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Parallel robots present singular configurations that divide
the operational workspace into several aspects. It was
proven that Type 2 and Leg Passive Joint Twist System singu-
larities can be crossed with a trajectory respecting a given
dynamic criterion. However, the practical implementation of
a controller able to track such trajectories is up to now lim-
ited to restrictive cases of Type 2 singularities crossing. Ana-
lyzing the structure of the inverse dynamic model, this paper
proposes a global solution allowing the tracking of trajecto-
ries respecting the general criterion for any singularity that
leads to potential issues of dynamic model degeneracy. The
tracking is operated in the robot joint space. Experimental
results on a five-bar mechanism showed the controller ability
to successfully cross Type 2 singularities.

1 Introduction

Parallel robots present many advantages over serial
robots as higher acceleration capacities, better stiffness and
payload-to-weight ratio. However, their use in an industrial
context remains limited due, in part, to the division of their
workspace in several aspects by singularities [1]. Numerous
singularities are prone to appear on a parallel mechanism.
For a global overview the reader is referred to [2—4]. In some
singularities, the inverse dynamic model of the mechanism
does not admit a finite solution without the respect of a dy-
namic criterion [5]. Those singularities will be referred as
Type 2 [6] and Leg Passive Joint Twist System (LPJTS) sin-
gularities, which are a kind of leg singularities [4]. The scope
of this paper is restricted to the above mentioned singulari-
ties. The other singularities such as constraint singularities
are not covered.

Several approaches have been explored in the literature
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to increase the size of the operational workspace of parallel
robot, which is usually limited by the presence of singulari-
ties. The main approaches are:

e The design of parallel robots without singularities [7-9].
This solution is the most usual one, but it usually leads
to the design of robots with a small workspace size or
robot architectures with very low practicability.

e The use of redundancy [10-12], which increases the ac-
tuation cost.

e Mechanisms with variable actuation modes [13]. This
solution is generally carried out when the mechanism is
stopped.

e The modification of the Type 2 singularities locus by
changing the robot working mode. The main way to
proceed is to cross a Type 1 singularity by reaching the
workspace boundary and changing the leg configuration
[14]. This method however may not grant an access to
the complete workspace for all robot architecture.

e The planning of assembly mode changing trajectories
encircling cusp points (for Type 2 singularities) [15].
This solution requires the design of complex trajecto-
ries, which will not be the most efficient for fast opera-
tions, and only few mechanism have cusp points.

e The planning of assembly mode changing trajectories
directly through the singularity [5, 16] with respect to a
dynamic criterion when crossing the singularity.

Crossing the singularity seems a promising solution because
a direct path between two points can be generated on any
robot structure as long as this path respects the dynamic cri-
terion for crossing. In practical implementation, the preci-
sion required on the trajectory tracking is not obtained with
a simple PID controller and the effective crossing of the sin-
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gularity is not guaranteed. Then, the use of a dynamic con-
troller as computed-torque control have been explored. Un-
fortunately, the computation of the inverse dynamic model in
such controller require the inversion of matrices that become
singular in Type 2 or LPJTS singularities. This issue was
partially solved in [17] and [18]. However, both solutions
are limited to Type 2 singularities. Also the solution in [17]
requires a restrictive trajectories and the solution in [18] is
limited to a control of the Cartesian coordinates of the robot
tool, which are rarely available on industrial robots.

This paper proposes a global solution allowing the cross-
ing of Type 2 and LPJTS singularities with a computed-
torque control, valid for any trajectory that crosses the singu-
larity, as long as the dynamic criterion established in [5, 16]
is respected. To obtain this solution, the following improve-
ments are performed from existing solutions:

1. The proof that the dynamic criterion expressed in the
previous studies is not only a necessary condition to
cross the singularity but guarantee a solution to the in-
verse dynamic model, which is expressed for Type 2 and
LPIJTS singularities.

2. A projection of the desired wrench when solving the in-
verse dynamic model in the control law is developed to
avoid unbounded input torques from numerical uncer-
tainties and tracking errors.

3. The extension of the second order kinematic equations
to singular configurations is obtained to allow a feed-
back control law in joint space.

The present paper is structured as follows. Section 2
discusses the expression of the inverse dynamic model that
remains valid in singularity. Section 3 presents a control law
designed to track a trajectory crossing a singularity. The val-
idation of the designed controller is discussed through exper-
imentation in section 4. Conclusions are given in section 5.

