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ABSTRACT

In this paper, we propose a new systematic procedure of estimating elastic properties of composites con-
stituted of two phases, matrix and inclusions. A class of integral equations based on eigenstrain (or eigen-
stress) with the matrix as reference material is constructed with an explicit form in Fourier space. Each
integral equation belonging to this class can yield estimates of the overall elastic tensor via Neumann
series expansion. The best estimates and series are selected based on the convergence rate criteria of
the series, i.e the spectral radius must be minimized. The optimized series is convergent for any finite
contrast between inclusions and matrix. Applying the optimized series and the associated estimates to
different microstructures yields very satisfying results when compared with the related full solution. For
the case of a random distribution of spherical inclusions, exact relations between the elastic tensor and

nth order structure factors are demonstrated.
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1. Introduction

We consider the problem of finding the effective stiffness tensor
C* of periodic heterogeneous matrix-inclusion materials. The exis-
tence of C® and homogenization procedure have been rigorously
founded in the literature (Sanchez-Palencia, 1980). Given the dis-
tribution of the constituents, the cell problem must be solved first
and the linear relation between average stress and strain is then
established. Estimates can be obtained by making relevant approx-
imation to the ingredients constituting the effective tensor (see e.g
Eshelby, 1957; Christensen and Lo, 1979; Mori and Tanaka, 1973).
Although the present contribution concerns the theory of optimally
estimating C® from the microstructure, it is closely related to FFT
numerical homogenization methods.

By introducing a reference material C°, the heterogeneity effect
can be viewed as a distribution of eigenstrains within an homo-
geneous material. Using the related Green tensor, our problem can
be formulated as a Lippmann-Schwinger equation for eigenstrain
(Nemat-Nasser et al., 1982). The integral equation is at the origin
of resolution methods based on iteration and Fast Fourier Trans-

* Corresponding author.
E-mail addresses: toquydong@tdt.edu.vn, quy-dong.to@u-pem.fr (Q.-D. To).

form (FFT) techniques (Michel et al., 1999; Bhattacharya and Su-
quet, 2005). Significant progresses have been made regarding the
improvement of convergence rate (Michel et al., 1999; Eyre and
Milton, 1999; Milton, 2002; Monchiet and Bonnet, 2012; Brisard
and Dormieux, 2010). The study of convergence rate in those works
will be extended in the present contribution in the case of new in-
tegral equations.

We can remark that the iteration scheme used to solve the
Lippmann-Schwinger equation corresponds to the Neumann series
summation. The latter can be used to derive exact theoretical rela-
tions and estimates (see e.g Torquato, 2001; Milton, 2002, and the
references therein), using for example the weak and strong con-
trast expansions. As an extension to previous works on conductiv-
ity, Torquato (1998); 1997) introduced the cavity strain field and
derived the strong contrast estimates. Connections with statistical
information related to the distribution of two phases, the n point
correlation function, were also demonstrated in this context. At the
second order, the estimates produce satisfying results for systems
composed of dispersed non overlapping spheres. However, the se-
ries of Torquato is increasingly complicated at higher order with-
out guarantee of convergence. As already shown in Milton (2002),
the starting point of the strong contrast expansion is a condition-
ally convergent series. In a similar way, bounds of the effective
elasticity tensor are also depending on correlation functions (see



Milton, 2002, pps 313, 554) and in this context, the use of the ma-
trix as a reference material simplifies significantly the expression
of these bounds

In this paper, we propose a new estimate based on a series
expansion that works at all finite contrast ratio, while using the
matrix as a reference material. Additionally, we can control and
optimize the convergence rate so that the series converges in the
quickest way, and therefore produces the best estimate when using
a finite sum in the series expansion. A class of integral equations
for eigenstrain depending on two parameters «, B is first derived.
The spectral radius and norm of the corresponding operators are
bounded by analytical expressions. Different optimization methods
are proposed to find the fastest series convergence and the associ-
ated estimates. It is noteworthy that a convergence will be obtained
for any finite contrast between matrix and inclusions, while using al-
ways the matrix as a reference material, which simplifies significantly
the series expansion.

Similarly to the estimations of the effective elasticity tensor us-
ing correlation functions (Milton, 2002; Torquato, 2001), the new
method presented in this paper allows to estimate the effective elas-
ticity tensor using the n order structure factors, which represent the
counterpart in Fourier space of correlation functions. As an exam-
ple, a direct connection of the effective elasticity tensor to nth or-
der structure factors is given in the case of randomly distributed
spheres. Numerical applications for cubic arrays and random distri-
bution of spheres yield very good results in comparison with FFT
based methods and other results from the literature. The details of
those contributions are presented in the following,.

2. Mathematical preliminaries

As it will be seen in the following sections, the problem of the
convergence of the Neumann series associated to a given integral
equation is related to the spectrum of a fourth order iteration ten-
sor which appears in the integral equation. In this section, the no-
tations and mathematical results related to these fourth order ten-
sors will be presented.

2.1. Notations and definitions

Before proceeding to the considerations on the spectrum of
fourth order operators, we introduce first the system of abstracted
notations and some important definitions which will be used
throughout the paper. Most of our calculations involve symmetric
second order tensors and fourth order tensors with minor sym-
metries. Unless specified, two tensors standing next to each other
implies their double contraction product. Given two fourth order
tensors A and B and two second order tensors u and v, the double
contraction products AB, Au and uv read

(AB)ijki = AijmnBamu,  (Al)jj = Ajjigtik,
uv=u;vi. i,jkl1=1273 (1)

The symbol ® denotes the usual tensorial product and ® a special
symmetrized tensorial product between two second order tensors
uand v
_ 1
URV)jjy = E(uikl’jl +Upli), U V)jji = UjjVy,
i,k 1=1,2,3. (2)

We are also dealing with periodic functions using Fourier analysis.
Any V—periodic tensor field u, function of coordinate x(xq, x5, X3)
can be expressed as an infinite Fourier series

u(x) =) u(§)e, (3)
£

with u(€) being the Fourier transform of u(x)
u§) = l/u(x)e““‘dw, VE. (4)
V

In (3), the sum is taken over all the wavevectors & whose compo-
nents &, &, and &5 are defined from the relation

