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Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe
experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in
a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection
scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg–de Vries equation, are observed
and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly
checked. The spatial averaging of the soliton wave front is shown to account for the differences between the
theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise
measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response
function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with
the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to
solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient
properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

DOI: 10.1103/PhysRevB.95.064306

I. INTRODUCTION

Solitons are very interesting kinds of waves with particle-
like properties. They are solutions of nonlinear propagation
equations such as the nonlinear Schrödinger equation or the
Kadomtsev-Petviashvili equation. The former one applies
to water waves and may explain the occurrences of some
unusually high coastal waves. Indeed, when two solitons
interact, the wave amplitude may be four times bigger during
the interaction than the initial amplitude of the solitons before
interaction [1].

It has been demonstrated for several crystals that ultrashort
acoustic pulses (UAPs) give birth to solitonlike waves due to
the balancing of acoustic dispersion and acoustic nonlinearity
after strong optical excitation [2–7]. The propagation of
high amplitude UAPs may be described by the Korteweg–de
Vries (KdV) equation which is well known to possess very
specific solutions, the solitons [8]. However, many physical
mechanisms usually encountered during experiments may
prevent the formation of classical solitons. The term classical
is used to distinguish them from dissipative solitons or
breathers. It refers to the historical soliton as predicted by
the Korteweg–de Vries equation. Solitons are often confused
with traveling waves because of similar shapes.

Solitons shorter than 200 fs with strain amplitude above
10−3 have been inferred from experimental observations in
MgO [3] and Al2O3 [6] and could be useful to achieve carrier
manipulation [9–11] or magnetic switching [12–14]. However,
the absorbed optical power can raise the temperature of the
sample so much that the attenuation is not negligible anymore.
Moreover, the UAPs are also affected by diffraction [15,16].
However, previous experiments [2–5,7] mainly relied on the
observation of discrete features propagating faster than the
sound and whose velocities and numbers grow with initial UAP
amplitude to sustain the existence of KdV solitons. However,
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when attenuation [17] and diffraction [18] occur, solitonlike
UAPs show similar features without being KdV solitons.

Classical KdV solitons possess very intriguing properties,
the most noticeable ones being the following: (1) the KdV
soliton strain amplitude ηk has a specific profile given by
ηk(z,τ ) = ak2cosh−2{k[z − (c + bk2)τ ]} (z is the position
along the propagation direction and τ is the propagation time),
(2) a single parameter k determines the width as well as
the amplitude and the velocity of the soliton (a, b, and c

are provided later in Sec. IV), and (3) one can show by the
inverse scattering method that k2 is determined by the initial
UAP the way bound states are determined by the quantum well
profile in a Schrödinger equation. The last property has a very
interesting corollary: the UAP shape prior to nonlinear propa-
gation can be retrieved once the arrival time distribution of soli-
tons (i.e., the distribution of k parameters) is measured. Hence,
measuring the soliton distribution can provide information on
the transient mechanisms of transduction. Moreover, once the
soliton profile is known, the linear detection function of the
apparatus can be retrieved by measuring the soliton profile.

In this paper, evidence of KdV solitons in ultrafast
acoustic experiments is provided by checking the properties
mentioned above. The experimental setup, which allows a
direct measurement of the surface displacement at low sample
temperature without laser jitter limitation, is detailed. The
(3 + 1)-dimensional KdV-Burgers equation is introduced to
discuss the validity of KdV approximations in the framework
of ultrafast acoustics. Acoustic solitons are then evidenced
in a GaAs(001) substrate thanks to an accurate comparison
between the measured soliton and the theoretical one. Before
concluding, the relationship between the initial strain pulse
profile and the soliton k distribution is explained and illustrated
experimentally.

II. NONLINEAR ULTRAFAST ACOUSTIC
SETUP AND SAMPLES

In order to observe ultrashort KdV solitons, we have
studied with a pump-probe technique samples composed of

2469-9950/2017/95(6)/064306(7) 064306-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.064306
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FIG. 1. Pump-probe setup based on interferometric detection
of acoustic pulses. AOM: acousto-optical modulator; SBC: Soleil-
Babinet compensator; MO: microscope objective; λ/2: half wave
plate. The sample is placed in a cold finger cryostat. Typical pump-
probe signal (black line) obtained after photothermal generation
in a 60 nm Ti film with 12.5 nJ/pulse, propagation through a
370-μm-thick GaAs(100) slab at 20 K, and detection in a 60-nm-thick
Ti layer. The signal derivative (blue line) shows the train of solitons
and the dispersive tail.

370-μm-thick GaAs(001) substrates with a thin metallic
coating on both sides and placed inside a cold finger cryostat
as shown in Fig. 1. The output of a Ti:sapphire oscillator
(repetition rate 80 MHz, λ = 750 nm) is split between pump
and probe beams. The pump beam is modulated by an acousto-
optical modulator (AOM) which is driven by square pulses
with variable duration (tp) and focused down to rs = w1/e =
8 μm. The probe beam is delayed by t through a multipass
linear translation stage and is sent through a Sagnac-type
interferometer to measure the complex change of reflectivity
of the sample �R

R
. The probe beam is focused down to 1.6 μm

by a microscope objective. The combination of a half wave
plate (λ/2) with a Soleil-Babinet compensator inserted inside
the Sagnac loop allows one to set the phase difference to π