2 Dynamic model at singularity locus
2.1 Dynamic modeling of parallel mechanisms

In this section, the dynamic equations of a parallel ma-
nipulator are briefly recalled. For a more detailed analysis,
the reader is referred to [19, 20]. The studied manipulator
is composed of a fixed base, linked by several kinematic
chains (the legs) to a mobile platform actuated along ng,s
independent coordinates. Actuation is provided by ny,r ac-
tive joints. ny passive joints are presents in the manipulator
legs. The configuration and velocity of the manipulator can
be described using:

® (. and q, two ngy,p-dimensional vectors of active joint
variables and active joint velocities respectively.

e qy and 4, two ny-dimensional vectors of passive joint
variables and passive joint velocities respectively.

e x and X two ngy,r-dimensional vectors of the indepen-
dent platform coordinates and their time derivative re-
spectively.

The relations between those coordinates are found by writing
the closed-loop equations h(x,q,) = 0 and h,(x,q,,qq) = 0.
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The time derivative of those closed-loop equations gives the
kinematic constraints equations

Ax+Bq, =0 ()
Jx—JaQa —Jaqa =0 ()

with A, B, J,, Jx and J; of respective size (n4of X naof),
(Rdof X Naof), (Mg X Raor), (na X ngor) and (ng x ng). Let
us also consider the Lagrangian L of the system and <T,, T4
and w, respectively ng,r, ng and ng,p-dimensional vectors
related to the Lagrangian by

d /oL \" oL\ T
:dt(aq) ‘(aq> )

d /oL \T" oL\ "
(o) (o) @

d /oaL\T  /aL\T
th(ax> <ax) ©)

Using method of Lagrange multipliers, the inverse dynamic
model of the mechanism can be written as [20]

t=7,—B'N I\ (6)
ATh =0T =w, ©)
I =1 3

where

e 7 is the ny,s-dimensional vector of the input efforts,
e A\; and A, are a ny,r-dimensional and ng4-dimensional
vectors of Lagrange multipliers respectively,

From the expression of the Lagrangian of the mechanical
system, equations (3)-(5) can be obtained under the form [20]

<, =M, P“] +e, )
qq
_ Ga

Td = Md |: :| +Cd (10)
qq

w, = M, +c, (11)

where

o M, is a (ngof X (ngor +np,)) matrix and My a (n, x
(Rdor +np)) matrix depending on the joint coordinates
qq and qq,

® ¢, is a ny, r-dimensional vector and ¢, a ng-dimensional
vector depending on the joint coordinates q, and q; and
velocities q, and qg,

e M, isa (ngyr X ngoy) definite positive matrix depending
on the platform coordinates X,

e ¢, ang,p-dimensional vector depending on the platform
coordinates x and their time derivative X.
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Figure 1: Example of a five-bar mechanism in a Type 2 sin-
gularity configuration. The vector X, represents the direction
of the uncontrolled platform motion. f; and f, are the forces
that can be generated through actuation on the platform. In
this configuration, the resultant force that can be applied by
the system on the platform is collinear to f; and f,. Two ac-
tuators are used to generate an effort along one direction, an
overconstraint is consequently generated in the mechanism.

2.2 Solution to the inverse dynamic model and degener-
acy conditions
In this section, the main results concerning the general
solution to the inverse dynamic model equations (6)-(8) and
the degeneracy conditions of this model are recalled. For
a detailed study of the dynamic model and its degeneracy
conditions, the reader is referred to [5]. The general solu-
tion to the inverse dynamic model of a parallel robot can be
computed by expressing A, from (8) and A from (7) and by
introducing them into (6)
t=1,—J I, v —-B'A Tw, (12)
with w; = w, + JZJ;T‘cd. The expression of the dynamic
model under this form requires a full rank of the matrices
A and J; [5]. However, this requirement is not always met.
The rank degeneracy of those matrices is associated to kine-
matic singularities of parallel mechanisms identified in the
literature:

e The degeneracy of the matrix A corresponds to a kine-
matic singularity named Type 2 singularity [6]. In such
singularity, one (or more) of the degrees of freedom of
the platform becomes uncontrollable (see Fig. 1).

e The degeneracy of the matrix J; corresponds to a kine-
matic singularity named LPJTS singularity [4,20]. In
such singularity, one (or more) of the leg gains an un-
controllable motion on a passive joint, even if the plat-
form is fully controlled.