2mn;
I

E,’: i=1,2,3, n1.n2.n3€Z. (5)

where Iy, I, I3 are the periods along the three directions, i.e the
dimensions of the unit cell V. According to the convolution theo-
rem, products in Fourier space correspond to convolution products,
(notation *, in physical space) by

[Axu](&) = A&)uE), (6)
In the paper, we will encounter frequently equations in the form
u=U+Axu (7)

for a given second order tensorial function U(x) and fourth order
tensorial operator A. The solution u of the above equation is the
following Neumann series

u= Z(A*)"U. (8)
n=0

Numerically, the above summation is equivalent to repeating the
iterative scheme

u=U, u™t'=U+Axu". (9)

until convergence. The convergence rate of the Neumann series (or
the iterative scheme) can be estimated from the spectral radius or
the norm of the associated operator A. The spectral radius of an
operator A is the absolute maximum of all eigenvalues A

or A(&)u(g) =ru(§)
(10)

p(A)=max|r|: Ju, Asu=iu,

The set of symmetric second order tensors has the structure of an
Hilbert space related to the scalar product between two second or-
der tensor fields, notation (., .)

(u,v) = % /\/u(x)u(x)dx: Ze:u(g)T)‘;). (11)

where the overline notation = stands for the complex conjugate
value. Consequently, the related norm, notation ||.||, of any tensor
field u(x) can be defined by the expression

lull = v/ (u, u). (12)
The norm of operator A is then defined as
lAll = inf{c = 0 : [JA sull < cllull} (13)

and in the Hilbert space, it can be evaluated as
Al = Vo (ATA),  Ayu(E) = AL, E) (14)

with AT being the adjoint operator of A. The norm and the spectral
radius meet the inequality

p(&) = Al (15)

where the equality is achieved if A is self-adjoint or at least nor-
mal, i.e ATA = AAT,



2.2. Walpole base

We consider operators which are transversely isotropic fourth
order tensors in Fourier space and have minor symmetries, the
plane of isotropy being normal to the wave vector & The related
unit direction vector along £ is denoted as . It has been shown by
Walpole (1981) that these tensors are a linear combination of the
following six tensors which constitute the Walpole base:

E, =%kL®kl. E,—kek E;=kgk' —E,

Eq =kL§k+k§kL. Es =kekt, Es =kt®k, (16)
where k and k* are the second order projection tensors
k=(0E Kki=I-k (17)

and I the second order identity tensor. As shown later, most of our
calculations involve transversely isotropic tensors (Green tensors in
Fourier space) and constant isotropic tensors (elasticity tensors of
isotropic constituents). Those calculations can be considerably sim-
plified using Walpole base elements. For example, the fourth order
identity tensor I and the spherical and deviatoric projection ten-
sors J and K can be expressed in the Walpole base in the form

I=E, +E;, +E;+Eg4,
1 1
.U=§I®I= §(21E1 +E; + Es + Es),

1
K:]I—J=§(]E1+2E2—]E5—]E6)+E3+]E4- (18)

Given any two transversely isotropic tensors A and B in the
Walpole base

A =0E + aE; + a3E3 + a4E4 + a5E5 + agEs.
B = b1Ey + b2E; + b3E3 + bsE4 + bsEs + bgEs, (19)

their double inner product can be computed via the formula

AB = (a1by + 2agbs)E; + (azbz + 2asbg)E; + asbsEs + asbsEy
+(azbs + asby)Es + (a;bs + agh; )Es. (20)

These properties are important for the calculation of the spectral
radius or norm, which will be presented in the later sections. From
the definition of the adjoint operator in the previous section, we
can also deduce that

E[=E. Vi=1.234, E =Es, El=E. (21)

In other words, the operators E;, E,, E5 and E, are self-adjoint and
the operators Es and Eg are adjoint operators of each other. The
fourth order operator A is self-adjoint if its components along Es
and Eg are identical.

2.3. Spectral radius and norm of operators via Walpole base

Always working in Fourier space, we shall determine the eigen-
values of A(€) in the form (19). Multiplying both sides of the eigen
Eq. (10) with E; i = 1.2,..,6, and then with v, we have a system of
linear equations

a; (VEv) + ag(VEgr) = A(VE, V)
a2 (VEav) + as (VEsv) = 4. (VEzv)
a3 (VE3v) = A(VE;3v)

a4 (VE4v) = A(VE4V)

a; (VEsv) + 2ag (VE,v) = A(VEsv)
a3 (VEgv) 4+ 2as(VE,v) = A(VEgY)

(22)

It turns out that the vector of components vE;v withi=1,2,.6 is
an eigenvector of the matrix built with the elements a; appearing

in the left side of (22) and A is an eigenvalue of this matrix. As
result, A must be the solution of the eigen equation

o

ay — A 0 0 0 0 ag
0 az —A 0 0 as 0
0 0 az-» 0 0 0 |_o
0 0 0 aq— A 0 0 -
0 2a¢ 0 0 a -A 0
205 0 0 0 0 a, —A
(23)
or
(a3 — 2)(ag — M)[(ar — 1)(az — 1) — 2asa6]* = 0. (24)

Finding the roots of Eq. (24) yields the values for A and the spectral
radius of A can now be computed with the formula

1
p(A) = max {Iazl- lagl, 5 1(a1 + a2) £ V(@ —az)2+8asae|}-

(25)

Applying the same procedure as before to find the eigenvalues of
ATA, we can determine ||A]|

lAll =/ p(ATA) = max {|as], |as].
%[\/(al —02)2+2(05+06)2+\/(01+02)2+2(05—06)2J }
(26)

3. Homogenization of elastic periodic composites

The computation of effective properties of composites can be
expressed in the real space. However, one important ingredient of
the homogenization process is the use of Green's tensors which are
highly singular in the real space, while their Fourier transforms can
be expressed analytically in a simple way. In addition, it will be
shown that the use of the formulation in Fourier space introduces
naturally the structure factors which are related to the geometrical
distribution of the component materials. As a result, the formula-
tion will be done jointly in real space and in Fourier space. In a
first step, the homogenization problem will be expressed by using
integral equations. Next, the optimization of the solution of these
integral equations by using Neumann series will be studied.

