCost×size(b)) but only if a (resp. b) is not already correctly shuffled. We also need to materialize HashJoin(a, b,) (even if both component are already shuffled) which costs size(HashJoin(a, b)).

For a Distribute(v, a, b) we need to compute a, distribute it to all workers and then compute b, therefore the cost of Distribute(v, a, b) is distributeCost×size(a)+ size(b) (plus the cost of compute a and b). However Distribute(v, a, b) can break if a is not small enough to fit into RAM, that is why we impose size(a) < broadcastThreshold.

For a LocalJoin(a, v) we need to compute a and join it with v (that is already computed) it costs size(LocalJoin(a, v)) (plus the cost of computing a).

Finding the best query plan

Given a BGP (t 1 , . . . , t n) the naive translation is to simply join T P (t i) using at each step a hash-join algorithm: HashJoin(T P (t 1), HashJoin(. . . , T P (t n)) . . .).

The naive translation is often not the most efficient plan: we might have to materialize large intermediate results (that could be avoided by using a different join order) and it might also yields shuffles that could be avoided. For instance, if t 1 and t 4 bind ?a, t 2 binds ?a and ?b, t 3 binds ?b and ?c, then the naive translation shuffles t 1 and t 2 on ?a then it shuffles t 1 t 2 and t 3 on ?b and finally it shuffles t 1 t 2 t and t 4 on ?a whilst the order (((t 1 t) t) 3) implies one less (potentially costly) shuffle.

Furthermore, the HashJoin algorithm is not always the most appropriate join algorithm [START_REF] Curé | On the Evaluation of RDF Distribution Algorithms Implemented over Apache Spark[END_REF]: when one mapping collection is large enough compared to the other then a broadcast-join (i.e. Distribute the small dataset to all workers then do a LocalJoin) avoids a costly shuffle of the large dataset to the price of sending a small mapping collection to all workers.

Finally, when a triple t i binds only one variable v, has a small number of solutions and at least one of the t j , with j = i, contains v in its domain, it might be more efficient to broadcast-filter t i . Broadcast-filtering t i consists in computing Distribute(v i , T P (t i), P) where P is a term computing t 1 . . . t i-1 t . . . t n and T P (t j) = LocalJoin(T P (t j), v i) if v is in the domain of t j and T P (t j) = T P (t j) otherwise.

To find the query plan minimizing our cost estimation, we essentially enumerate possible plans: that filter-broadcast or not triples, with all possible join orders and for each join we consider the hash-join and the broadcast-joins. Our algorithm thus enumerate an exponential number of plans. However, with a few simple heuristics to cut down the number of plans and the heavy use of memoization, performs well in practice as we now illustrate.

Experimental results

Prototype

We implemented the aforementioned algorithms in the sparqlgx query evaluator and benchmark the impact our cardinality estimation on the performance. The source code of our prototype is available online at the address: https: //github.com/tyrex-team/sparqlgx/.

Our Cardinality Estimator "summaries" was compared to the "stats" version of sparqlgx [START_REF] Graux | SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache Spark[END_REF] that re-organizes TP using statistics about the dataset collected at load time plus general heuristic to obtain a fast query execution plan. We also compared "summaries" to the "NoCartesian" that simply avoid cartesian products. Our prototype uses Spark version 2.1.0 in a cluster of two computing nodes running debian each equipped with 20 GB of RAM and 24 cores of computation. The dataset was stored using Hadoop 2.7.3.

Datasets and queries

sparqlgx was tested against the benchmark Lubm [START_REF] Guo | Lubm: A benchmark for owl knowledge base systems[END_REF] 10k that contains 1.38 billions triples and weight 232 GB uncompressed while the WatDiv [START_REF] Aluç | Diversified Stress Testing of RDF Data Management Systems[END_REF] 10k contains 1.10 billions triples and weight 149GB.

In Lubm, most queries (Q4 to Q13) compute an empty answer unless the dataset is extended with reasoning. We did not extend the dataset with reasoning but we left those queries as it is an interesting use-case of our method to detect empty answers (which it fails to do in Q6 and Q11).

The times spent in evaluating each query of this benchmark are shown in figure 1. These times do not include the translation time that took less than one second for all queries. Notice that the time axis of the figure 1 is logarithmic.

Experimentation

Between each query the spark cluster was stopped and relaunched. However the OS did not restart between queries and stores a cache of recently read files in RAM. We ran all queries three times and interleaved the different methods so that all methods benefit equally from this cache. We took the best of the three for each method (other metrics would give an advantage to the last tested method). All experiments were stopped after 20 minutes of computation.

The statistics we collected with a double pass on the data during the load phase and the size of the collected statistic weight 2.6MB for WatDiv and 2.8MB for Lubm.