For clarity purposes, it is assumed that only one direction
is uncontrollable at singularity locus, corresponding to rank
degeneracy of the matrix A or J; of order one!. It was pre-
viously proved that the inverse dynamic model remains con-
sistent under the respect of a dynamic criterion when cross-

'Even if the case rarely appears on existing parallel robots, the results
can be extended to to a higher order degeneracy.
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Table 1: Dynamic criterion to avoid degeneracy of the in-
verse dynamic model in a singularity

Singularity | Type 2 [21] LPIJTS [5]
Criterion x'wy =0 alta=0
X; € ker(A) | qqs € ker(Jq)

ing a singularity. The criteria established are summarized in
Table 1. Proofs and considerations on those criteria can be
found in [21] and extended to LPJTS singularities in [5].

2.3 Solution to the inverse dynamic model at singularity
locus
Equation (12) gives a solution to the dynamic model
away from singularities. In this section, a solution to the
inverse dynamic model in a singularity is given under the re-
spect of the criteria described in Table 1.

2.3.1 Type 2 singularity

Let us assume a parallel robot on a Type 2 singular-
ity with no other singularity on the same locus®. Then, the
inverse dynamic equations (6)-(8) can be written under the
form

t=1,—B'N-J1J T,

AN =wy

(13)
(14)

with wg = w, + J){J;T'cd. The rank degeneracy of the ma-
trix A implies that the equation (14) will give at least one
exact solution A if and only if wy is included in the range
of the matrix A”. The range of A7 represents all the total
wrenches w, that can be applied by the legs through actua-
tion and external forces on the platform. From linear algebra,
it is known that the range of the matrix A is the orthogonal
complement of the kernel of the matrix A
ker(A)t = Im(AT) (15)
If the dynamic criterion expressed in table 1 is respected,
then wy is in the range of the matrix A and the inverse dy-
namic equations admits at least an exact solution. In order
to find it, the inverse dynamic model is projected on the plat-
form efforts by pre-multiplying equation (13) by ATB~7

ATB T Tx=A"TB T, —ATN —ATB 7)Y, Txy  (16)
Then, AT\ can be replaced in (16) from (14), giving
It =wra (17)

2This hypothesis is taken given that the case of the coincidence of two
singularities is extremely rare and generally avoided in the design of a par-
allel robot.



with J7» = B~'A and

Wr2 = J;z'ca —Wx— (JZ +J’71:2JZ)J;T'Cd-

Knowing that a solution to the inverse dynamic model (13)-
(14) is garanteed if the dynamic criterion is respected, one
solution can be expressed using the Moore-Penrose pseudo-
inverse

L (18)

Since the matrix J ;2 is not full rank, its kernel is not empty,
and so there is an infinite number of solutions to the in-
verse dynamic model including (18). An illustration is given
Fig. 1, on a five-bar mechanism. The wrenches generated by
the system on the platform at singularity are two collinear
forces. Their opposite action generates an overconstraint in
the system. Several combination of those forces (and so sev-
eral input torques) can generate a desired acceleration of the
platform. Equation (18) gives the solution to the inverse dy-
namic model minimizing the input torques, which is usually
the desired solution to limit the power consumption of the
mechanical system. However, for specific applications, it is
possible to express a general solution to the inverse dynamic
model under the form

T =Jrtwra+ (L, — 302" J72)v (19)

with v a ny, r-dimensional arbitrary vector called the over-
constraint. Among the possible solutions to the inverse
dynamic model, the solution minimizing the input torques,
given by equation (18), will be retained. Note also that, out
of a singularity, the following equality is obtained J §2+ =
J ;ZT . Then, the solution to the inverse dynamic model under
the form (18) is also valid out of the singularity (equivalent
to equation (12)).