3.1. Governing integral equations

We consider a heterogeneous material where the local isotropic
stiffness C(x) (compliance S(x)) is a V —periodic function of the co-
ordinates x. The local bulk and shear moduli are denoted respec-
tively as x(x) and z¢(x). To determine the overall elastic properties
of the material, we need to solve the following periodic boundary
value problem for stress o and strain €, where the average of one
of these fields over V is given. Then the effective elasticity tensor
C* can be computed from the linear relation between the average
strain E and stress X

T—CE. X={o)y. E-=e). (27)

Here, we adopt the notation ()y to refer to the average over vol-
ume V of the quantity inside the brackets. Introducing a reference

material with an isotropic stiffness C° (compliance S°), we have
oc=C+1, e=50+e, (28)

where the eigenstress T and the eigenstrain e have been intro-
duced. By usual ways (Milton, 2002; Nemat-Nasser et al., 1982),
the integral equation for the eigenstress 7 may be expressed as:

1=08CE-T°+1), §C(x)=C(x)-C" (29)



and the dual integral equation for the eigenstrain e

e=5'8(X—-A%xe), &'S(x)=5(x)-5" (30)
The Green operators I'® and A° for strain and stress are defined in
Fourier space by:

3 1
R4+
3ko + 4/L9 2+ 219

18 toko
3Ko + 4/t

') = E; VE#£0, T°0)=0,

A%E) = Ei +2u0E; VE#£0, A%0)=0, (31)
where & is the wave vector and the tensors E; are defined in
Fourier space from the Walpole base by using £ as the unit vec-
tor in the direction of &. The elastic constants k and jt, appear-
ing in (31) are respectively the bulk modulus and the shear mod-
ulus associated to the reference tensor C°. It is clear that the two
Eqgs. (29) and (30) are equivalent to strain and stress integral equa-
tions which Fast Fourier Transform (FFT) numerical homogeniza-
tion methods are essentially based on (see Appendix A). They also
have the same form as (7) and can be solved using Neumann series
expansion (or iterative scheme techniques) based on (8,9).

In general, the solutions for strain and stress are unique and
independent from the choice of the reference medium. However,
the reference material can affect the convergence if Neumann se-
ries expansion is used, especially when one of the constituents is
chosen as a reference material. From another point of view, the
choice of one of the constituents as a reference material simpli-
fies drastically the form of the Neumann series associated to the
integral equation. Connections to important statistical information
like structure factors appear directly and naturally using this for-
mulation, as it will be shown thereafter. Therefore, instead of us-
ing stress or strain formulation, our strategy is to derive a unified
formulation by exploiting the relations between stress o, strain €
and eigen-stress 7 (or eigen-strain e). The two latter quantities are
connected via the relation 7 = —C%. It will be shown thereafter
that this strategy is compatible with the choice of one of the con-
stituents as a reference material.

From the two elementary integral equations, we can construct
a family of integral equations for 7 (or e equivalently) by linear
combination. Using two tensors L(x) and I — L(x), we can obtain

T=AE+B 1, (32)
in which

A’ = (I-L)(5'C) — LCO(5'S)C)

B = —((I-L)(§'C)S"P+ LC°(5'S)Q). (33)

Here, the two projection operators P and @ are defined again in
Fourier space by:

3Kk — 2[Lo
P=CT°=E,+Ey+ — """,
S T Py
3kg— 2L
— A0g0 _ , — Ko =2t
Q=A% =B + B - 3 7ok (34)

Eq. (32) can be used to solve T with an iteration scheme corre-
sponding to the associated Neumann series as long as p(B') < 1.
This condition guarantees that the Neumann series, which is ob-
tained by repeating the recurrence (32)

T=AE+B «7t=AE+B «A'E+B «B'x7
oo
=...=) (B%)"AE (35)
=0

will surely converge. The convergence rate depends on the magni-
tude of p(B’). The smaller it is, the faster the series converges. For
convenience, let us call the series associated to (29) as E—series
(ES) and (30) as X—series (SS). Those are particular cases of

(32) where L =0 and L = 1. The series in the form (32) with suit-
able L that yields the fastest convergence rate will be called as
optimized series and studied in the following.

We consider a two-phase material composed of inclusions em-
bedded in the matrix. At this stage, it can be remarked that the
choice of the reference material is crucial in the expression of the
power of B’ in (3.1). Indeed, if the reference material is not chosen
properly, the operator B’ will contain simultaneously the character-
istic functions of both constituents defined thereafter and the ex-
pression of (B’x)" will become increasingly complicate. Therefore,
in the following, the reference material is chosen to be the matrix
€0 and the stiffness of the inclusion is denoted as C'. The tensor LL
is assumed to be constant and isotropic with the representation

L = 2aK + 387 (36)

in which @ and g are two constants. Like L, the tensor €' with
i=0,1 can be expressed in a similar way using the bulk stiffness
ki and the shear stiffness /¢; as parameters.

3.2. Optimization based on the Green operators

In this section, we employ the method developed in Nguyen
et al. (2016) and Milton (2002) for heat conduction to estimate
the convergence rate of the general series (32) in elasticity. This
method will require the mathematical preliminaries that we pre-
sented previously. Adopting the notation x for the characteristic
function,

x(x)=0 x(x)=1

and recalling that the reference tensor is the elasticity tensor of
the matrix, we can rewrite the Neumann series in the following
form

in matrix, in inclusion (37)

=) (B)/AE (38)
j=0
where A’ = yA, B = xB and
A= ((I-L)(C)—LC2(8S)C?)
B=—((I-L)(8C)S°P +LC°(5S)Q)
S3C=C'-C% 48S=8'-8° (39)

It is noteworthy that the choice of the matrix as a reference ma-
terial allows us to obtain an expression involving only x in its
expression and power series, while another choice would contain
two characteristic functions of the two materials at the same time.