Results

On all almost all queries, the sparqlgx query evaluator equipped with our "summaries" goes faster than both the NoCartesian and the "stats" approaches. The exception are the complex WatDiv queries where the "stats" approach beats our "summaries" approach: C1 (40s versus 30s), C2 (49s versus 46s) and C3 (292s versus 263s). But even in those cases our algorithm is slower by only a reasonable margin.

On the opposite there are several queries with a non-empty result where our method vastly outperforms the "stats" module, on Lubm10k: on Q2 (175s vs 1680s) and on WatDiv10: the star shaped queries (e.g. 13s versus 56s for S1), for L3 (6.5s versus 13.2s), for F 5 (19s versus 35s), etc. Estimating the number of solutions for a query has long been viewed as a key element in the optimization of queries and it is a well-studied problem in the relational world [START_REF] Piatetsky | Accurate estimation of the number of tuples satisfying a condition[END_REF]. Various techniques successful in the relational world (e.g. histograms [START_REF] Ioannidis | The history of histograms (abridged)[END_REF][START_REF] Oommen | An Empirical Comparison of Histogram-Like Techniques for Query Optimization[END_REF]) have been less successful for the semantic web [START_REF] Erling | RDF Support in the Virtuoso DBMS[END_REF][START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF] . The main reasons for that is the heterogeneous and string nature of rdf [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF] and the fact that sparql queries usually contain a lot of self-joins that are notoriously hard to optimize [START_REF] Pitoura | Self-join size estimation in large-scale distributed data systems[END_REF].

Various works have tackled the specific issue of cardinality estimation for sparql. A line of work [START_REF] Stocker | SPARQL Basic Graph Pattern Optimization Using Selectivity Estimation[END_REF] introduced the "selectivity estimation" now in use in several sparql evaluators [START_REF] Zeng | A distributed graph engine for web scale RDF data[END_REF] (and close to what the "stats" module does for sparqlgx to which we compare "summaries"). The "selectivity estimation" assumes the statistical independence of the various parts of a TP. Variants of this method have been implemented in popular sparql query evaluators (e.g. in RDF-3X [START_REF] Neumann | RDF-3x: A RISC-style Engine for RDF[END_REF]).

A second line of work [START_REF] Kim | Type-based semantic optimization for scalable rdf graph pattern matching[END_REF] takes as input an actual schema and produces an optimized query plan based based on information extracted from the schema.

A third line of work [START_REF] Neumann | Characteristic sets: Accurate cardinality estimation for rdf queries with multiple joins[END_REF] tries to derive the implicit schema of an rdf graph by fitting nodes into characteristic sets, or by summarizing [START_REF] Gurajada | Triad: A distributed shared-nothing rdf engine based on asynchronous message passing[END_REF] the graph into large entities. These approaches are the closest to our approach in spirit but they tend to focus on finding an implicit schema type for nodes while our approach is more focused on finding an implicit schema for edges.

The "summaries" approach presented in this paper can also be seen as a complement of existing methods. Indeed, we provide a worst-case analysis and a worst-case analysis can always be easily combined with any other analysis.

Conclusion

We introduced a new concept: collection summaries. We showed how to compute collection summaries for Basic Graph Patterns and how they can be used to estimate the cardinality of query answers. Experimental results show that this cardinality estimation allows to improve the performance of sparql query evaluation.

Fig. 1 :

 1 Fig. 1: Time spent to answer Lubm and WatDiv queries

Fig. 2 :

 2 Fig.2: Query time results for sparql-gx against Lubm10k and WatDiv 10k with the "stats" and "summaries" optimizers

 .573 27.756 19.273 19.428 9.718 9.285 6.519 6.781 9.303 Stats 20.256 26.872 29.638 26.808 35.241 13.201 9.176 13.247 8.949 9.282

	Lubm Query Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9 Q10 Q11 Q12 Q13 Q14
	Summaries 29.96 174.9 23.99 0.72 0.67 14.33 0.727 0.699 0.69 0.727 15.37 0.67 0.698 20.82
	Stats	45.96 1200 60.15 474.78 20.16 14.37 181.1 140.2 304.5 28.67 20.89 31.67 14.88 20.77
	WatDiv Query C1	C2	C3	S1	S2	S3	S4	S5	S6	S7
	Summaries	40.089 49.102 292.348 13.498 11.149 11.456 9.613 10.036 9.632 7.607
	Stats		29.188 46.107 263.76) 56.29 17.225 12.735 13.65 12.085 16.944 16.833
	WatDiv Query F 1	F 2	F 3	F 4	F 5	L1	L2	L3	L4	L5
	Summaries	14.462 15