2.3.2 LPJTS singularity

An equivalent inverse dynamic model can be expressed
for a LPJTS singularity. In this section, a solution to the in-
verse dynamic model on a LPJTS singularity is expressed un-
der the respect of the criterion given in Table 1. The inverse
dynamic equations (6)-(8) can be written under the form

t=1,—B'A Tw, — I}

I =1

(20)
2

with J;, = JLA~'B +J,. Note that J,, is a Jacobian matrix
linking the velocity of the active joints to the velocity of the
passive joints

Jiaa+Ja4a =0 (22)

The degeneracy of the matrix J;, corresponds to a rare sin-
gularity where the mechanism can generate a non-null active
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joint velocity ¢, with no motion of the passive joints. Let us
consider that the LPJTS singularity does not coincide with
such singularity or a Type 2 singularity>. The rank degen-
eracy of the matrix Jg implies that the equation (21) admits
at least one exact solution A, if and only if <, is included
in the range of Jg which is an equivalent condition to the
criterion previously defined to cross a LPJTS singularity in
Table 1. Projecting the inverse dynamic model (20)-(21) on
the efforts exerted on the passive joints gives

Jt=w, (23)

with J, = J,!J; and

w,=—T4+J0 I (g —BTA Tw,)

With the respect of the criterion (21), the exact solution to
the inverse dynamic model minimizing the input torques is

t=J"w, (24)
As in the case of a Type 2 singularity, the general solution to
the inverse dynamic model (20)-(21) can be expressed under
the form

=3 Wyt (L, —I0IT) (25)

with v an arbitrary vector of overconstraint.

3 Control law

In this section, the design of a computed torque con-
trol law in order to track trajectories crossing a singularity is
discussed. As industrial robot sensors usually measure the
active joint coordinates, the control designed is based on the
joint coordinates of the mechanical system.

3.1 Extended second-order loop-closure equations in
the neighborhood of a singularity

The inverse dynamic model of a parallel mechanism
contains terms function of the platform, passive and active
joints accelerations. To design a computed torque control
in joint space, it is necessary to express those accelerations
as function of the controlled coordinates acceleration, i.e.
the active joint accelerations. The time derivative of loop-
closure equations (1) and (2) gives

AX+Bij,+b=0
JX—July — JaGa+d =0

(26)
27)

with b = At, +Bq, and d = J,.x — J;uq, — J:0qq. Out of
a Type 2 singularity, those two equations can be combined

3This hypothesis is taken given that the case of the coincidence of two
singularities is extremely rare and generally avoided in the design of a par-
allel robot.



giving

Jaala +Jada+n=0 (28)

with J4o = JJA"'B+J, and n = J,A~'b —d. Then, out
of singularities, the passive joints acceleration and platform
acceleration can be expressed as function of the active joint
acceleration with

x=-A"'Bg,—A'b
qd = _ngJdaQa - J;ln

(29)
(30)

However, those expressions are not valid in singularities, as
the matrices A and J,; are singular. To compute those expres-
sions in singularity, it is necessary to extend the second-order
loop-closure equations.

3.1.1 Type 2 singularity

When crossing a Type 2 singularity the inversion of the
matrix A required to solve equation (26) is not possible any-
more. In a Type 2 singularity the appearance of one uncon-
trolled degree of freedom on the platform is related to a kine-
matic constraint on the joint coordinates. This constraint is
respected if and only if —B¢, — b is included in the range of
A. Let us consider this constraint respected, then equation
(26) will give an infinite number of solutions

%= —A"(Bg,+b)+ (I, —ATA)v (31

with v a n,-dimensional arbitrary vector. This is due to the
fact that the platform coordinates acceleration vector X do not
only depends on joint accelerations but also on free dynam-
ics associated to the uncontrollable platform motion. The
dynamic criterion expressed in Table 1

x'wy; =0 (32)
is not only a necessary criterion to be respected by a trajec-
tory that crosses the singularity but also an expression of the
free dynamics of the platform. This free dynamics can be
developed as function of X. Let us consider the Lagrangian
of the robot as function of the active joint and platform coor-
dinates and velocities L,y = f(q4,qq4,X,X). Then wy is given

by
_ 4 (e (3Lu)’
Wa =G0\ ok ox

= M X+ Coy

(33)

with M, a definite positive matrix (n, x n,). Equation (33)
introduced in equation (32) gives

XzMaxi + chzlx =0 (34)
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The second-order loop-closure equation (26) can be com-
pleted with equation (34) giving

Aeji = _BEQa - be (35)

with

A B b
A, =|. B. = b, = |.
o o) e,

Acis a (ngor + 1 X ngyr) matrix. Even at singularity, matrix
A, rank remains equal to ny, r (see proof below). If a solution
to this system exists, it is unique and given by the expression

% =—AS (B.da+be) (36)

The existence of the solution can be guaranteed for a trajec-
tory designed in Cartesian space and then mapped to joint
space. However, when using this expression in the con-
troller design, the existence of an exact solution is not guar-
anteed. The computation of the solution through the Moore-
Penrose pseudo-inverse will ensure the computation of a so-
lution minimizing the quadratic error in X, thus leading to a
good estimation of the inverse dynamic model.