Another strategy behind this expression is also that it is eas-
ier to quantify separately the spectral radius and norm of B and
x. which in turn provides information on B’. The function x takes
only 0 and 1 values and depends on the distribution of the in-
clusions in the cell. Its spectral radius and norm can be obtained
straightforwardly, for example

PO =lxll=1 (40)

Intuitively, to optimize the convergence rate of B/, we need to op-
timize p(B) or the norm ||BJ|. Since B is generally not self-adjoint,
optimizing |B|| and p(B) with L. may lead to different results (see
Figs. 1 and 2). For the sake of clarity, we shall use the two abbre-
viated names: OR for optimization by spectral radius and ON for
optimization by norm.

As an example, let us consider the case where the two materials
are isotropic with the same Poisson ratio v, or

C' =eC?, (41)

where ¢ is the contrast ratio. We are also limited to the case
where

L = 2el, (42)
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Fig. 1. Isolines of spectral radius p(B) (left) and norm ||B|| (right) as functions of « and . The results are obtained for the case where the two materials are of the same
Poisson ratio v = 0.3 and stiffness ratio & = 3. The optimal values by the two methods are respectively («. ) = (0.375,0.250) and («. £) = (0.338,0.349).
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Fig. 2. Isolines of spectral radius p(B) (left) and norm ||B|| (right) as functions of @ and . The results are obtained for two materials with the following parameters
vy = 0.4, v = 0.3, jty /Lo = 3. The optimal values by the two methods are respectively (o, f) = (0.355,0.298) and (e, B) = (0.309, 0.349).

and minimize p(B). First, B can be written explicitly as
(e-1)

B=—(c-1)1-2a)(E; +Ey) + 2c : (E| +E3)
3Ko — 2L (e-1)
—_— 1-2 -1)+2 43
3k‘0+4,UOE6|:( a)(e—1) +2a— ] (43)
It is clear that the spectral radius of B can be evaluated as
p(m)=max{|(e-1)(1-2a)|. Za(E;]) } (44)

Since both eigenvalues are linear function of «, optimizing p(B)
yields the following results

e—1
p(B)=‘e+1”

e
20 = ——,
£+

_e-1
T e+1

(45)

(EI—E2+]E3—]E4—M]E )

3K0 + 4o
Comparing with two original series, for example the ES series

3Kk — 2149

B=—@—1(&+Er+%h+ﬂm

]Es). p(B) = |¢ — 1], (46)
and the SS series

1-¢ e-1
—E(B1+ B -

Ee) p(B):’T" (47)

the series after optimization shows a clear advantage. The spectral
radius of the latter is the smallest and less than 1. The ES series
can diverge if & > 2 and the SS series can diverge if ¢ < 1/2.

3K — 2149

== 3k + 4pto

Minimizing p(B) and ||B| for the general case is not analyti-
cally simple, but it can be done numerically without difficulties.
The main problem is that we need to ensure the convergence re-
lated to operator p(B'). However, optimizing o (B) only guarantees
the convergence of the series associated to B not B’ while optimiz-
ing ||B|| may overestimate p(B’). This is due to the inequalities

p@®) < [Bll. p@)=<IBI Bl =<IxIIBl=IBI (48)

As a result, in the case where B is not self-adjoint, those estima-
tions may not be strict enough. To overcome those issues, we shall
present now a more direct optimization method (OD) to estimate
p(B'). detailed in the next subsection.

3.3. Direct estimation of p(B’) and optimization

We introduce now an approach which is closely related to the
one presented by Michel et al. (1999) to estimate the convergence
rate of the series. We begin first with the ES series whose eigen-
equation reads

—(C-CYs"PxT=0A1. (49)
Equivalently, we can rewrite the above equation as
—(C-C)sPrT=7, C = %c - @CD‘ (50)

Comparing with (29), we conclude that this is the equation for the
boundary value problem with zero strain E =0 and local stiffness
€. Since there exists a non-trivial solution 7, the local stiffness C’



of the imaginary material can not be either negative definite (no-
tation <0) or positive definite (notation >0) for the whole physical

space, or equivalently
Ix|Cx) = (1=2)C% £0, 3Ix|Cx)— (1 -=1)C £ 0. (51)

Eq. (51) is identical to the conditions obtained for the basic scheme
in Michel et al. (2001) . Hence, similar results can be deduced

= min {min (1 - ﬁ).min (1 _ ;t(x)) }

* ko X o
—K(x)).max (1 - —“(x))}. (52)
Ko * Mo

For a two phase material with the same Poisson ratio in both
phases C' = eC®, we can deduce that

A <1 —el (53)

Asmax{m;ax(]—

It is clear that for high contrast ratios, for example € > 2, we can
not guarantee the convergence of the series. In this case, the con-
vergence of the series can only be achieved by using another ref-
erence material than the one of the matrix.

Analogously, considering the SS series with the eigen equa-
tion

—C'5-8")QxT =11, (54)

we can show that 7 is the solution of the new boundary value
problem with local compliance S’ and zero stress X = 0, namely

1 (1=2)
—Co(s' -8 =7, §=_-8- s° 55
(8-8)Qxr=7 n ; (55)
As a result, we can deduce the similar condition for A
A < |1 -] (56)

which means that the SS series can diverge at small contrast ratio,
say € < 1/2.

