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S U M M A R Y
Velocity macromodel building is a crucial step in the seismic imaging workflow as it provides
the necessary background model for migration or full waveform inversion. In this study, we
present a new formulation of stereotomography that can handle more efficiently long-offset
acquisition, complex geological structures and large-scale data sets. Stereotomography is a
slope tomographic method based upon a semi-automatic picking of local coherent events. Each
local coherent event, characterized by its two-way traveltime and two slopes in common-shot
and common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface.
Ray tracing provides a natural forward engine to compute traveltime and slopes but can suffer
from non-uniform ray sampling in presence of complex media and long-offset acquisitions.
Moreover, most implementations of stereotomography explicitly build a sensitivity matrix,
leading to the resolution of large systems of linear equations, which can be cumbersome when
large-scale data sets are considered. Overcoming these issues comes with a new matrix-free
formulation of stereotomography: a factored eikonal solver based on the fast sweeping method
to compute first-arrival traveltimes and an adjoint-state formulation to compute the gradient
of the misfit function. By solving eikonal equation from sources and receivers, we make the
computational cost proportional to the number of sources and receivers while it is independent
of picked events density in each shot and receiver gather. The model space involves the
subsurface velocities and the scatterer coordinates, while the dips of the reflector segments are
implicitly represented by the spatial support of the adjoint sources and are updated through the
joint localization of nearby scatterers. We present an application on the complex Marmousi
model for a towed-streamer acquisition and a realistic distribution of local events. We show
that the estimated model, built without any prior knowledge of the velocities, provides a
reliable initial model for frequency-domain FWI of long-offset data for a starting frequency of
4 Hz, although some artefacts at the reservoir level result from a deficit of illumination. This
formulation of slope tomography provides a computationally efficient alternative to waveform
inversion method such as reflection waveform inversion or differential-semblance optimization
to build an initial model for pre-stack depth migration and conventional FWI.
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1 I N T RO D U C T I O N

Building a velocity macromodel from reflection data remains one
of the most crucial and challenging issues in seismic imaging. The
difficulty arises from the nonlinearity of the inverse problem associ-
ated with the long-wavelength reconstruction of the subsurface; by
contrast the imaging of reflectivity by migration is a far more linear
problem (Claerbout 1985). Velocity model building provides the
necessary background or starting model to perform pre-stack-depth
migration (Etgen et al. 2009) or full waveform inversion (FWI;
Tarantola 1984).

Among the most popular methods for velocity macromodel build-
ing, reflection traveltime tomography (Bishop et al. 1985; Farra &
Madariaga 1988) and migration-based velocity analysis (MVA;
Gardner et al. 1974; Al-Yahya 1989) were specifically designed for
seismic reflection data. Reflection traveltime tomography, which
builds a velocity model through the minimization of the travel-
time residuals, is computationally efficient but relies on tedious
picking of continuous horizons. MVA methods rely on an explicit
scale separation between the background velocities and the reflec-
tivity to iteratively alternate the velocity update and the migration.
The velocity update is driven by flattening the reflectors in the
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common image gathers or by minimizing reflection data residuals in
the time domain after demigration. Among the MVA methods, some
rely on picking in the pre-stack migration volume (Al-Yahya 1989)
or on more automatic waveform-based misfit criteria as in dif-
ferential semblance optimization (DSO; Symes 1998; Chauris &
Noble 2001) or migration-based traveltime inversion (MBTT;
Clément et al. 2001). Recently, the governing ideas of the MBTT
method have been recast in the framework of FWI, leading to the so-
called reflection waveform inversion (RWI; Xu et al. 2012; Brossier
et al. 2015; Wu & Alkhalifah 2015; Wang et al. 2016) with an
extension to the joint inversion of diving waves and reflections pro-
posed by Zhou et al. (2015). One drawback of MVA and RWI is the
computational cost resulting from the migration performed at each
cycle of the alternating optimization.

The computational cost of MVA and the above-mentioned vari-
ants of the FWI make traveltime tomography an attractive technique
for velocity model building, where we do not need repeated migra-
tions. However, picking either in the data domain or in the migrated
domain is a burden in traveltime tomography. As a remedy for the
issue of horizon-based picking in reflection tomography, use of lo-
cal coherent events in pre-stack data sets has been a breakthrough,
first introduced by Rieber (1936) and followed by Riabinkin (1957)
and Sword (1987) in the framework of the controlled directional
reception (CDR) method. These local events are interpreted as ar-
rivals reflected from small reflecting facets. Main motivation of
CDR has been to add, in the data domain, the slopes of the local
coherent events to the traveltimes to better constrain the velocity
model building process.

Billette & Lambaré (1998) extended the CDR method to stereoto-
mography, which relies on a semi-automatic picking of traveltimes
and slopes of local coherent events in both shot and receiver gath-
ers. Each of these local events is tied to a reflecting/diffracting facet
in the subsurface. The misfit between recorded and modelled two-
way traveltimes and slopes at the source and receiver positions is
minimized to update the subsurface velocities and the coordinates
of the facets in depth. Moreover, take-off angles and the one-way
traveltimes of the rays connecting the facet to the source and the
receiver can be added as optimization parameters with the aim of
making the forward problem more efficient by avoiding two-point
ray tracing or making the inverse problem less prone to local min-
ima by expending the search space. For this, the source and receiver
positions need also to be fitted since there is no guarantee that the
rays associated with the initial guess of take-off angles and one-way
traveltimes will reach the shot and receiver positions.

Through different applications of stereotomography (Billette
et al. 2003; Lambaré et al. 2004; Nag et al. 2006; Alerini et al. 2007;
Prieux et al. 2013), some practical workflows have been designed
to mitigate the nonlinearity of the inversion. These strategies rely
on a suitable scaling of the different optimization parameter classes,
suitable initial localization of the facets and a multiscale approach
during which the grid on which the velocity model is parametrized is
progressively refined. In spite of all these efforts, stereotomography
still suffers from the limitations of ray-based techniques to handle
complex media (Lambaré 2008). A second limitation of compu-
tational nature is related to the fact that the inversion algorithm
relies on the explicit building from paraxial quantities of the sen-
sitivity matrix which has a (data size) × (model size) complexity.
Although this matrix-based implementation is suitable for a sensi-
tivity analysis of the multiparameter inversion, it represents a signif-
icant computational burden when huge 3-D data sets are tackled. A
third limitation is related to the significant number of optimization
parameters of different nature in ray-based stereotomography (e.g.

velocity and ray parameters) that can make the inversion poorly
conditioned and hence difficult to scale.

In order to overcome these difficulties, we present a new formula-
tion of stereotomography. The first key ingredient is the computation
of traveltimes by solving the factored eikonal solver with the fast
sweeping method (FSM; Zhao 2005; Fomel et al. 2009). Our main
motivation behind the use of eikonal solver at the expense of ray
tracing is to avoid the issue of non-uniform ray sampling that can
arise in presence of low velocity zone or area of rapidly varying
wave speeds. Moreover, a factored form of the eikonal equation
improves the accuracy of the traveltime computation nearby the
sources. Exploiting source–receiver reciprocity, we compute the
synthetic slopes at the source and receiver positions by finite differ-
ences from traveltime maps computed from neighbour source and
receiver positions. By doing so, we limit the computational burden
of our approach by solving the eikonal equations from the source
and receiver positions rather than from the facets. The second key in-
gredient is the computation of the gradient of the stereotomography
misfit function with the matrix-free adjoint-state method. Plessix
(2006) developed the gradient of the stereotomography misfit func-
tion from the ray equations and showed how solving the adjoint-state
system is less computationally intensive than solving the propagator
system required to compute the sensitivity matrix with paraxial ray
equations. In our formulation, the state equations resulting from the
use of a finite-difference eikonal solver as forward-modelling en-
gine (eikonal equation and slope estimation from finite differences
of traveltime maps) drive us towards a model space formed by the
subsurface velocities and the coordinates of the scatterers. This
model space may be easier to manage than those used in ray-based
stereotomography (Billette & Lambaré 1998) because it involves
a smaller number of parameter classes. Therefore, this choice may
mitigate issues of parameter cross-talk and ill-conditioned inver-
sion. In this study, we support the legitimacy of this statement with
an application to the complex Marmousi model. Other applications
of classic stereotomography on the Marmousi model with different
model parametrizations are presented by Chauris et al. (2002b) and
Billette et al. (2003).

In the following, we first review the principles of the classical ray-
based stereotomography. Then we introduce the forward-problem
(state) equations that are used to compute traveltimes and slopes in
our formulation referred to as adjoint slope tomography. From these
equations, we introduce the data and model spaces, and compute
the gradient with a formulation of a semi-discretized adjoint-state
method. We then discuss some practical aspects of the implementa-
tion of the method before showing its relevance with three synthetic
examples. The third example shows an application to the Marmousi
model performed with a realistic synthetic data set inferred from a
sparse picking of reflectors in the Marmousi model. The accuracy of
the estimated model is assessed as a starting model for frequency-
domain FWI with a realistic starting frequency of 4 Hz. We manage
to build a reliable initial velocity model for FWI without taking
advantage of any prior knowledge of the velocity structure. How-
ever, our results also show the sensitivity of the method to sparse
distribution of picks in deep complex zone or near the ends of the
acquisition layout.