Proof. The solutions to equation (26) expressed in
equation (31) span an affine subspace § of the platform ac-
celerations of direction ker A (considered dimension 1). We
will prove that the affine subspace spanned by the solutions
in X to the dynamic criterion equation (34) intersect in one
unique point with §. The solutions to equation (34) is an
affine subspace of dimension ny,y — 1. The direction of this
affine subspace is given by

X' Mx =0 (37)

As M, is a positive definite matrices, XSTMaXXS > 0. Thus,
any X, in ker A is not solution to the equation (37), meaning
that ker A is not included in the direction given by (37).
Then, the affine subspaces spanned by the solutions in
X to the equations (26) and (34) are two supplementary
subspaces. Their intersection is a point in the platform
accelerations space. This point is the unique possible
platform acceleration that can be performed by the robot in
the singularity, completing the proof.

The solution to the extended loop-closure equations (35)
gives an exact computation of the platform acceleration if
and only if the dynamic criterion is respected by the plat-
form acceleration vector. However, in the design of our tra-
jectories, the criterion is only respected in the neighborhood
of a singularity. Away from it, it will be necessary to use
the classical loop-closure equations (26). For the purpose of
designing a controller in experimental conditions, the tran-
sition between those two equations have to be continuous in
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the neighborhood of the singularity. A Type 2 singularity is

characterized by the degeneracy of the matrix A. The matrix

condition number k(A) = Z”"‘_“((:; is chosen as an indicator of
min

the proximity to the singularity, with epax () and epin () being
respectively the maximal and minimal singular values of a
matrix, leading to

% =—(cA"'B+(1-06)A/B,)i,

—6A'b—(1-0)A)Db, (38)

with ¢ a continuous transition function equal to 0 in the
neighborhood of a singularity and to 1 away from it.

1
@ > 28,
1
m < 2, 39

0if <E€.

1
K(A)

with € a threshold characterizing the proximity of the singu-
larity determined experimentally.

3.1.2 LPJTS singularity

A similar result can be obtained for a LPJTS singularity.
The equation (27) cannot be solved at singularity locus. In
this case, the extended second-order loop-closure equation
will take the form

Jd,eﬁd = _Jda,eQa — I, (40)
with
Ja Jda n
Jie=1. Jize = n, = |.
e [qgstJ dae |:01><”d0f:| ‘ [qgscdj

! !
Mg =My { Jaa Jd] Cae =4+ My { OJd“ n}

npx1 npx1

With a reasoning similar to the one applied for Type 2 sin-
gularities (section (3.1.1)), it can be proved that the system
(40) will give a unique solution in LPJTS singularity. The
computation of the passive joint acceleration is then a com-
bination of the classical loop-closure equations (30) and the
extended loop-closure equation (40),

Qd = (GpngJda - (1 - Gp)J(Jir,eJda,e)(ja

—6,J;'n—(1-0,)J,; n (41)
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where

(42)

with €, a threshold characterizing the proximity of the sin-
gularity.

3.2 Expression of the inverse dynamic model for a con-
trol in joint space
In section 2.3.1, general solutions to the inverse dynamic
model that are valid in and out of a singularity are given by
equation (18) for Type 2 singularities and (24) for LPJTS sin-
gularities. Those models will be used for the design of a the
computed torque control law to cross the singularity. The in-
verse dynamic model is expressed as function of the vectors
T4, T4 and w, issued from the Lagrangian of the system by
equations (3)-(5). For encoder-based computed torque con-
trol purpose, this inverse dynamic model must be expressed
as a function of the acceleration of the measured coordinates
(- This expression will be computed using equations (9)-
(11) and the extended second-order loop-closure equations
expressed in section 3.1.