Considering the general series, we shall bound the eigenvalue A
issued from the equation

—([I-L)(C-C")8"Px7—LC*(S-8")QxT =11 (57)

Like for the two previous cases, our strategy is to find the imagi-
nary material that admits non-trivial solution T with zero average
strain E =0 and stress £ = 0. Our technique is to assume that the
relations

-%(11- L)(C - C%)S°P x 7 = M,

—%ILCO(S—SO)Q*I'= (I-M)T, (58)
hold true at the same time and compute the corresponding
isotropic tensor M(x). In order to do that, we have to rearrange
(58) in the following way

—(C-C"8Prr=17, —CU§-8")Qx1=1 (59)
where €’ and §’ are the stiffness and compliance tensors

C' = %MI“(I[ —L)(C-C" +C°

s = %s"(n —M)~'LCO(s - 8°%) +8°. (60)

The next step is to choose suitably M so that €’ and S’ are compat-
ible, meaning that they are stiffness and compliance of the same
imaginary material

C'(x)s'(x) =1, Vx. (61)

This choice will guarantee that 7 corresponds to the same bound-
ary value problem. As a consequence, 7 satisfies automatically both

constraints (59) at the same time. It is clear that if ¥ belongs to the
matrix, this condition is automatically verified because

C'(x)=C’>0, §(x) =8">0. (62)

The compatibility condition can be recast in the form
1 1
[XM_I (I-L)(3C)s + 11] [X (1 — M)~'LCO(5S) + 11] —1L (63)

After finding M from (63), it is sufficient to bound A via the
positive-definite and negative definite properties of €’ and §' as
before. Due to the fact that C” and §’ are already positive definite
in the matrix (62), those quantites can not be positive definite in
the inclusion

%M“(]I—]L)(BC)+C° # 0. (64)

Since (63) involves isotropic tensors, it is better to use a decompo-
sition based on orthogonal tensors J and K. Assuming that

M =387+ 2¢'K (65)

and posing em = [t1//Lo and & = k1 /Ko, the corresponding equa-
tion for «’, B’ reads

(Em —1) (em = 1)
((1 -2« )—+1)(1—20{m)=1.

(eg—=1) (e —1)
((1—3/3) Vo 1)(1—3ﬁm)=1. (66)

Solving (66) for @', B’ yields the solution

Emi(1 =2) =2 (1 =2)(epm—=1)

[(1=2a)em +2a]A !

38) =381 -3B)(em -

[(1=3B)em +3B]r

Substituting o', B’ back to (64), we obtain the condition
3B(ex = 1)/ — A

(1=-38)(& -1 +4 ~

(68)

2(1’ =

el —

3" = (67)

20 (em — 1) /em — A
(1 =2a)(Eem=1)+A ~

or

In any case, we must have the inequalities
[A] = max {|(1 = 2a0) (em — 1), |2 (e — 1)/Em]}
or 2] =max{[(1-38)(ex -1, [38(ex —1)/e} (69)

which bound the spectral radius of the general operators. To opti-
mize the acceptable value of |A|, one must have

20 = ep/(em+ 1), 3B =& /(e + 1), (70)
so that we can obtain the inequalities
e —1 ”
max 71
1= max || 2 | |4 (71)

which guarantees the convergence of the series for any finite con-
trast. Having derived the optimal values of & and B, we can write
explicitly the expressions for A and B as follows

[(~5 -1 Em e]
A_[(38k+ K°J+2 om 1’1°K> (ek+1‘ﬂ+€,,.+1K)C
Ex -1 em—1 2(3K0—2[.l0)

B=( 11() Ey—Ey+By—Ey— 22K 2Ho) p )
et 19 et ( B T W yTpa

(72)

To differentiate from the ON and OR series obtained by different
optimization methods, the series issued from (72) will be associ-
ated to the notation OD (optimization by direct method). Table 1
shows numerical examples corresponding to the three methods of
optimization. Taking the properties of the constituents as input,



Table 1

Comparison of the results «, S issued from three methods of optimization. Notations:
OR for optimization based on spectral radius of B, ON for optimization based on norm
of B and OD for optimization based on the direct estimation of spectral radius of B'.

Case o B

OR ON oD OR ON oD
v =1vp=03 0.0040 -0.0031 00050 0.0027 -0.0012 0.0033
Ha/jto =0.01
v =01,1wp=03 00525 -00215 00528 0.0430 0.0037 0.0159
/o =0.1
vy =04,195=03 0923 —1.000 0.250 0.259 0.353 0.228
/o =1
v =04,1=03 0355 0.309 0.375 0.298 0.349 0.289
/o =3
v =02,1=03 0455 0.453 0454 0.281 0.347 0.287
/o =10
v =01,1=03 0496 0.496 0.495 0.325 0.337 0.326
/o =100
v =01,15p=03 0500 0.500 0.499 0.333 0.334 0.332

Jt1/ Lo = 1000

one can compute the values o and B in order to minimize the
quantities ||B|| (ON) or p(B) (OR) or p(B’) (OD). One can remark
that the three methods can yield different results. Those differ-
ences can have a impact on the estimates presented in the next
section. However, it is interesting to note that at the infinite con-
trast limits, numerical results show that the coefficients «, B tend
to the same value (0, 0) for void inclusion and (1/2, 1/3) for rigid
inclusion.

3.4. Estimation of the overall elastic properties

To determine the effective stiffness tensor C¢, we need to find
the average t over the inclusion domain (7)g. The latter is con-
nected to €€ via the relation

f(t)a = (C° - CO)E. (73)

On the other hand, (t)g can be obtained by averaging (38), for
example

(74)

in which the tensors D? D', .. are determined with the formulas
D’ = (Bx))e =1L
D' = (Bx))a=f") x(-EBE X&),
§

D’ = (Bx)’)a=f"D x(-6BE Y x(E-§BE)x ().
£ &

D/ = ((Bx))q
=T Y x(-EVx(E -8 .. xET-E)xE
ELE.8
B(E')...B(&). (75)
Substituting (75) into (74) and (73) yields the expression for C°

oC
€ - C" =) D/[(I-L)(5C) — LCO(38)C”]. (76)

j=0
Generally, in numerical applications, we need to truncate the series
up-to a sufficiently high value n

no -1 no

C = | T+ f) DILCO(SS) I+f) DI(I-L)(SC)s® |C°

j=0 j=0

(77)

The estimate (77), based on truncation, works well if the remain-
der of the series is negligible. It can be improved by a better treat-
ment of the series (To and Bonnet, 2014; Nguyen et al., 2016). In-
deed, repeating the recurrence at step n we obtain an equation
for T
n-1 )
T=x) (Bx)A+(xB)'t.
j=0