2 2 - D C L A S S I C A L
S T E R E O T O M O G R A P H Y

Slope tomography methods allow for the estimation of subsurface
velocity models from slopes and traveltimes of local coherent events

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/209/3/1629/3072667 by C

N
R

S - ISTO
 user on 19 O

ctober 2021



Adjoint slope tomography 1631

Figure 1. Local coherent events in stereotomography. Each local coherent
event is described by the source and receiver positions (s, r), the slopes
(ps, pr) picked in common-shot and common-receiver gathers and two-way
traveltime Tsr.

Figure 2. Data space and model space in classical stereotomography. The
symbols + denote the velocity nodes. Two rays are shot towards the source
‘s’ and receiver ‘r’ from the scatterer x with take-off angles �s and �r.
Corresponding one-way traveltimes are Ts and Tr. The velocities, the scat-
terer coordinates x and the ray attributes (�s, �r, Ts and Tr) form the
model space of classical stereotomography. The scatterer position and the
two take-off angles (�s, �r) define a dip bar (or migration facet) shown by
the segment running through the scatterer. The horizontal component of the
slowness vectors at the source and receiver positions, ps and pr, the two-way
traveltime Tsr and the source and receiver positions form the data space of
the classical stereotomography (adapted from Billette & Lambaré 1998).

on unmigrated data (Fig. 1). These local coherent events correspond
most of the time to a reflection from a small reflector segment
(Billette et al. 2003). However, they can also represent diffractions
or diving waves (Plessix 2006; Prieux et al. 2013). Since the struc-
tures that generate local coherent events are parametrized by point
diffractor in slope tomography, we will refer to them as scatterers
in the following. For two dimensional acquisitions, a stereotomo-
graphic data set consists of N locally coherent events that can be
parametrized by

d = [(s, r, Ts,r , ps, pr )n]N
n=1, (1)

where s and r denote the position of the source and receiver, ps and
pr are the slopes picked in the common-receiver and common-shot
gathers for source s and receiver r, respectively (equivalently, the
horizontal component of slowness vector at the position of source s
and receiver r), and Ts,r is the two-way traveltime (Fig. 2).

The scatterer related to each pair of local events is located at a
position denoted by x from which a pair of rays are propagated
in a background velocity model towards the source and receiver.
The take-off angles of these two rays define the dip component

of the scatterer (dip bar in Fig. 2) that is mapped by the source–
receiver pair. The scatterer position and the take-off angles can be
represented by dip bars as shown by Billette et al. (2003, their figs
4 and 9) the assemblage of which can be viewed as a skeleton of a
migrated image. This ray-based description leads to the following
definition of the stereotomographic parameters

m = {(x, θs, θr , Ts, Tr )n|N
n=1, [cm]M

m=1}, (2)

where fields Ts and Tr stand for one-way traveltimes of the rays shot
with take-off angles θ s and θ r from the scatterer towards the source
and receiver (Fig. 2). Quantities Ts, Tr, θ s and θ r are introduced
as optimization parameters mainly for sake of efficient ray tracing
with end points near the actual source and receiver locations. The
fact that the end points do not match the true shot and receiver
positions requires involving these later as observables in the data
space (eq. 1). Alternatively, two-point ray tracing can be performed
at the expense of computational efficiency. This option allows one
to remove Ts, Tr, θ s and θ r from the model space and s and r from
the data space. The velocity macromodel can be parametrized by the
coefficients cm of cardinal cubic B-spline functions, which ensure
the second-order continuity of velocity model required by paraxial
estimations (Billette et al. 2003).

A subsurface model is iteratively updated by minimization of the
least-squares misfit between picked and modelled data. The inverse
problem is solved through the explicit building of the sensitivity ma-
trix, which can be inferred from paraxial ray quantities (Billette &
Lambaré 1998). The resulting tomographic system augmented with
smoothing constraints is solved with a linear conjugate gradient
such as LSQR (Paige & Saunders 1982). In practice, different
strategies have been implemented in stereotomography to cope with
potential nonlinearities and ill-posedness resulting from the mul-
tiparameter (i.e. velocity, ray parameters and scatterer positions)
nature of the reconstruction. Billette (1998) proposed a workflow
subdivided in three steps: initialization of ray parameters in a ho-
mogeneous background velocity model, estimation of a constant
gradient velocity model that best fits the stereotomographic ob-
served data, and joint inversion of the ray parameters, scatterer po-
sitions and spline coefficients modifying the background constant
gradient velocity model. This procedure faced difficulties in case of
complex geological structures where the second step cannot con-
verge to a sufficiently accurate velocity model (Billette et al. 2003).
Time stripping (Alerini et al. 2007) is another technique to incorpo-
rate the stereotomographic picks in a progressive manner, according
to their traveltimes. For very smooth and layering velocity models,
this approach seems efficient but, since the position of the scat-
terers and the one-way traveltimes are updated independently, this
method may fail to converge in presence of strong lateral velocity
variations. Target-oriented strategies are also possible to reduce the
nonlinearity of the inversion (Billette 1998).

To establish a powerful, automatic and comprehensive approach,
Billette et al. (2003) introduced a multiscale approach. They pro-
posed an initialization of the model parameters by considering a
sparse distribution of cubic cardinal B-spline nodes in each direc-
tion and a simple geometrical consideration for the ray parameters
in a homogeneous background velocity model. The next step is the
localization, that includes updating independently the ray parame-
ters and positions of scatterers while the velocity is fixed at its initial
value. In the third step, they perform a joint inversion of all model
parameters through a multiscale approach where the grid of spline
nodes is progressively refined over the different multiscale steps. In
this study, we design a workflow along these lines, with different
model parametrization and inversion implementation.
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3 A D J O I N T S L O P E T O M O G R A P H Y

Compared to classical stereotomography, our implementation of
slope tomography relies, on the one hand, on solving the forward
problem by numerical resolution of the eikonal equation and, on
the other hand, on using the adjoint-state method to compute the
gradient of the slope tomography misfit function.

Although eikonal solvers do not provide explicit information on
rays attributes such as slopes, they avoid the issue of non-uniform
ray sampling caused by low or rapidly varying velocities in partic-
ular near grazing angles. It is worth reminding that the aim of the
slope tomography is to build smooth velocity models. Therefore,
our motivation behind using eikonal solvers is not to use diffrac-
tions or head waves generated by low or high velocity contrasts,
these arrivals being challenging to pick in the data, but rather to
take advantage of robust and accurate computation of uniformly
sampled traveltime maps in smooth media.

Current implementations of eikonal solvers do not identify
multiple arrivals generated by multipathing which remains a com-
putational challenge (Qian & Leung 2004). Therefore, we consider
only the fastest solution in the present formulation.
Operto et al. (2000, their figs 10 and 11) showed that ray+Born
migration/inversion using first-arrival traveltimes provide accept-
able quantitative migrated images of the Marmousi model as long
as the background model is sufficiently smooth. In this case, the
amplitudes of the velocity perturbations are reasonably estimated
where the ray field is folded. This suggests that the information
carried out by multiple arrivals in the data is accounted for in an
average sense. Indeed, this amplitude recovery from first-traveltime
arrivals is achieved at the expense of the quality of the focusing,
that is hampered by the smoothness of the background model
(compare figs 7 and 9 in Operto et al. 2000). We can transpose this
reasoning from the migration task to the velocity model building
counterpart by assuming that the velocity models estimated by slope
tomography are smooth enough such that first-arrival eikonal solver
predicts in average sense traveltimes of multiple arrivals that would
have been picked in the data. In summary, our choice of eikonal
solver rather than ray tracing is pragmatical. It provides a robust
tool to compute uniformly sampled traveltime maps that accurately
predict picked traveltimes as long as the velocity model is forced
to be smooth enough.

For solving the inverse problem, we compute explicitly the gra-
dient of the misfit function with respect to the model parameters
using an adjoint-state formulation. This allows us to avoid building
the sensitivity matrix and performing large-scale matrix resolu-
tion. The matrix-free nature of this approach makes the inversion
scheme more capable of handling large data sets. In the following
section, we review the model and data spaces used in our forward-
modelling engine and the adjoint formulation of slope tomography.
All the mathematical symbols used in our formulation are presented
in Table 1.

3.1 Data and model space definition

In adjoint slope tomography, we consider descending wave propa-
gation from the source and receiver positions towards the scatterers
(Fig. 3), unlike ray-based approaches where rays are shot from the
scatterer towards the source and receiver positions with prescribed
shooting angles (Billette 1998). These shooting angles explicitly
define the dip of the scatterer (i.e. reflector segment if the scat-
terer lies on a reflector) sampled by the source–receiver pair. In our
approach, we shall show that the dip component of a scatterer is

Table 1. Mathematical symbols.

Symbol Description

N Total number of scatterers.
M Total number of cubic B-spline nodes.
Ns Number of distinct shot gathers.
Nr Number of distinct receiver gathers.
N s

r Number of distinct receivers in the shot-gather s.
Nr

s Number of distinct sources in the receiver-gather r.
N s,r

n Number of scatterers for source–receiver pair (s, r).
ns, r nth scatterer associated with source and receiver pair

(s, r).
xns,r Position of nth scatterer associated with source–receiver

pair (s, r) .
xs , xr Position of source s and receiver r .
T ∗

s,r,ns,r
Observed two-way traveltime for scatterer ns, r.