3.2.1 Type 2 singularity

Combining the second order kinematic equations (27)
and (38) with the equations issued from the Lagrangian (11)-
(10) and the inverse dynamic model (18) leads to the expres-
sion of the model as function of the joint acceleration ¢.
The model can be expressed under the form

T =Mr2q,+hr; 43)

where

e My, is the (ngof X ngor) inertia matrix of the system.
M7, depends on the joints coordinates q and platform
coordinates X. Skipping all mathematical derivations, it

comes
MT2 = J;z—‘r (J;zMaJG
+M,(cA 'B+(1-06)A/B,)
—(+ 3023003, 3s) (44)
I,
with Jg = dof

~J; (J:(cA'B+(1-0)ABe) +Ja)|
e hr; is a ny,r-dimensional vector regrouping the gravi-
tational, centrifugal and Coriolis terms. hr, depends on
the joints coordinates q and velocities  and platform
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coordinates x and their time derivative X. Skipping all
mathematical derivations, one can obtain

hry = J§2+ (J;z (Manc +Ca)
+M,(cA b+ (1 -06)A)b,) —c,

—(IT+I5IDI,T (Myng —cq))  (45)

OndeX 1

ithng = .
WMo = |y (cA b+ (1 —6)Alb,) +d

3.2.2 LPJTS singularity

An expression similar to equation (43) can be derived
from the inverse dynamic model obtained for a LPJTS sin-
gularity. Combining the second order kinematic equations
(29) and (41) with the equations issued from the Lagrangian
(11)-(10) and the inverse dynamic model equation (24) leads
to the expression of the model as function of the joint accel-
eration {.

T=M,{,+h, (46)

Skipping the mathematical derivations, M, is given by

M, = J;+ (_Md‘]"p

+J7 (MuJs, +B"A"M,A"'B)) (47)

1 Ligos
_GpJ; Jda - (1 _GP)J;ZZ,eJe
and h, is given by

with Jg, =

hy =J, " (= (Man, +¢a) +J, (Mang, +c,

+B"A T (M, A" 'b—¢,))) (48)

Ondafxl

with ng, = 1
7 =0pd;'n—(1-0,)J 0.

3.3 Wrench projection in the neighborhood of a singu-
larity

Around the singularity locus, the dynamic criterion es-
tablished (Table 1) will not be exactly respected by a con-
troller in real conditions. Unfortunately, only the strict re-
spect of this criterion guarantee an exact solution to the in-
verse dynamic model. The existence of numerical and track-
ing errors may lead to the computation of huge torques in the
neighborhood of a singularity. Error amplification around
the singularity is due to the presence of a singular value near
zero in the inverted matrix. Based on the assumption that the
criterion is respected in the neighborhood of the singular-
ity, a projection of the desired wrench in the dynamic model
is performed. The design of the error inhibitor is given in
this section for a Type 2 singularity from equation (18). The
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design of a similar inhibitor for a LPJTS singularity can be
obtained from equation (24).

Let us consider the inverse dynamic model equation to
solve under the form (18)

ATB Tr=wp (49)

The matrix A degenerates in a Type 2 singularity. Let con-
sider its singular value decomposition

A=Uzv’ (50)

where X is the diagonal matrix of ordered positive singular
values (eq,...,e,) and U, V two unitary matrices. At singu-
larity locus, the last singular value is null e, = 0. Multiplying
equation (49) by the matrix V7 gives

YU'B Tx=Viwp (51)

In order for the dynamic model to give an exact solution, the
last component of the vector wy = VT wz, must be equal to
zero. This is an other formulation of the dynamic criterion
necessary to cross the singularity (note that the last line of the
matrix V7 is included in kerA). As the dynamic criterion is
not exactly respected, the last component of the vector w, has
to be driven toward zero in the neighborhood of the singular-
ity to avoid the numerical degeneracy of the inverse dynamic
model. As in section 3.1.1, the proximity to the singularity is
characterized by the condition number using the norm-2 of
the matrix A. A function o is defined by

1
1if 2g;,
i A > 2g,
1—x(A)g . 1
———ife — < 2g
K(A)SS e < < Z&j,

*= x(A)

(52)

1
if —— <e.
01 (A < &

with g threshold determined experimentally. G is a function
equals to 1 and continuously driven towards O as the system
get closer to the singularity. Multiplying the last component
of the vector w; by o, ensures that the desired wrench in
equation (49) respects the dynamic criterion. This will avoid
exponential increase of the torques consequent to minimal
errors on the trajectory tracking.

3.4 Computed torque control law

The computed torque control (CTC) is an advanced con-
trol law for non-linear systems where the inverse dynamic
model is used to realize an exact linearization of the sys-
tem. Computed torque control allows the design of consid-
erably more precise, energy-efficient and compliant controls
for robots. The inclusion of the mechanism dynamic model

7
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into the controller is desirable to enforce a dynamical cri-
terion such as the criterion required for singularity crossing
(Table 1). The convergence and the stability of such con-
trollers is well known [22]. For all aforementioned reasons,
this control law is an excellent candidate to track trajecto-
ries crossing the singularity. The following developments
are suited both for Type 2 and LPJTS singularities.