(78)

Averaging both sides over the inclusion volume and making the
approximation

7= x(7)a. (79)
we obtain the following equation for (7)q
n-1
(T)e = ) D/AE +D"(1)q. (80)
j=0

Solving (80) for {7)q and substituting back into (73), we obtain a
new expression for C¢

-1
n-1
Ce~ (]I—D")+fZDfLC°(6S):|
Jj=0
n-1 X
(I-D") + Y D/ (@I-L)(5C)s° [C°.

j=0

(81)

In the case where the effective material is isotropic or at least cu-
bic, we can extract the main shear modulus jt and the bulk mod-
ulus k. using the expressions

He +f(1 —2a)8/L/ o + 281/ 111

Hao ﬁ = 2af8p/ 1y
Ke (1 =3B)dk /ko + 3Bk /K1
ot = RV TP
py=ET !
He=Clhp,  3Ke=Ciyy +2CT .

) J ) j J
aj=Dlyy  3Bj =Dy + 2Dy, (82)

From (82), it is interesting to remark that all the microstructure

information is contained in the parameters —1=2%_ and 13
552 120 38i

3.5. Distributions of non overlapping spheres

We assume now that the unit cell V of dimensions | x | x [
contains N identical non overlapping spheres of radius R. The shape



Fig. 3. Different arrangements of non-overalapping spheres in cubic unit cell. From left to right: simple cubic (SC), body centered cubic (BCC), face centered cubic (FCC) and
random distribution (RD). The random distribution is generated by Event Driven Molecular Dynamics method.

functions (&) become

v, S
2®) =FEp@. pE =3 e, (83)
i=1

where «; is the center location of the inclusion numbered i in the
cell. The form factor F(&) and inclusion volumes Vs admit the fol-
lowing form
A _ ,Sinnp—mncosy
VS— 3Rv F(E)—3”43w
n=1nl. ni=R§=2mmR/l, =123 (84)
For cubic arrangements of spheres (see Fig. 3), the formulas of x (&)
are known explicitly (Nemat-Nasser et al., 1982; Bonnet, 2007).
- Simple Cubic (SC)

sinn —ncosn

x(®) =37 (85)
- Body Centered Cubic (BC)
x(&) = ?’z_f sinn _)];) C0s '7[1 4 (=1)mHnaHs] (86)

- Face Centered Cubic (FCC)
_ ﬁ sinn —ncosn
T4 3
+(=1 )n,+nz+n3] (87)
Using these expressions, we can compute numerically the interme-
diate tensors D" at any order n (see Appendix B). The first order

tensor D' can be expressed more explicitly and related to Hashin-
Shtrikman estimates, as shown in the next subsection.

x (&) (D)™ + (=)= + (=1)™

3.5.1. Computation of the intermediate tensor D' and first order
estimates

It is possible to derive analytically expressions for the first two
tensors DO =T (or 2ag =1 and 38;=1) and D! (To et al., 2016)
which is a lattice sum. In the case where D' is a cubic tensor,
we can compute explicitly the coefficients B, and «; associated
to D!

20 = _[(1 _2a)‘5i<3(1 -f _53—4(3"'”“0))
Mo\ 3

3Kko + 4o
S 1 4(3k0 + f1o)
—2a’u—l(§(1—f)+53—3k_0+4#0 R
Sk 3Ko Sk 4o
3B, =—-(1- 1-3)————-3————
P ( f)[( P) Ko 3Kko+ 4L K1 3Kko +4/Lo

(88)

via the lattice sums S;, S; and S3 defined as

Si=f1Y ExEx (-8, i=123
3

S2=F"Y & @)x(=§). i=1.2.3
§

S3=fT1Y EMEI X)X (=6, i.j=123. i#] (89)
§

Expression (88) has been obtained by making use of the additional
identities

S1=(1-/f)/3,

and some intermediate results in Appendix B. Substituting n =1
and B, in (88) into (82) and making use of 2ag =1 and 38, =1,
we can recover the Hashin-Shtrikman (HS) estimate for k. regard-
less the chosen values of o and B

2425 =5 (90)

$=1 K f 3k (91)
Ko ﬁ+(1—f)m

Analogously, all the estimates of jt, are reduced at order 1 to

He _ f (92)

- I 2 3K+
Mo sa 5 =1) —aS; 52550

where the lattice sum S3 can be evaluated by semi-analytical ex-
pressions (To et al., 2016). We will show later that in the case of
an isotropic random distribution, this first order estimate of fi, is
identical to HS estimate.

For higher orders n = 2, numerical summation can be used to
compute D" which in turn provides better estimates of ke and fte.

3.6. Random distributions of non overlapping spheres and relation
with structure factors

Regarding random distribution (RD) in Fig. 3, we adopt the er-
godicity hypothesis implying that at the infinite volume limit (both
N and V — o), the tensors D/ are identical to their ensemble av-
erage, both being denoted by (...). As a result, we obtain now sta-
tistical relations

D' = & S FEF-HBES? )
£

2
D? = % Y FEF(E)F(E-E)BEBE)S? (-£.&), etc.
88
(93)



with S2), SG) being the structure factor and the triplet structure
factor given by

1

S@E) = N PEP(=8),

SUEE) = S (p@PpEP(E-)), et (94)

We note that these results are written using the structure factors
which are important quantities in condensed matter physics and
crystallography since they are directly related to statistical infor-
mation, i.e the relative arrangement of the inclusions. For exam-
ple, S)(&) is connected to radial distribution g(2)(r) via the expres-
sion

SO(E) =1 +ﬁfvg‘2'(r)e-"€-'dr (95)

where p is the average inclusion density. For a system of non
overlapping spheres in equilibrium, analytical expressions for both
22 and S2) exist from the solution of Ornstein-Zernike equation
(Ornstein and Zernike, 1914) and Percus-Yevick closure approxima-
tion (Percus and Yevick, 1958; Wertheim, 1963).More importantly,
S(2)(&) can be determined experimentally via scattering techniques.
Higher order structure factors like S?), §4), .. are more difficult to
obtain by experiment (Wochner et al., 2009) but they can be ob-
tained by approximations (Hansen and McDonald, 2006; Nguyen
et al., 2016; Barrat et al., 1987; Kirkwood, 1935) or atomistic based
computer simulations.