Ts,r,ns,r Calculated two-way traveltime for scatterer ns, r.
p∗

s,ns,r
Observed local slope for scatterer ns, r at the position of
sth source of receiver-gather r.

ps,ns,r Calculated local slope for scatterer ns, r at the position
of sth source of receiver-gather r.

p∗
r,ns,r

Observed local slope for scatterer ns, r at the position of
rth receiver of shot-gather s.

pr,ns,r Calculated local slope for scatterer ns, r at the position
of rth receiver of shot-gather s.

(. . . )t Transpose operator.
v Velocity model on the Cartesian grid.
c B-spline velocity coefficients: v = Bc
m = {c, xns,r } Adjoint slope tomography parameters.
C(m) Adjoint slope tomography misfit function.

implicitly embedded in the adjoint sources. This implicit represen-
tation results from the way we estimate the slopes at the source and
receiver positions by finite differences.

Since one eikonal resolution provides a traveltime map in the
whole target and each shot and receiver gather can be associated
with several picked coherent events, descending propagations from
the surface to the scatterers mitigates the number of forward mod-
ellings as the number of shots and receivers is expected to be one
to two order of magnitude smaller than the number of scatterers.
The local-coherent events, picked on common-shot and common-
receiver gathers, are parametrized by their two-way traveltimes and
the two slopes (in 2-D) at the source and receiver positions. These
quantities define the data space of the adjoint slope tomography. To
each picked event in the data space is associated a scatterer in the
subsurface. Accordingly, we label each scatterer with the subscripts
of the source and receiver to which it is related. This prompts
the following notations for the data space of the adjoint slope
tomography:

d = (
Ts,r,ns,r , ps,ns,r , pr,ns,r

) |Ns
s=1|N s

r
r=1|N s,r

n
ns,r =1. (3)

where s and r denote a source and receiver, ns, r a scatterer associated
with the pair (s, r), Ts,r,ns,r the two-way traveltime along the paths
connecting the source s and the receiver r to the scatterer ns,r,
ps,ns,r and pr,ns,r the horizontal component of slowness vector at
the source and receiver position, respectively. Unlike in classical
stereotomography, the source and receiver positions are not part of
the data space since we perform wave propagation from these exact
positions. In classical stereotomography, one needs to minimize
distances between source or receiver position and the end points
of the rays emitted with the prescribed shooting angle from the
scatterer: some specificities of the ray-tracing engine has led to a
particular extension of both data space (source/receiver positions)
and model space (shooting angles and one-way traveltimes).
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Figure 3. Layout of forward modelling in (a) classic stereotomography: two rays are back propagated from scatterer towards the associated source and receiver,
and in (b) adjoint slope tomography: two traveltime maps are generated from associated source and receiver towards the scatterer.

Consequently, the model space involves two categories of pa-
rameter classes: coordinates of the scatterers xns,r = (xns,r , zns,r )
and subsurface velocities:

m =
(

[cm]M
m=1 , {xns,r |Ns

s=1|N s
r

r=1|N s,r
n

ns,r =1}
)t

. (4)

Here, cm denote the coefficients of the cubic cardinal B-splines,
that are used to parametrize the subsurface velocity model (Billette
1998). This sampling of the velocity model operates as an implicit
regularization of the stereotomography. While the cubic cardinal
B-spline parametrization is generally a natural choice for ordinary
differential equations such as (paraxial) ray tracing, eikonal solvers
as partial differential equations are often formulated for efficiency
on a Cartesian grid. Nevertheless, we consider that B-splines will
describe in a compact way the smooth velocity structure we are
looking for. We may consider this sampling choice as a hard con-
straint on the model space. We shall also promote a soft constraint
through the Gaussian filtering of the misfit gradient.

3.2 Forward problem

According to the data space defined in the eq. (3), the forward-
modelling engine requires calculation of the slopes at the source and
receiver and the two-way traveltimes for each triplet (s,r, ns, r). We
first compute the traveltime maps ts(x) and tr (x) initiated from each
source and each receiver, respectively, in the velocity model using
zero traveltimes at the source and receiver positions as Dirichlet
boundary conditions in the eikonal equation

H (x, ∇ts(x)) = |∇ts(x)|2 − 1

v2(x)
= 0, (5)

ts(xs) = 0 (6)

and

H (x, ∇tr (x)) = |∇tr (x)|2 − 1

v2(x)
= 0, (7)

tr (xr ) = 0 (8)

where the velocity model v(x) is parametrized on the Cartesian grid
that is used for building the discrete field solution.

The two-way traveltimes Ts,r,ns,r for the scatterer ns, r are given
by

Ts,r,ns,r = Qns,r ts + Qns,r tr , (9)

where Qns,r is a sampling operator, which extracts the traveltime
at the scatterers position, xns,r . In this study, we implement this
sampling operator with a windowed sinc function (Hicks 2002)
although other options can be considered.

Figure 4. Horizontal component of slowness vectors at the source/receiver
positions, (ps,ns,r , pr,ns,r ), are inferred from the traveltime fields emitted
from neighbour sources/receivers. �s and �r are the source and receivers
interval, respectively.

We compute the traveltime maps with a factored eikonal solver
based on FSM (Fomel et al. 2009). Although the local finite-
difference stencil considers only outward directions when comput-
ing traveltimes for external nodes of the grid, the sweeping scheme
guarantees the coverage of all the wave propagation directions.
Moreover, the factorization technique allows one to remove the sin-
gularity at the point source position. The extension of this method
to TTI anisotropic media as proposed by Waheed et al. (2015)
and Tavakoli F. et al. (2015) may provide the necessary forward-
modelling engine for adjoint slope tomography in anisotropic
media.

As previously mentioned, two slopes that are picked in a shot
and receiver gathers and tied to a scatterer in the subsurface corre-
spond to the horizontal component of the slowness vectors at the
receiver and source positions (Fig. 2). Exploiting the reciprocity
of the wave propagation between source and scatterer and between
receiver and scatterer, and assuming a dense sampling of shots and
receivers, we estimate in a finite-difference sense these two slopes
from the traveltime maps generated by the left and right neighbour
receivers/sources (Fig. 4). This leads to the following expression of
the slopes

ps,ns,r = ∂ts(xs)

∂xs
≈ (Qns,r ts+1 − Qns,r ts−1)/2�s, (10)

pr,ns,r = ∂tr (xr )

∂xr
≈ (Qns,r tr+1 − Qns,r tr−1)/2�r , (11)
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1634 B. Tavakoli F. et al.

where �s and �r denote the source and receiver intervals,
respectively.

With this reciprocity-based strategy, slopes at the source and
receiver positions are inferred from traveltimes sampled at the scat-
terer positions, namely far away from the sources or the receivers
where traveltimes have singular values. Therefore, we expect these
traveltimes to be accurate enough for a reliable finite-difference es-
timation of the slopes at the sources or at the receivers, thanks to the
smoothness of the velocity model. Alternatively, slopes can be es-
timated through a partial differential equation by solving the angle
equation ∇θ .∇t = 0 in isotropic media. This means that the gradient
of the take-off angle θ is constant along the ray (Noble et al. 2012;
Belayouni 2013) which can be recast into the more general expres-
sion ∂H/∂p · dp for anisotropic media with point source condition.
We prefer the semi-discretized formulation because, in this case,
synthetic fields to be found are only the two traveltime maps. We
are confident that the finite-difference estimation of slopes is accu-
rate enough in smooth media we are looking for, thanks to the use
of the reciprocity.

Eqs (5)–(11) define state equations that will be used to estimate
the gradient of the adjoint slope tomography misfit function. With
our formulation, the number of forward problems scales to the
number of sources and receivers.

3.3 Multiparameter inverse problem

From the definition of the data space (eq. 3), the misfit function of
the adjoint slope tomography is given by

C(m) = 1

2σ 2
Ts,r

Ns∑
s=1

N s
r∑

r=1

N s,r
n∑

ns,r =1

(Ts,r,ns,r (m) − T ∗
s,r,ns,r

)2

+ 1

2σ 2
ps

Ns∑
s=1

N s
r∑

r=1

N s,r
n∑

ns,r =1

(ps,ns,r (m) − p∗
s,ns,r

)2

+ 1

2σ 2
pr

Nr∑
r=1

Nr
s∑

s=1

N s,r
n∑

ns,r =1

(pr,ns,r (m) − p∗
r,ns,r

)2, (12)

where the symbol ∗ denotes the picked data and quantities σ 2
Ts,r

, σ 2
ps

,

and σ 2
pr

, are elements of a diagonal covariance matrix containing
the variance of each data class. The inverse of this matrix plays the
role of a weighting operator which balances the relative contribution
of each residual class during the inversion (Tarantola 1987).

Minimizing the cost function C(m) (eq. 12) is a nonlinear prob-
lem which can be tackled either with global or local optimization
techniques. Although global optimization can be used for 2-D to-
mographic problems (Datta & Sen 2016; Sajeva et al. 2016), we
focus this study on Newton-based local optimization scheme that
updates iteratively the model parameters m as

mk+1 = mk + αk

( ∂2C

∂m2
(mk)

)−1 ∂C

∂m
(mk). (13)

Here the positive real step length αk is estimated by line search
while satisfying the Wolfe conditions (Nocedal & Wright 2006).
We use the l-BFGS method (Byrd et al. 1995) implemented in
the SEISCOPE optimization toolbox (Métivier & Brossier 2016)
to account for the Hessian operator in the inversion. Consider-
ing the contribution of the Hessian operator is crucial to manage
the potential leakage between the two different parameter classes
(velocity and positions of scatterers). Because this is often not
enough, a common practice makes the different parameter classes

dimensionless in multiparameter inversion to better balance the rel-
ative contribution of each parameter class. This will improve the
condition number of the inversion. In our case, with the units for
velocity (m s−1) and for scattered positions (m), we have not found
the need to do so.