From the previous section results, the inverse dynamic
model of the robot can be expressed as a function of the ac-
tive joint accelerations even at singular configuration {,:

©=Mg,+h (53)

The computed torque control law is obtained with the design
of an auxiliary control signal u corresponding to the joint
acceleration ¢, from which the input torques are computed

t=Mu-+h (54)
The following PD control law is applied
UZQtJFKd(Qt*Qa)Jer(QI*Qa) (55)

where

® (s, q; and ¢, are respectively the desired active joints
position, velocity and acceleration along the tracked tra-
jectory,

e K, and K, are positive definite gain matrices.

This control law ensures a second-order convergence of the
joint position error e = q; — q,. Fig. 2 represents the classical
CTC controller that can be applied to a parallel mechanism
in order to track a trajectory. The computation of the ma-
trices M and h requires an estimation of the platform and
passive joints position and velocity. Several techniques may
be used to get this estimation such as a computation through
the geometric model, interval analysis method [23] or exte-
roceptive measures [24]. The estimation may also be com-
puted from the desired trajectory, as long as the tracking is
reliable [19]. A computed torque control in Cartesian coordi-
nates may also be designed to limit the issues with solutions
to the second-order kinematic equations for Type 2 singular-
ities (see section 3.1.1). However, to be efficient, such con-
troller requires a precise external measure of the end-effector
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Figure 3: Five-bar mechanism and parametrization scheme

position, which is currently rarely available on robots. For a
review of dynamic control of parallel robots, the reader is
referred to [25].

4 Case study

The proposed approach was validated on an experimen-
tal platform. As the models and controllers are similar for
Type 2 and LPJTS singularities, the experimental validation
is only presented for the crossing of Type 2 singularities with
a planar five-bar mechanism.

A five-bar mechanism is a planar parallel mechanism
composed of two actuated joints located points Aj; and Ay
and three passive joints located at points Ajz, Ay and Aj3
(see Fig. 3). This mechanism is able to generate a motion
of the end-effector situated in A13 (x = (x,y)”) through the
actuation of the joints g1 and g»;. The passive joints coor-
dinates are respectively noted g1 on the first arm, g>> on the
second arm and g3 for the joint linking those two arms.

4.1 Identified dynamic model

A full dynamic model identification was computed using
a weighted least square method applied on exciting trajecto-
ries described in [26,27]. The base parameters identified for
the five-bar mechanism were

e grouped inertia for the two proximal links
zz11r = 0.0133 kg/m? and zz718 = 0.0142 kg/m?,

e grouped point mass at the end-effector msg = 0.537 kg,

e frictions (coulomb model) static f,rr11 = 0.0855 Nm,
Jor21 =0 Nm and kinetic fy11 = 0.345 Nm/s, fpo =

0.430 Nm/s parameters for the active joints.

The base parameters lead to the computation of the dynamic
model (6)-(8) under the form

t=Zij.+f—B'A
{ q, 1 (56)

AT7\1 = m3rX

with

e du = (G11,421)T the active joint accelerations vector,
e A and B issued from the loop-closure equations (1) and

2,
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e Z apositive diagonal matrix

zz1ir 0
Z:
{ 0 zzzue} o7
e f the active joint friction terms
fsusign(gir) Jorrin
. . 58
|:fs2151gn(q21) + forran (58)

with sign a mathematical function extracting the sign of
a real number.

The five-bar mechanism presents Type 2 singularities cor-
responding to the degeneracy of the matrix A. Type 2 sin-
gularity configurations happen when the two distal links of
the five-bar mechanism are aligned. In this case, the uncon-
trolled motion is orthogonal to this alignment (see Fig. 1).
The dynamic criterion to be applied when crossing a Type 2
singularity (Table 1), related to the dynamic model (56), is
then given by the equation

¥ = Xtan(gii s+ qgins) (59)

with g;1 s and ¢ s joint i1 and i2 positions of arm i in singular
configuration. The expression of the inverse dynamic model
that does not degenerate at singularity locus (18), as long as
the criterion (59) is respected, is given by

T = (J72) " (IF2Zida — m3pX) (60)