In this work, we are concerned with estimates based on the
first two structure factors S@)(&) and S®)(§) which already perform
well. The sums (93) can be rewritten as integrals in the Fourier
space as follows

D= jF(&)F(—g)B(g)s‘z'(s)dn

1
D = 3o [[ FOFEFE - € )BOBE)S (-8.8)dndy.
(96)
For isotropic distributions of non overlapping spheres, we have the
following property
1 [FeEs@ — (-
oz [ FPEsP@)n=(1- 1) (97)

regardless the local pair distribution S2). As in the discrete case,
the expression of the equivalent main shear modulus is given by
expression (92), but using the continuous equivalent of S3 given

by:

1 —
S1= o7 [ FOFOEESD @)an (98)
Using the general relation (97), we can finally evaluate S5
1-f
53 = 5 (99)

and finally (93), giving the first order evaluation of the main shear
modulus e coincides with the HS bound for pe (Hashin and
Shtrikman, 1963). As seen thereafter, the evaluation at the second
order departs from HS bound.

4. Numerical applications and analysis

Let us consider the application of our theory to a cubic array of
spheres in comparison with FFT and some literature results. From
Figs. 4, 5 and Tables 2, 3, we find that the second order estimates
have improved significantly the HS bound which coincides with
the first order estimates. The degree of improvement depends on
the properties considered, estimation scheme, microstructure and
the elastic properties of constituents. For BCC array with contrast

4 -
—6— 1% order (HS)
—#—ON-2
3.5r —5—O0R-2
—8—0D-2
—FFT
3 -
o
£ 2sf
»
2 .
1.5F

0.1 0.2 0.3 0.4 0.5 0.6 0.7
inclusion volume fraction (f)

Fig. 4. Normalized effective bulk modulus x¢/ko vs inclusion volume fraction f of
BCC array. Elastic properties of the constituents are vy = 0.4, vg = 0.3, juy /19 = 10.
The results are computed by first order estimates which all coincide with HS esti-
mates, second order estimates of the three methods (OR,ON and OD) and the nu-
merical method FFT at convergence.

45¢
—6—OD-1(ON-1,0R-1)
4r —5—ON-2
—8—0R-2
35} —&— OD-2
——FFT
3 .
o
E‘@
=2
25t
2 L
1.5¢
0 0.1 0.2 03 0.4 0.5 06 0.7

inclusion volume fraction (f)

Fig. 5. Normalized effective shear moduli jte/to vs inclusion volume fraction f of
BCC array. Elastic properties of the constituents are vy = 0.4, v = 0.3, juy /19 = 10.
The results are computed by first order estimates, second order estimates of the
three methods (OR,ON and OD) and the numerical method FFT at convergence.

Table 2

Normalized effective bulk modulus k ¢/« vs inclusion volume
fraction f of FCC. Elastic properties of the constituents are
vy =0.4,v9=0.3, pt1/jto = 100. The results are computed by
first order estimates which coincide with HS estimates, second
order estimates of the three methods (OR,ON and OD) and the
numerical method FFT at convergence.

f Order 1 ON-2 OR-2 OD-2 FFT

010 11784 11754 11791 11795 11907
0.20 14009 13950 14024 14031 14254
030 16863 16769 16898 16911 17293
040  2.0659 20536 20758 20785 2.1424
0.50  2.5952 25872 26287 26357 27533
060  3.3850 34182 35059 3.5276  3.8286
070  4.6900 49483 51744 52562  7.2886




Table 3

Effective shear moduli ji¢/pto vs inclusion volume fraction f
of FCC. Elastic properties of the constituents are vy =0.4,vp =
0.3, juy/ptg = 100. The results are computed by first order es-
timates, second order estimates of the three methods (OR,ON
and OD) and the numerical method FFT at convergence.

f Order-1 ~ ON-2 OR-2 0D-2 FFT
010 12338 12348 12350 12355 12523
020 15365 15433 15437 15457 15819
030 19347 19667 19675 19745  2.0417
040 24719 25742 25770 25970 27232
050 32230 34793 34896 3.5381 3.8078
060 43281 48812 49222 50277 55844
070  6.0830 7.2978 74748 7.7229 10.7332
3_
o8l —— 1% order (HS)
: —8—0D-2
26l |——Troquato (1997)
241
2.2r
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Fig. 6. Normalized effective bulk modulus ke/kq vs inclusion volume fraction f for
random distribution of rigid spheres (t1/jtp = k1/kp = oc). The solutions of the
present work (OD-1, OD-2) are compared with the results of Torquato (1997); 1998).
The first order estimates coincide with HS estimates.

ratio as high as 10 (see Fig 4 and 5), the second order estimates
of the bulk modulus x./ky and the shear modulus jte/jtg issued
from the three schemes are close to the FFT results at convergence.
The agreement is good upto a very high volume fraction near the
percolation limit. Detailed results on FCC array also have the same
trend as those for BCC cases. Tables 2 and 3 show that the two se-
ries OR and OD yield very good results while the series ON works
less well. It is interesting to note that at volume fraction as large
as 0.5 and the rigidity contrast ratio as high as 100, our three es-
timates perform well.