3.4 Gradient computation with the adjoint-state method

We compute the gradient of the misfit function (eq. 12) with the
adjoint-state method implemented through the Lagrangian formal-
ism (Chavent 1974; Plessix 2006).

We build the Lagrangian misfit function by augmenting the misfit
function C with equality constraints requiring that the state variables
are realizations of the state equations (eqs 5–11):

L(m, u, ū)

= H(u, m)

−
Ns∑

s=1

N s
r∑

r=1

N s,r
n∑

ns,r =1

μs,r,ns,r

(
Ts,r,ns,r − Qns,r ts − Qns,r tr

)

−
Ns∑

s=1

N s
r∑

r=1

N s,r
n∑

ns,r =1

ξs,ns,r

(
ps,ns,r − (Qns,r ts+1 − Qns,r ts−1)/2�s

)

−
Nr∑

r=1

Nr
s∑

s=1

N s,r
n∑

ns,r =1

ξr,ns,r

(
pr,ns,r − (Qns,r tr+1 − Qns,r tr−1)/2�r

)

− 1

2

Ns∑
s=1

〈
λs(x) | H (x,∇ts(x)

〉



− 1

2

Nr∑
r=1

〈
λr (x) | H (x, ∇tr (x)

〉



−
Ns∑

s=1

ψs ts(xs) −
Ns∑

r=1

ψr tr (xr ), (14)

where scalar products, 〈·, ·〉, are defined on the targeted sub-
surface domain 
. The arguments of the Lagrangian u =
(Ts,r,ns,r , ps,ns,r , pr,ns,r , ts, tr , ts(xs), tr (xr )) and ū = (μs,r,ns,r , ξs,ns,r ,

ξr,ns,r , λs,λr , ψs, ψr ) gather the state and adjoint-state variables, re-
spectively. Since the state variables, the adjoint-state variables and
the model parameters a processed as independent quantities in the
eq. (14), we rewrite C(m) as H(u, m). Finally, we substitute in the
state equation satisfied by ps,ns,r and pr,ns,r the formal expression of
the slopes, namely ∂ ts/∂xs and ∂ tr/∂xr , by their finite-difference
approximation as provided in eqs (10) and (11), eliminating the
need of considering slope maps.

The adjoint-state equations are obtained by zeroing the partial
derivative of the Lagrangian with respect to the state variables. It
is straightforward to derive the expression of the adjoint-state vari-
ables μs,r,ns,r , ξs,ns,r and ξr,ns,r , which correspond to the traveltime
and slope residuals weighted by the coefficients of the covariance
matrices.

∂L
∂Ts,r,ns,r

= 0 → μs,r,ns,r = 1

σ 2
Ts,r

(Ts,r,ns,r − T ∗
s,r,ns,r

) = �Ts,r,ns,r

σ 2
Ts,r

,

∂L
∂ps,ns,r

= 0 → ξs,ns,r = 1

σ 2
ps

(ps,ns,r − p∗
s,ns,r

) = �ps,ns,r

σ 2
ps

,

∂L
∂pr,ns,r

= 0 → ξr,ns,r = 1

σ 2
pr

(pr,ns,r − p∗
r,ns,r

) = �pr,ns,r

σ 2
pr

.

Zeroing the partial derivative of the Lagrangian with respect
to ts(xs) and tr (xr ) indicates the adjoint-state variables ψ s and
ψ r are zero, therefore, the zero traveltime boundary conditions
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Adjoint slope tomography 1635

on the sources and receivers do not insert any information to our
formalism.

To develop the adjoint-state equations satisfied by λs(x) (namely,
∂L/∂ ts = 0), we have to identify all of the terms containing ts in
the summation over sources of the state equations satisfied by ps,ns,r

(third line in eq. (14)). We find two contributions coming from the
neighbour source s + 1 and s − 1. We finally obtain for ∂L/∂ ts

∂L
∂ ts

=
N s

r∑
r=1

N s,r
n∑

ns,r =1

Qt
ns,r

μs,r,ns,r

+ 1

2�s

N s−1
r∑

r=1

N s−1,r
n∑

ns−1,r =1

Qt
ns−1,r

ξs−1,ns−1,r

− 1

2�s

N s+1
r∑

r=1

N s+1,r
n∑

ns+1,r =1

Qt
ns+1,r

ξs+1,ns+1,r

+
Ns∑

s=1

((
∇ · (λs(x)∇ts(x))

)



−
(
λs(x)∇ts(x) · n

)
�

)
, (15)

where the last line has been obtained by integration by parts
(Taillandier et al. 2009). Here, � denotes the boundaries of 
 and
n denotes the outward unit normal vectors to them. Without loss of
generality, we shall impose Dirichlet boundary conditions for the
adjoint variables, so that λs(x)∇ts(x) · n = 0 over �: this will be a
non-restrictive hypothesis as long as all sources and receivers are
inside the numerical domain. In a similar way we calculate ∂L/∂ tr .

Zeroing eq. (15) gives the adjoint-state equation satisfied by
λs(x)

(
∇ · (λs(x)∇ts(x))

)



= −
N s

r∑
r=1

N s,r
n∑

ns,r =1

Qt
ns,r

μs,r,ns,r

+ 1

2�s

N s+1
r∑

r=1

N s+1,r
n∑

ns+1,r =1

Qt
ns+1,r

ξs+1,ns+1,r

− 1

2�s

N s−1
r∑

r=1

N s−1,r
n∑

ns−1,r =1

Qt
ns−1,r

ξs−1,ns−1,r .

(16)

In a similar way, the adjoint-state variables λr (x) satisfy

(
∇ · (λr (x)∇tr (x))

)



= −
Nr

s∑
s=1

N s,r
n∑

ns,r =1

Qt
ns,r

μs,r,ns,r

+ 1

2�r

Nr+1
s∑

s=1

N s,r+1
n∑

ns,r+1=1

Qt
ns,r+1

ξr+1,ns,r+1

− 1

2�r

Nr−1
s∑

s=1

N s,r−1
n∑

ns,r−1=1

Qt
ns,r−1

ξr−1,ns,r−1 .

(17)

We use the same approach as Taillandier et al. (2009) based
on the FSM method (Zhao 2005) to solve the linear eqs (16) and
(17) for λs(x) and λr (x). However, we implement the traveltime
and slope residuals as source terms at the scatterer positions in the
right-hand sides of the adjoint equations rather than as a boundary
condition in Taillandier et al. (2009, their eq. 12). This results
because we assume that the shots and receivers are inside the domain

. These adjoint sources back-propagate the traveltime and slopes

residuals along two ray tubes connecting the scatterers to the shots
and receivers. Traveltime residuals �Ts,r,ns,r are back-propagated
from the scatterer position ns,r towards the shot s and receiver r,
as it would be in reflection traveltime tomography. Together with
these traveltime residuals, the slope residuals, that are tied to the
neighbour sources s + 1, s − 1 (eq. 16), and receivers r + 1, r − 1
(eq. 17), are back-propagated from the scatterers ns − 1, r, ns + 1, r,
ns, r − 1 and ns, r + 1 towards the shot s and receiver r. Therefore, the
spatial support spanned by these neighbour scatterers constrain the
dip angle at the scatterer ns,r and, hence can be viewed as a discrete
approximation of the two take-off angles that are conventionally
estimated in ray-based stereotomography. In the example section,
we illustrate the shape of the adjoint-state variables λs(x) and λr (x)
and the role of residuals in scatterers repositioning. The contribution
of all of the scatterers associated with one source or receiver and
its neighbours are gathered in the right-hand side by summation.
Therefore, the number of adjoint-state problems to be solved is equal
to the number of sources and receivers and hence is independent of
the number of scatterers, an important property which makes the
computational cost independent of the number of picked events.

The gradient of the misfit function (12) with respect to the
model parameters is obtained by taking the partial derivative of the
Lagrangian (14) with respect to the model parameters.

The gradient of the misfit function with respect to the velocities v

on the Cartesian grid is the sum of the adjoint-state variables λs(x)
and λr (x) weighted by the velocity raised to the power 3.

∇v(x)C = −
Ns∑

s=1

λs(x)

v(x)3
−

Nr∑
r=1

λr (x)

v(x)3
. (18)

The gradient with respect to the cubic B-spline coefficients c =
cm |M

m=1 can be inferred from the eq. (18) by applying the chain rule
of derivatives

∇cC = Bt ∇vC, (19)

where B stands for the cubic cardinal B-spline operator (v = Bc)
and t denotes the adjoint operator.