4.2 Trajectory generation

To test the controller a trajectory crossing twice a Type 2
singularity has been generated with the five-bar mechanism.
This trajectory (shown in Fig. 4) is a return trip from a point
A =[0;0.15] m to a point B = [0;0.02] m. The trajectory
crosses twice the singularity point § = [—0.048;0.067) m. A
point to point trajectory is computed in Cartesian coordinates
and composed of
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e A trajectory during a time interval [fy;t,,] around the
singularity with constant acceleration (,¥;) that re-
spects the criterion (59), given by (with ¢ the time vari-
able)

x= %tz—i—(xxt—l—ﬁx

y =21+ oyt +B,

(61)

O, Oy, By and B, are coefficients computed such that
the trajectory respect a desired position and velocity at
singularity point.

e Two five degree polynomials ensuring a continuous tran-
sition form the starting point to the singularity trajec-
tory and from the singularity trajectory to the end point.
Those polynomials are defined by initial and final po-
sition, a null velocity and null acceleration of the end-
effector at those points and by the the trajectory duration

ty.
Table 2 gives the parameters used to define the trajectory
from point A to point B and from point B to point A. The

trajectory in joint space is computed through the inverse ge-
ometric model of the robot.

Table 2: Trajectory parameters

I Iy i tso X Vs X Vs
[sec] | [sec] | [sec] | [sec] | [m/s] | [m/s] | [m/s?] | [m/s?]
A—B | 07 | 035|025 | 045 0 -0.374 2 0.469
B—A| 14 | 1.15 ] 1.05 | 1.25 0 -0.374 1 0.234

4.3 Experimental results

This section presents the experimental results of the tra-
jectory defined in section 4.2. Figure 5 shows the torque
computed by the controller and the joint tracking error dur-
ing the trajectory. The thresholds € and & are both set to
0.1 for this experiment. With the dynamic model computed,
there is no discontinuity in torque computation when cross-
ing the singularity. The tracking error may locally increase
just after the singularity crossing. Several factors generate
this effect. First, the dynamic model around the singularity
is an approximation which considers that the criterion estab-
lished (59) is strictly respected. In real conditions, a strict
respect of the criterion cannot be ensured, leading to a less
efficient estimation of the dynamic model around the singu-
larity and a deterioration of the tracking quality. It must also
be considered that locally, a Type 2 singularity constraints
the gap between the two proximal legs of the system, if the
calibration of the proximal joint positions is not of perfect
accuracy, an error will be generated by this constraint when
crossing. And finally, it must be considered that in the neigh-
borhood of a singularity, the system is locally underactuated.
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Figure 5: Input torque applied, ¢ and G; values and tracking
error on a singularity crossing trajectory. ¢ = 65 = 0 means
that the robot is close to a singularity and the wrench projec-
tion in the controller is active.

This aspect makes a part of the tracking errors locally impos-
sible to be corrected by the controller. The appropriate pre-
cautions taken make that the torque input remain bounded at
singularity, at the cost of a local angular tracking error.
Nevertheless, a trajectory have been generated with sev-
eral singularity points and accelerations. The trajectory have
been tested at least 10 times with success in crossing the
singularities each time. Experiment videos are available at
https://www.youtube.com/watch?v=xVAaF4ycfho

5 Conclusion

The presence of singularities in the workspace of paral-
lel robot reduces the effective workspace. To increase this
workspace, a promising solution that consists in designing
trajectories able to cross singularities has been developed in
a previous study. However, the controllers developed to track
those trajectories were limited to restrictive cases of Type 2
singularities crossing. This paper proposes new expressions
of the inverse dynamic model, adapted for computation even
in the singularity. The inverse dynamic model developed also
handle the local overconstraint that appears in the singular-
ity. Combined with the extension of the second order loop-
closure equations in the singularity, it allows the design of a
computed torque control able to track the desired trajectories.
The theoretical contributions of this paper also extended the
results to the crossing of LPJTS singularities. The controller
was validated experimentally on a five-bar mechanism.

Future work on this subject includes the development
of techniques to validate the operating mode change when
crossing a singularity without the use of exteroceptive sen-
sors. Also, one limitation of the controller is its dependency
to a threshold determined experimentally. An improvement
of the approach would be to develop a formal method to com-
pute an appropriate value. Work related to a better consider-
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ation of the underactuation into the controller when crossing
the singularity is also in progress.
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