Next, we study microstructures constituted of randomly
isotropic distribution of spheres. Two extreme cases of rigid
spheres and voids will be considered. Fifty sample composed
of 500 non overlapping spheres are prepared by standard Event
Driven Molecular Dynamics (Rapaport, 2004). To compute the ef-
fective properties of the material, we shall limit to OD based es-
timates and final results are obtained by averaging over the 50
samples. It may be noticed that, the iterative scheme is not the-
oretically convergent for fields in void or rigid inclusions but the
effective properties exist for the considered microstructures. In
this case, the expressions for pte and k. at first and second or-
der can be used for infinite contrast (Fig. 6). Simulations on the
systems show that the OD-2 estimate is close to the estimate of
Torquato (1998); 1997). For spherical voids (see Fig. 7), our sec-
ond order estimate again shows a significant improvement with
respect to the first order (HS bound). The estimate is also close to

—e— 1% order (HS)
—8—-0D-2
——Troquato (1997)

0.8f

£ 06

0.4f

0.3f

0.2 . . . L )
0 0.1 0.2 0.3 04 0.5

inclusion volume fraction (f)

Fig. 7. Normalized effective bulk modulus k./k g vs inclusion volume fraction f with
random distributions of spherical voids (j1/jto = k1/ko = 0). The solutions of the
present work (OD-1, OD-2) are compared with the results of Torquato (1997); 1998).
The first order estimates coincide with HS estimates.

Torquato (1998); 1997) using three point parameters. Those results
again confirm the robustness of our estimation scheme at high
rigidity contrast and high volume fraction. We note that the good
performance comes from the benefit of the fast convergence series
and the high order correlation information.

5. Concluding remarks

In this paper, we have presented a new estimate of the over-
all stiffness tensor of elastic composites. Starting from a class of
Lippmann-Schwinger integral equations for eigenstress (or eigen-
strain), the optimization procedure is then carried out to find the
best Neumann series, i.e those with the fastest convergence rate.
To this end, we have introduced tools to bound the spectral radius
and norm of fourth order operators in Fourier space and methods
to obtain the optimal series. The series are then used to derive es-
timates at different order n.

We have also shown that n— order statistical information on
the microstructure, in this case corresponding to the structure fac-
tors, also appear in the estimates. Numerical applications of the
procedure on some test cases show that our estimates perform
very well in comparison with FFT results and those from the lit-
erature.

Not only concerning the theoretical estimates, the contribu-
tion of the present paper is closely related to the FFT resolution
method. Results issued from the paper correspond to new compu-
tation methods based on the eigenstress whose theory is rigorously
founded and convergence rate is controllable. Indeed, by not taking
the reference material as one of the constituents while keeping all
the remaining ingredients, we obtain a very general and promising
class of series which can be developed into new FFT schemes. The
next step is to optimize and examine the convergence performance
in comparison with the existing FFT schemes. Those perspectives
will be investigated in a future work.
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Appendix A. Lippmann-Schwinger equations in elasticity and
associated FFT resolution method

The boundary value problem can be solved using either one of
the two Lippmann-Schwinger integral equations

€e=E-T%'Ce, o0=X%X-A%'So (A1)
It is clear that these two integral equations are equivalent to
(29) and (30) via the relations T = §'Ce and e = §'So. Taking the
first equation (A.1) as an example, € can be computed by repeating
the iterative scheme

€ =E. €' =EF-T%'Ce" (A2)
until convergence. Since we know the explicit expression of T'? in
the Fourier space and the material distribution §’C in the physical
space, it is preferable to use the FFT algorithm to convert results
back and forth between the two spaces. In most of our applica-
tions, the resolution 256 x 256 x 256 is adopted for both spaces.
Finally, improving the resolution and increasing the number of it-
erations up to convergence, we obtain the exact solution of the
problem within any given accuracy. We note that the adopted FFT
method is related to ES series and different from series used as the
background of the estimation presented in the paper. Using this
classic scheme, the bulk stiffness and the shear stiffness of the ref-
erence material are chosen as averages (half sums) of the related
moduli of inclusion and matrix. Details of the scheme can be found
in previous works (Michel et al., 1999; Bonnet, 2007).

Appendix B. Method of computing D" and explicit expressions
for D'

To compute numerically tensor D" (j = 1), we need to base on
(75) which can be recast as

D =Y X ©OF E)x (-5,
£

F'(§) =B(§), F/(§) =B(&)(x xF)(&),

where * stands for convolution in Fourier space. Given the explicit
expressions of B and y in Fourier space, the convolution can be
done efficiently using FFT techniques.

To compute the cubic tensor D', we need to calculate first the
following elementary H' using Walpole base elements E'

H=f"Y EExEx(-§. i=12.6
§

Jj=2, (B.1)

(B.2)

The explicit Mandel matrix representation of those tensors in
terms of S;, S, and S5 are given as follows

F3S1+5) 3(S1+S3) 3(Si+S3) 0 0 0
FS1+S83) 3Si1+S2) 3(Si+S3) 0 0 0
[H'] = FS1+S83)  3(S1+S3) 3(Si+S) 0 0 01,
0 0 0 S3 0 0
0 0 0 0 S3 0
L o 0 0 0 0 S5
(B.3)

S, S3 S5 0 0 0

S3 S5 S35 0 0 0

S$3 S3 S5 0 0 0

21 _ 3 3 2

BI=1%9 o o 253 0 o | (B.4)

0 0 0 0 25 0

L0 0 0 O 0 25

161 +8) 355-51) 16S:-S) 0 0 0
1S =5) 35 +%) 1S:-S) 0 0 0
(H] = 18-85 35 -5 15 +S,) 0 0 0
0 0 0 S14+5: 0 0 ’
0 0 0 0 S$+S5 0
0 0 0 0 0 5485
(B.5)
25,5y -255 25 0 0 0
225 25,5 —25 0 0 0
mpo| 2 2% 25i-5) 0 0 0
=l o 0 0 25,-25) 0 0
0 0 0 0 as,—25) 0
0 0 0 0 0 25, -253)
(B.6)
S, =S S-S5 S-S5 0 0 0
Si =S S-S S-S5 0 0 0
e S-S S-S5 S-S5, 0 0 0
(HP = [H] = | ™ 0 0 -2 0 0
0 0 0 0 25 0
0 0 0 0 0 -25
(B.7)

From the above results, given any tensor B(§) with representation B(§) =
8, bE (&), we can derive D' = Y0, b;H' and the parameters «; and 3, in
(88).
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