The gradient with respect to the scatterer coordinates is given
by

∇xns,r
C = μs,r,ns,r

(∂ Qns,r

∂xns,r

ts + ∂ Qns,r

∂xns,r

tr

)

+ ξs,ns,r

2�s

(∂ Qns,r

∂xns,r

ts+1 − ∂ Qns,r

∂xns,r

ts−1

)

+ ξr,ns,r

2�r

(∂ Qns,r

∂xns,r

tr+1 − ∂ Qns,r

∂xns,r

tr−1

)
, (20)

where the terms ∂ Qns,r /∂xns,r can be unambiguously obtained
through the derivative of the windowed sinc function (Hicks 2002).
The coordinates of the scatterers are updated from the traveltime
maps computed from the sources and receivers to which they are re-
lated as well as from those computed from the neighbouring sources
and receivers. Again, this highlights the additional constraints pro-
vided by slopes to locate the scatterers. The different steps required
to compute the gradient are outlined in Algorithm 1.

3.5 Implementation of adjoint slope tomography in
practice

We subdivide the adjoint slope tomography into three main steps
following the strategy proposed by Billette et al. (2003). Three steps,
(1) initialization of scatterer positions, (2) preliminary localization
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1636 B. Tavakoli F. et al.

Algorithm 1 Gradient algorithm.

1: v = B c
2: for s / r = 1 to Ns / Nr do
3: Compute ts / tr , eqs (5)–(8)
4: end for
5: for s / r = 1 to Ns / Nr do
6: for r / s = 1 to N s

r / Nr
s do

7: for ns,r = 1 to N s,r
n do

8: Compute Ts,r,ns,r , ps,ns,r / pr,ns,r , eqs (9)–(11)
9: end for

10: end for
11: end for
12: Compute C , eq. (12)
13: for s / r = 1 to Ns / Nr do
14: Compute λs / λr , eqs (16) and (17)
15: end for
16: Compute ∇vC , eq. (18)
17: Compute ∇cC = Bt∇vC , eq. (19)
18: Compute ∇xC , eq. (20)

of the scatterers and (3) multiscale inversion for joint velocity and
scatterer updates, aim to mitigate the nonlinearity and ill-posedness
of the inversion (Algorithm 2).

Initialization of scatterer positions. An initial guess of each
scatterer position can be computed analytically from the observed
traveltime and slopes by assuming straight rays (Billette et al. 2003,
their appendix A). At this stage, no initial velocity model needs to
be defined: each picked data related to a scatterer defines an effec-
tive homogeneous velocity. As underlined by Billette et al. (2003),
closed-form solutions have always been found in our numerical
examples and, the computational cost is negligible.

Localization of scatterer positions. In order to remove noisy
picks and make the initial positions of the scatterers as close as
possible to their true positions, we update the scatterer positions
keeping a fixed background velocity model. One may use either a
homogeneous velocity model or a constant gradient velocity model
to compute the traveltimes and slopes analytically and hence make
this re-localization step computationally efficient. This background
velocity model might be chosen to make the distribution of the
scatterers as even as possible in the subsurface. For example, a too
slow homogeneous model might tend to squeeze the scatterers in
the shallow part of the subsurface medium. In contrast, a constant
gradient velocity model can help to equally distribute the scatterers
in depth. If no prior information coming from well logs are available,
finding an appropriate constant gradient model by trial and error or
grid search is not challenging due to the computational efficiency
of the localization process. Since the velocity model is not updated
during the localization step, the resolution of the eikonal equation
needs to be performed only during the first iteration, where we store
the traveltime maps.

Multi-scaling joint inversion. The last step consists of simulta-
neously updating all of the model parameters through a multiscale
approach. Multi-scale imaging is performed through a progressive
refinement of the spline parametrization, that is implemented tak-
ing advantage of the subdivision property of the B-spline surfaces
(see de Boor (1978) or Virieux & Farra (1991, their appendix)). We
complement the regularization performed by the coarse B-spline
parametrization by an additional Gaussian smoothing of the gra-
dient computed on the Cartesian grid, similar to the one used by
Taillandier et al. (2009) for first-arrival traveltime tomography. This

smoothing acts as a soft constraint to reduce the null space, as op-
posed to the sampling strategy of the model space which is a hard
constraint.
With this smoothing regularization, the gradient of the misfit func-
tion with respect to the B-spline coefficients can be written as

∇cC = Bt G∇vC, (21)

where G is the Gaussian smoothing operator and the 3-D operator
Bt G can be written as the tensorial product of three 1-D operators
(Operto et al. 2003, appendix B). The main aim of the Gaussian
smoothing is to filter out the footprint of the sources, receivers and
scatterers in the velocity gradient computed in the Cartesian grid.

Algorithm 2 Adjoint slope tomography workflow. Nms : number
of multiscale step; S: B-spline subdivision operator. For sake of
clarity, the model parameters m, the B-spline velocity coefficients
c, the misfit function C and its gradient ∇C are indexed by the scale
step i and the iteration number k.

1: Initialization of scatterer positions (Billette et al. 2013, their
appendix A)

2: Set initial B-spline velocity model c0

3: Preliminary re-localization of scatterers in c0

4: for i = 1 to Nms do
5: c0,i = S cNit ,i−1

6: for k = 1 to Nit do
7: call LBFGS(mk−1,i , Ck−1,i ,∇Ck−1,i )
8: mk,i = mk−1,i + �mk−1,i

9: end for
10: end for
11: v f inal = BNms cNms ,Nit

4 S Y N T H E T I C E X A M P L E S

In this section, we assess the adjoint slope tomography with syn-
thetic examples of increasing complexity. In the first and second
examples, we design an ideal experimental set-up with a dense dis-
tribution of scatterers and a wide-aperture acquisition geometry to
prevent velocity-versus-depth ambiguity (Bube et al. 2005) during
the joint update of velocities and scatterers. The third example aims
to reconstruct a smooth version of the Marmousi model from real-
istic synthetic picks that would be generated from a towed-streamer
acquisition. We assess the accuracy of the stereotomography veloc-
ity model by using it as an initial model for frequency-domain FWI.
For all of the following tests, we compute the observed data set, that
is, {Ts,r,ns,r , ps,ns,r , pr,ns,r }, in the true velocity model and for the true
scatterer positions with our forward-modelling engine. Assessment
of adjoint slope tomography in more realistic settings, where two-
way traveltimes and slopes are picked in the common shot/receiver
gathers or in the common-image gathers, is left to future studies.

4.1 Example 1: circular anomaly

In this example, the true subsurface model consists of a constant-
gradient velocity background model (v(x, z) = v0 + a × z) inside
a model of 20 km × 5 km, that contains a smooth circular velocity
anomaly of radius 750 m (Fig. 5). We use v0 = 1000 m s−1 and
a = 0.9 s−1 in the background model, while the velocity reaches
3820 m s−1 in the centre of the inclusion. A line of sources, spaced
200 m apart, is set at 500 m depth. Each shot is recorded by five
receivers at 500 m depth with offsets of 0.8, 1.6, 2.4, 3.2 and 4 km.
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Adjoint slope tomography 1637

Figure 5. Circular inclusion example. (a) Initial position of scatterers, randomly distributed. (b) Final adjoint slope tomography velocity perturbation model
(inverted velocity model minus the true constant gradient background velocity) with superimposed exact (cross) and calculated (circle) scatterers positions.
Diagrams show the direct comparison between calculated (blue) and exact (red) velocity perturbations across horizontal and vertical profiles cross-cutting the
centre of the anomaly.

The scatterer layout is composed of 155 scatterers with a spacing of
200 and 700 m in the horizontal and vertical directions, respectively.
Each scatterer is located midway between a source and receiver
positions. This setting provides a reasonable angular illumination
of the target. The same Cartesian discretization of the velocity
model is used for the forward and inverse problems using a grid
interval of 50 m. We use a low-pass Gaussian filtering of the misfit
function gradient for regularization. The correlation length for this
filtering is 200 m. Setting (σTs,r , σps , σpr ) = (1 ms, 0.01 ms m−1,
0.01 ms m−1) balances the three terms in the misfit function (eq. 12).

The initial velocity model is homogeneous with a wave-speed of
1000 m s−1. The initial estimates for positions of the scatterers are
randomly distributed around their exact positions with a maximum
deviation of 400 m (Fig. 5a). Since the main goal of this test is to
assess the capability of the method in finding the circular anomaly
and the scatterer positions, we design the optimization process as
follows. First, we find value 0.4 for a that allows for the best data
fit using the initial positions of the scatterers. Then, starting from
the resulting approximated background velocity model, we jointly
update the velocities and the scatterer positions. The final veloc-
ity model and scatterer positions after 100 iterations suggest no
leakage between the two parameter classes, since the scatterers

were moved to their correct positions (Fig. 5b). The decrease of the
misfit function over iterations is shown in Fig. 6. The reconstruction
of the inclusion shows some vertical smearing of the bottom end
of the inclusion that may result from the narrowing of the angular
illumination with depth (Fig. 5). In contrast to the reconstruction
in the vertical direction affected by smearing, some low-velocity
perturbations on both sides of the inclusion in the horizontal direc-
tion probably reflect a small deficit of low wavenumbers (Fig. 5,
horizontal profiles). These limited bandwidth effects can be related
to the shape of the adjoint slope tomography sensitivity kernels,
which connect the scatterers in depth to the sources and receivers at
surface (Fig. 7). The elongated shape of these sensitivity kernels in
subvertical directions favours a smooth reconstruction of the vertical
wavenumbers as in transmission tomography, while the lateral de-
viation of the kernels generated by heterogeneities located between
the surface and the scatterer may favour the update of intermediate
horizontal wavenumbers at the expense of the low components as
in reflection tomography.

For illustrative purposes, Fig. 7 shows the kernel of the misfit
function gradient with respect to the velocity in a homogeneous
background velocity model. Here we consider one 4 km offset
source–receiver pair and one scatterer located midway between
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1638 B. Tavakoli F. et al.

Figure 6. Circular inclusion example. Convergence diagram in logarithmic
scale for the test in Fig. 5.

the source and receiver positions at 4.3 km depth. This kernel is
formed by the superposition of the adjoint-state variables λs(x) and
λr (x) weighed by the velocity raised to a power three (eq. 18).
Since the background model is homogeneous, the two neighbour-
ing sources and the two neighbouring receivers that are required
to build the right-hand side terms of the adjoint-state equations
(eqs 16 and 17) involve two scatterers located on both sides of the
scatterer in question. The central and the two neighbour scatterers
define the spatial support of the source of the adjoint-state equa-
tion, that back-propagate the time and slope residuals towards the
source (left ray tube) and receiver (right ray tube) positions. The
spatial support spanned by the two neighbouring scatterers define
the so-called dip bar (here, a horizontal bar) (Billette et al. 2003),
from which two rays are shot with appropriate take-off angles in
ray-based stereotomography so that they honour the Snell’s law at
the scatterer. While these two take-off angles are explicitly part of
the optimization parameters in ray-based stereotomography, they
are implicitly estimated by adjoint slope tomography through the
joint localization of the nearby scatterers, hence defining a model
space with a more limited number of parameter classes.

4.2 Example 2: curved layer anomaly

The target of the second example is a layer with a synclinal geom-
etry that is embedded in a 20 km × 5 km homogeneous velocity
background model (Fig. 8a). The aim of this test is to validate the
adjoint slope tomography in a classical reflection configuration and

assess the contribution of the slope information to overcome poten-
tial velocity–depth cross-talk during the velocity estimation. The
observables are generated from two series of scatterers that follow
the top and the bottom of the layer and a horizontal line of scatterers
located below the layer at a depth of 4200 m. This latter line of
scatterers provides the necessary illumination in depth to constrain
the bottom reflector of the layer.

The velocity in the homogeneous background model is
3000 m s−1 and the velocity within the smoothed layer anomaly
reaches a maximum value of 4000 m s−1. A 2400 m single-offset
acquisition is designed with sources and receivers on the surface
meaning that each scatterer is reached by only one source–receiver
pair. This implies that, without slope information, the inversion may
not cope with the velocity–depth ambiguity. In this example, we use
the multiscale approach during which the spline interval decreases
throughout five steps from 1000 to 60 m and from 2500 to 150 m
in the vertical and horizontal directions, respectively. The initial
velocity model is homogeneous with an overestimated velocity of
v0 = 3300 m s−1. The initial scatterers are located midway between
the source and the receiver at a depth of v0 × t/2 where t denotes the
true two-way traveltimes (Fig. 8a). Therefore, the initial dips at the
scatterers as predicted by the initial slopes at the source and receiver
positions are horizontal and do not embed any prior information on
the geometry of the layer. Moreover, these horizontal dips do not
match those that would be inferred from the relative positions of the
initial scatterers since these latter are not horizontally distributed
(Fig. 8a).

The velocity model and the position of scatterers that have been
reconstructed after 210 iterations are shown in Fig. 8(b). Here the
correlation length of Gaussian filter is 200 m. Overall, the shape of
the syncline is well recovered as shown by the good agreement be-
tween the true and the reconstructed lines of scatterers aligned along
the top and bottom reflectors with some small mismatches towards
the ends of the layer (Fig. 8b). The bottom line of the scatterers
shows more obvious footprint of velocity–depth ambiguity towards
the ends of the line in the form of underestimated depths balanced
by two circular blobs of low velocities. Overall, these mismatches
remain acceptable owing the limited offset coverage considered in
this example. The tomography reconstructs a smooth representa-
tion of the layer as shown by the horizontal and vertical profiles in
Fig. 8. In the vertical direction, the smoothing of the layer generates
overestimated velocities just above the top reflector that are bal-
anced by underestimated background velocities in the first 1.5 km
in depth. Below the bottom reflector, the velocities tend to be over-
estimated to balance the underestimated velocities in the smooth
reconstructed layer. Towards the middle of the last scatterer line,
a slight downward shift of the reconstructed line also contributes
to partially balance these overestimated velocities below the layer.

Figure 7. Circular inclusion example. The kernel of misfit function gradient with respect to the velocity in a homogeneous background velocity model for one
4 km offset source–receiver pair. The kernel consists of adjoint-state variables λs (x) and λr (x) which are weighted by the velocity raised power three. Here the
source–receiver includes one scatterer at 4.3 km depth. Migration facets can be constructed by neighbour scatterers.
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Adjoint slope tomography 1639

Figure 8. Layer example. (a) Exact velocity model with superimposed exact (green ‘+’) and initial (red ‘*’) scatterer positions. (b) Reconstructed velocity
model by adjoint slope tomography with superimposed exact (green ‘+’), initial (red ‘*’) and calculated (black ‘o’) scatterer positions. Diagrams show the
direct comparison between calculated (blue) and exact velocities (red) across horizontal and vertical profiles cross-cutting the velocity model at 2.5 km depth
and 10 km distance.

Figure 9. Layer example. Convergence diagram in logarithmic scale for the
example in Fig. 8. The colours show the localization step (‘L’) and scales
number in multiscaling approach scheme.

Fig. 9 shows the convergence diagram for multiscaling optimization
including different five scales.

In order to assess more precisely the contribution of the source
and receiver slopes in the inversion, we perform three inversions that
rely only on slope information (Fig. 10d), traveltime information
(Fig. 10c) or both (Fig. 10b). The Fig. 10(a) shows a close-up
of the initial model where the layer exhibits some dips as shown
by the superimposed true and initial scatter positions. Note that
there are twice more scatterers along an interface than shot-receiver
pairs. We initialize the scatterer positions midway between shot and

receiver positions, which implies that pairs of scatterers share the
almost same position (Fig. 10a, red asterisk symbol), while the true
scatterers are uniformly distributed along the reflectors (Fig. 10a,
green plus symbol). We design this configuration in order to assess
the ability of the slope tomography to move the scatterers both
horizontally and vertically.

Traveltime inversion fails to position correctly the scatterers
(Fig. 10c). First, the depths of the scatterers on the top interface
and bottom interfaces are overestimated and underestimated, re-
spectively. This inaccurate vertical positioning is balanced by er-
roneous velocity update, manifested by overestimated velocities in
the background model and underestimated velocities in the layer,
in order to fit traveltimes. This highlights velocity–depth cross-
talk during the multiparameter reconstruction. Second, the travel-
time inversion fails to move the scatterer horizontally, that high-
lights the missing slope constraints as suggested by the results of
the slope inversion. In other word, in absence of the slopes in-
formation, there is not any constraint to locate the scatterer along
the isochrone which is defined by observed traveltime (Chauris
et al. 2002a).

Fig. 10(d) shows that the slope-only inversion fails to fit travel-
times, that is highlighted by the fact that the depth of the scatterers
associated with the upper interface are underestimated and the ve-
locities in the background model are overestimated. Unlike the trav-
eltime inversion, the vertical mispositioning of the scatterers does
not balance the erroneous velocities to honour traveltimes (these
latter being not involved in the inversion). However, slope inversion
manages to horizontally move the scatterers to their true horizon-
tal coordinates, unlike traveltime inversion. This sensitivity to the
horizontal positions can be intuitively understood from the gradient
of the misfit function with respect to scatterer coordinates, which
involves the difference between sampled neighbouring traveltime
maps at the scatterer position, eq. (20).
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1640 B. Tavakoli F. et al.

Figure 10. Layer example. Comparison between joint traveltime + slope,
traveltime only and slope only inversions. (a) Close-up of the initial velocity
model with superimposed true (green ‘+’) and initial (red ‘*’) scatterer
positions. The initial positions of the scatterers are midway the source and
receiver positions meaning that the local dip predicted by the shot and
receiver slopes would be horizontal. Note that pairs of scatterers share
the same initial position. Close-up of the velocity model after (b) joint
traveltime and slope inversion, (c) traveltime-only inversion, and (d) slope-
only inversion. The retrieved scatterer positions are shown by black circles.
See the text for detailed interpretation.

Fig. 10(b) shows how the joint inversion of traveltimes and slopes
allows to overcome these artefacts and retrieve both the correct ve-
locities and the horizontal and vertical coordinates of the scatterers.

4.3 Example 3: Marmousi model

4.3.1 Building velocity macromodel

We now consider a more realistic example with the complex
Marmousi model (Fig. 11a; Bourgeois et al. 1991). Because of
its structural complexity, the reconstruction of this velocity model
by tomographic methods is challenging. As mentioned by Lambaré
(2008) and shown by Billette et al. (2003), ray-based stereoto-
mography has not fully succeeded in reconstructing the smooth
components of this model, for three possible reasons: nonlinear-
ity of the inverse problem, intrinsic limitations of ray theory, and
unreliability of stereotomographic picking. We generate the tar-
geted velocity model of the stereotomographic inversion by Gaus-
sian smoothing of the original Marmousi model with vertical and
horizontal correlation lengths of 100 m (Fig. 11b). This smoothing
is sufficiently mild to guarantee that the resulting model provides a
good background model for pre-stack depth migration (e.g. Thierry
et al. 1999) or a good initial model for FWI considering a realistic
starting frequency of the order of 4 Hz. Note that we use a less ag-
gressive smoothing (100 m correlation length instead of 240 m) than
Billette et al. (2003) and Chauris et al. (2002b) to generate the true

Figure 11. Marmousi example. (a) True velocity model. (b) Smoothed
Marmousi velocity model used as the targeted model of the adjoint slope
tomography. (c) Scatterers that have been used to generate the traveltimes
and slope data set from the velocity model shown in (b).

background velocity model to be reconstructed by stereotomogra-
phy. In our application this can contribute to make the distribution
of scatterers in depth more non-uniform and generate multipathing.
The grid interval in the smoothed Marmousi model is 20 m.

To build the data set for inversion, we pick manually the main
reflectors in the Marmousi model (Fig. 11c) and compute the cor-
responding reflection traveltimes and slopes numerically with our
forward engine. To generate a realistic data set, we assign a source–
receiver pair to each scatterer according to the Fermat’s principle by
searching the scatterer that has the minimum reflection traveltime
along a reflector. Moreover, we check that the found scatterer corre-
sponds to a specular reflection point; if not, we remove its associated
traveltime and slopes from the data set. This condition is fulfilled if
the sum of the slowness vectors estimated at the scatterer position
from the source and receiver traveltime-map gradients is aligned
with the normal to the reflector. We consider a towed-streamer ac-
quisition with offsets ranging between 100 m and 3425 m. Ninety-
one shots every 100 m are recorded by 134 receivers spaced 25 m
apart. The first shot is located at a distance of 7400 m in Fig. 11
and the acquisition layout is moving from right to left, implying a
deficit of scatterers in the bottom-right part of the target. Accord-
ing to this source–receiver geometry, our reflector picking in the
Marmousi model (Fig. 11c) results in more than 6000 observables
in the data domain. Two shot gathers located at x = 800 m and
x = 4800 m are shown in Fig. 12 with superimposed traveltimes
and slopes generated from the reflector picks shown in Fig. 11(c).
Both of these gathers include the deepest scatterers; the shot gather
at x = 4800 m, unlike the other one, includes the reflection
from complex geological structures. Our picking of the Marmousi
reflectors should be reasonably representative of the one that would
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Adjoint slope tomography 1641

Figure 12. Marmousi example. Examples of traveltime and slope observables (red segments) generated from the velocity model of Fig. 11(b) and the scatterers
of Fig. 11(c). The shot positions are x = 800 m (a) and x = 4800 m (b). Each red segment shows the traveltime and the slope of each picked event. The blue
segments represent the traveltimes and slopes computed in the final adjoint slope tomographic model (Fig. 13f).

have been performed in the pre-stack migrated domain (namely, in
common-image gathers). Indeed, traveltime and slope observables
can be generated from image-domain picks by demigration (Chauris
et al. 2002a; Guillaume et al. 2008), in a manner comparable to our
ad-hoc approach except that we took advantage of our knowledge
of the true model to measure the dips instead of picking them. Our
reflector picking leads to a sparse distribution of locally coherent
events in the gathers as illustrated in Fig. 12. Note that some picks
in the complex zone have not satisfied the specular-point condition.
Therefore, our inversion can suffer from a deficit of illumination in
this complex part of the model.

In order to reconstruct the smooth Marmousi velocity model, we
follow the stereotomographic workflow introduced in Section 3.5.
During the localization step and the following slope tomographic
inversion, we use (σTs,r , σps , σpr ) = (1 ms, 0.01 ms m−1, 0.01 ms
m−1). Also, we estimate an appropriate correlation length of 200 m
for Gaussian smoothing by trial and error. After the initialization
step (Fig. 13a), we performed a localization of the scatterers from a
homogeneous velocity model with a 2000 m s−1 velocity (Fig. 13b).
Then, we removed outliers associated with scatterers that fall outside
the limits of the subsurface target. After localizing the scatterers, we
performed four successive slope tomographic inversions by refining
the velocity grid by a factor 2 in both directions at each step. During
these four multiresolution steps, the horizontal and vertical B-spline
node spacings decrease from 1300 to 160 m and from 400 to 50 m,
respectively. During these four steps, the inversion has performed 3,
147, 50 and 165 iterations to generate the velocity models and the
scatterer positions shown in Figs 13(c)–(f). Overall, the positions
of the scatterers tend to align with the reflectors of the Marmousi
model as the resolution of the velocity model improves over the four
multiscale steps with however, a certain hierarchy driven by the local
structural complexity of the velocity model. During the first-scale
inversion, the scatterer positions and the background velocities were

not significantly updated because of the B-spline grid intervals are
too coarse (Fig. 13c). Large-scale variations of the background ve-
locities are introduced in the whole model during the second step;
however, the scatterers start being aligned with the reflectors only in
the left part of the model where the structure is simpler (Fig. 13d).
During the third step, the scatterer positions are moved to their
correct positions in the upper-right part of the model but the inver-
sion fails to significantly update their positions at the reservoir level
(Fig. 13e). During the fourth step, the scatterers are aligned along the
reflectors with improved accuracy as the resolution of the velocity
model is improved with the most significant updates in the complex
zone at the reservoir level (Fig. 13f). Through these iterative up-
dates, the most obvious inaccuracies occur at the reservoir depths
and near the bottom-right end of the model where the overburden
exhibits significant dips and the acquisition geometry provides a
limited illumination. The misfit function plotted as a function of
the iteration number over the localization and the four multiscale
steps shows a regular decrease of the data misfit, suggesting a rea-
sonable tuning of the inversion (Fig. 14). If we would have used a
constant-gradient velocity model during the localization instead of
a homogeneous model, we could have started the slope tomography
inversions on a finer spline grid to converge in a smaller number of
iterations towards a final model almost identical to the one shown
here. In this test, by considering a homogeneous background ve-
locity model, we intended to assess the capability of the model
to image smooth components of complex structures almost from
scratch.

As a quality control of the final results, we have superimposed
the dip bars onto the original Marmousi velocity model (Fig. 15b).
The dip associated to each scatterer is computed a posteriori from
the traveltime gradient vectors ∇ ts and ∇ tr computed in the slope
tomography velocity model (Fig. 15a). We also show the direct
comparison between the dip bars (black segments) and the true
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1642 B. Tavakoli F. et al.

Figure 13. Marmousi example. Adjoint slope tomography results. Velocity model and scatterer positions after (a) the initialization step, (b) the localization
step and (c–f) four multiscale adjoint slope tomographic inversions with spline-grid refinement. See the text for details.

Figure 14. Marmousi example. Misfit function versus iteration number
plotted with a logarithmic scale. The colours delineate the localization step
(‘Loc’) and the scales number the multiscale inversion.

position of the scatterers resulting from the picking of the Mar-
mousi reflectors in Fig. 15(c). Figs 15(a) and (c) show a fairly good
agreement at all depths in the left part of the Marmousi model where
the dips are reasonably mild. In the more complex central and right
parts, the alignment remains acceptable in the shallow part, while
the adjoint slope tomography failed to provide a reliable reconstruc-

tion at depths greater than 2.5 km beyond 6 km of distance. This
mispositioning of the dip bars in the complex deep part manifest as
significant late traveltime misfit in the shot gathers of Fig. 12. An
insufficient illumination aperture at the reservoir depths, resulting
from the strong lateral variations in the overburden and the position
of the target near the right end of the acquisition, might explain this
failure.

The final estimated velocity model by adjoint slope tomography
is complex enough to generate multivalued ray fields. This is il-
lustrated by calculating rays + wave fronts (Lambaré et al. 1996)
for this velocity model (Fig. 16a). In Fig. 16(a), the rays+wave
fronts are superimposed with our eikonal solver solution, first-
arrival wave fronts, for a source at x = 6 km. The complexity
of the slope tomographic velocity model generates caustics which
are singular points for the first-arrival wave fronts (Fig. 16b). Our
finite difference approach for the slope estimations near these caus-
tic points can be erroneous; another possible reason for misposi-
tioning of the dip bars in the complex zone (Fig. 15c). However,
the calculated first-arrival wave fronts with the eikonal solver are
completely matched with the solutions of wavefront construction
method.

4.3.2 FWI with initial model from adjoint slope tomography

We now assess the quality of the adjoint slope tomographic velocity
model (Fig. 17a) as a starting model for frequency-domain FWI
of long-offset data. As such, we consider a stationary-receiver ac-
quisition geometry with a 9 km maximum offset. The aim of this
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Adjoint slope tomography 1643

Figure 15. Marmousi example. Scatterer positions with dip bars estimated
by adjoint slope tomography superimposed on (a) the final inverted velocity
model and (b) the true Marmousi model. (c) Direct comparison between the
reconstructed dip bars (black segments) and the scatterers (grey circle) that
have been used to generate the data set (Fig. 11c).

increased offset range is twofold. First, it increases the nonlinearity
of FWI associated with cycle skipping of both diving waves and
wide-angle reflections and hence provides a suitable framework to
assess the adjoint slope tomographic model as a good initial model
for FWI. Second, this long-offset acquisition provides a sufficient
wide scattering-angle illumination to prevent some notches between
the wavenumber content of the slope tomographic velocity model
and that of the perturbation model generated by FWI when a start-
ing frequency as high than 4 Hz is used. The acquisition consists of
41 sources every 200 m that are recorded by 231 receivers spaced
40 m apart. We invert sequentially five frequency components of
the wavefields (4, 5, 7, 9, 12 and 16 Hz) with the l-BFGS algorithm.
The final inverted velocity model by FWI (Fig. 17b) shows a good
qualitative agreement with the true Marmousi velocity model ex-
cept near the bottom-right of the model (Fig. 11b). Fig. 18 shows
a more quantitative assessment of the accuracy of the FWI model
by the direct comparison between a series of vertical profiles ex-
tracted from the final adjoint slope tomographic model, the final
FWI model and the true Marmousi model. The agreement between
the FWI and the true profiles is good down to 2 km depth both
in terms of resolution content, positioning in depth and velocity
estimation, except near the right-end of the model. The resolution
degrades near the bottom of the model as the number of available
events becomes more limited.

Figure 16. Marmousi example. (a) Smooth Marmousi model built by slope
tomography with superimposed ray+wave fronts, computed with the wave-
front construction method of Lambaré et al. (1996), and wave fronts com-
puted with the factored eikonal solver. (b) Same as (a) without the ray field.

Figure 17. Marmousi example. (a) Final inverted velocity model by adjoint
slope tomography. (b) Final FWI velocity model using the adjoint slope
tomography model (a) as initial model.

5 D I S C U S S I O N

We have presented a new formulation of stereotomography. The
key ingredients are the computation of the traveltimes with an
eikonal solver, the inference of the slopes at the source and receiver
positions from these traveltimes by finite differences and the
computation of the misfit function gradient with the matrix-free
adjoint state method. Our formalism relies on a limited number of
parameter classes (subsurface velocities and scatterer coordinates)
compared to the ray-based stereotomography developed by
Billette & Lambaré (1998). This directly results from the use of an
eikonal solver instead of a ray-tracing algorithm to compute travel-
times and slopes. The eikonal equation using the shots and receivers
as sources and the finite-difference estimation of the slopes from
the traveltime solutions of the two eikonal resolutions define the
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1644 B. Tavakoli F. et al.

Figure 18. Marmousi example. Direct comparison of logs between exact velocity model in Fig. 11(a), black line, and the estimated velocity by adjoint slope
tomography in Fig. 17(a), blue line, and inverted velocity model by frequency domain FWI in Fig. 17(b), red line, while using adjoint slope tomography solution
as initial model.

state equation of the adjoint problem. The adjoint-state variables
associated with the source-side and receiver-side traveltimes are
solution of a transport-like equation, which builds the sensitivity
kernels of the velocity update along two ray tubes connecting the
scatterer to the sources and receivers. The right-hand side of these
adjoint-equations describe a source term whose spatial support,
weighted by the two-way traveltime and slope residuals, defines a
migration facet or dip bar at the scatterer position. The position of a
scatterer is updated from the local gradients of the traveltime maps
generated from the sources and receivers to which it is related and
also from the gradient of the traveltimes generated by neighbouring
sources and receivers. Again, the contribution of neighbour sources
and receivers highlight the additional constraints provided by slopes
to localize the scatterers. Our parsimonious parametrization may

contribute to make the inverse problem underlying adjoint slope
tomography more robust and easier to tune than the ray-based coun-
terpart by avoiding over-parametrization that can lead to significant
parameter cross-talk and ill-conditioned inversion (Billette &
Lambaré 1998). Moreover, the computational burden resulting
from the use of an eikonal solver instead of ray tracing is efficiently
balanced by the fact that traveltime computations are performed
from the source and receiver positions rather than from the
scatterers. The second advantage is related to our ability to process
large-scale data set without any matrix resolution. In return, we do
not have access to the sensitivity matrix that is useful to perform
local a posteriori resolution analysis. However, the computational
efficiency of our approach can be used to build the resolution
matrix numerically through spike tests. Alternatively, second-order
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Adjoint slope tomography 1645

adjoint-state method can be used to implement truncated Newton
optimization as an alternative to the LBFGS optimization. The
efficient computation of Hessian-vector product with second-order
adjoint state method (Métivier et al. 2013, 2014) can be also used
to perform this resolution analysis (Fichtner & Trampert 2011).
Implementation of the truncated Newton method in our adjoint
slope tomography is ongoing.

One of the main limitations of our method compared to more au-
tomatic waveform inversion techniques such as reflection waveform
inversion (Xu et al. 2012; Brossier et al. 2015; Zhou et al. 2015) is
related to their ability to handle complex structures (Lambaré 2008).
The main bottleneck remains the picking of local coherent events,
which has not been investigated in this study. Beyond the picking
issue, any fast solver providing the traveltime of the most-energetic
arrival (Kim 2001) or of all the arrivals (Qian & Leung 2004) instead
of the first traveltime might improve the imaging in complex area
where ray folding occurs, as has been shown in a pre-stack-depth
migration context (Operto et al. 2000).

Chauris et al. (2002a,b) have shown how the picking and
stereotomographic inversion can be implemented in the pre-stack
depth migration domain. Indeed, our approach can be also used
when picking is performed in the migrated domain after demi-
gration (modelling) of seismic invariants (Guillaume et al. 2008).
The benefit of this strategy is that picking can be performed more
easily in the migrated domain after suitable pre-processing of the
common-image gathers, while the demigration allows one to avoid
repeating migration at each iteration of the slope tomography. Chau-
ris et al. (2002a,b) also show how migration-based velocity analysis
(or slope tomography after demigration) can be performed with a
reduced data-space and model-space parametrization involving one
slope in the data space and the velocity model in the model space.
This reduced parametrization can be considered in the framework of
our adjoint formulation, although its robustness should be assessed
through numerical investigation. Do we converge to the true mini-
mum, when considering implicitly scatterer positions? Do we miti-
gate nonlinearities issues when adding these positions to the model
space?

In slope tomographic methods, one scatterer is related to one shot-
receiver pair and all of the scatterers are processed independently
during the inversion. However, due to the intrinsic redundancy of
seismic multioffset acquisition, one position in the subsurface is
sampled by many shot-receiver pairs. Any optimization constraints
on the relative position (i.e. proximity) of scatterers and the align-
ment of facets that are related to neighbouring sources and receivers
should make the inversion more robust.

In this study, we assess adjoint slope tomography for short-spread
reflection acquisitions. The use of an eikonal solver provides a
robust modelling engine to extend adjoint slope tomography to
long-offset acquisitions where traveltimes and slopes of both div-
ing waves and reflected waves can be involved in the inversion as
shown by Prieux et al. (2013). Use of long-offset data raises the
issue of anisotropy, which can be taken into account with a factored
eikonal solver proposed by Waheed et al. (2015) and Tavakoli F.
et al. (2015) or more sophisticated approaches based on the res-
olution of the Hamilton-Jacobi equation with level-set techniques
(Qian et al. 2003). Extension of adjoint slope tomography to TTI
anisotropy is part of our future work. In this long-offset framework,
adjoint slope tomography can provide reliable initial model for FWI
in the sense that both approaches share the idea of using the full
information content in the data through a dense picking of high-
frequency scattered waves in slope tomography and the use of the
waveforms of all of the arrivals in FWI.

6 C O N C LU S I O N S

We develop an adjoint formulation of the slope tomography as a
new formulation of stereotomography to avoid large-scale matrix
resolution. Moreover, a finite-difference eikonal solver is proposed
as an alternative to ray tracing to avoid the issue of non-uniform ray
sampling that can arise at long offsets and in complex models. Com-
pared to the classical ray-based implementation of stereotomogra-
phy, the model space involves subsurface velocities and scatterer
positions, but not shooting angles and one-way traveltimes. The
local subsurface dips, that are parametrized by the two shooting an-
gles in ray-based stereotomography, are implicitly represented in the
spatial support of the adjoint source and reconstructed through the
update of close scatterers. The eikonal resolutions are performed
from the shot and receiver positions to mitigate the number of
the forward modelling required by the misfit function gradient:
the number of state and adjoint problems to be computed scales
to the number of sources and receivers but is independent of the
number of scatterers, hence leading to an efficient computational
framework. Exploiting the reciprocity principle of wave propaga-
tion, the slopes at the source and receiver positions are estimated
in a finite-difference sense from traveltimes extracted in the sub-
surface far away from the source singularities. In this framework,
source and receiver positions need not to be considered in the data
space as traveltimes can be sampled accurately at arbitrary positions
in the finite-difference grid with suitable interpolation schemes.
The chosen smaller model space, compared to the model space in
classic ray-based stereotomography, mitigates potential leakage be-
tween parameters and balances possible nonlinear features of the
optimization scheme. The l-BFGS optimization scheme, which ac-
counts for the Hessian in a cheap way, mitigates the leakage between
wave speeds and scatterer positions. Other second-order optimiza-
tion algorithms, such as the Truncated Newton method, can be also
implemented in the adjoint slope tomography. Our approach takes
advantage of a multiscale strategy during which the velocity grid
is progressively refined. Through the estimation of velocity model
for Marmousi model, we show that adjoint slope tomography is
an appropriate candidate for building background velocity model
for pre-stack depth migration and FWI. We plan to extend our
formulation to 3-D TTI media as well as to consider applications to
real case studies.
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