2
where �R

R
≈ i 4π

λprobe
u(r,t), u(r,t) being the surface displace-

ment (the photoelastic contribution appears to be negligible
for Ti and Cr thin films at λ = 750 nm). The signal is obtained
with a lock-in-phase detection scheme where the modulation
frequency �ref is used to trigger the pulse generator every
tref = �−1

ref . A typical signal for a 60-nm-thick titanium coating
is shown in Fig. 1 (black line) when excited by 12.5 nJ/pulse
and cooled down to 20 K. The derivative of the signal shows
solitoniclike features in the front as expected from previous
experiments [2–6] but the dispersive tail is also clearly detected
and lasts more than 150 ps. The derivative of the signal is
closely related to the strain profile η as discussed in Sec. VI.
One can regard the measured strain profile as the in-depth
strain profile at fixed delay time (the time to cross the sample)
or the temporal strain profile at fixed distance (the thickness
of the sample). Position and time are related through the speed
of sound vs such that z = vst . This is why both scales are used
in all the figures of this report.

III. THEORY OF NONLINEAR PROPAGATION OF
ULTRASHORT ACOUSTIC PULSES

The propagation of UAPs is advantageously described
by a nonlinear equation [2] in paraxial approximation [4].
To extend the validity of this equation it is useful to add
phenomenological viscosity [6] μ(T ) (a standard approach in
continuum mechanics). Let us note the amplitude η0, the width
z0, and the lateral extension r0 of the UAP. The evolution in
time τ of the pulse profile along the propagation direction z in
a given crystal is governed by a nonlinear equation which is
detailed in a previous work (see Ref. [19]). To summarize, it
can be expressed in the reference frame moving with the speed
of sound vs as

∂η

∂τ
= − C3η0

2vsρz0
η
∂η

∂z
+ F

2vsρz3
0

∂3η

∂z3
+ μ(T )

2ρz2
0

∂2η

∂z2

− ξ 2vsz0

2r2
0

1

r

∂

∂r
r

∂

∂r

∫ z

−∞
η dz′, (1)

where ρ is the density, C3 is the nonlinear elastic coefficient
(see Ref. [2]), and F is the dispersion coefficient (see
Ref. [20]). μ(T ) is the viscosity which may include an effective
Herring process coefficient [21] but does not encompass others
attenuation processes for UAP in crystals [17,22]. ξ 2 is a
(dimensionless) diffraction strength coefficient such that ξ 2 �=
1 when the elastic tensor is not isotropic [4,23]. Equation (1)
describes the effect of viscosity and dispersion on the nonlinear
propagation of an acoustic pulse with a finite transverse profile
within the paraxial approximation. Note that, for a given
crystal symmetry, C3, μ(T ), F , and ξ 2 depend on the direction
of propagation and the polarization of the pulse. It can be
referred to the (3 + 1)-dimensional KdV-Burgers equation in
cylindrical coordinates [19]. Indeed, when the diffraction term
is omitted, Eq. (1) is identical to the Burgers equation for
negligible dispersion and identical to the KdV equation for
negligible attenuation. While the numerical solution of Eq. (1)
shows some kind of solitary waves solution, the KdV equation
is known to possess specific solitary waves named solitons.

IV. VALIDITY OF KORTEWEG–DE VRIES IN ULTRAFAST
ACOUSTIC EXPERIMENTS

Following Ref. [19], it is possible to weight the contribution
of each term of Eq. (1) for a given substrate once the initial
UAP parameters {η0,z0,r0} are provided. η0 is simply the strain
pulse amplitude and varies from 10−6 to few 10−3 in typical
ultrafast acoustic experiments. The lateral extension of the
initial UAP is usually given by the Gaussian profile e−r2/r2

p of
the pump spot such that r0 = rp = 8 μm in this paper.

It may be convenient to define z0 as z−1
0 = 1

η0
max{| ∂η

∂z
|} (see

Ref. [19]). A quick survey of several experiments performed
in different metallic film transducers provides different values
for such definition of z0: 14.2–22.8 nm in aluminum [3,4] and
14–19 nm in chromium [6] (the differences observed for the
same metal are related to the deposition method and to different
oxyde layer thicknesses). In order to estimate z0 for the Ti layer
of the sample, experiments at very low pump fluences have
been performed when the signal is linear, i.e., scales with the
pump power (triangles in Fig. 2). Since Eq. (1) can be solved
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FIG. 2. Strain profile (black triangle) measured at τ = τprop =
77.4 ns after linear propagation through GaAs(100) substrate at
20 K (DC = 50% with 12.6 pJ/pulse). Initial strain pulse (blue dot)
calculated by propagating back numerically at τ = 0 ns the strain
profile. The initial strain pulse is well fitted (see text) by a Gaussian
derivative (solid line) with z0 = 13 nm.

analytically in the linear regime, it is possible to retrieve the
initial strain pulse profile. Figure 2 displays the pulse profile
recorded at low pump fluence (triangles) and the numerically
back-propagated pulse profile (blue dots). The viscosity
has been neglected in the initial strain pulse computation,
otherwise the pulse is lost under the amplified noise once
back-propagated. The initial UAP profile is then fitted with
the Gaussian derivative function η(z,r = 0,τ = 0) = ηi(z) =
η0

√
e z

δ
e−(1/2)(z2/δ2) with relatively good accuracy (see the solid

line in Fig. 2). The viscosity is taken into account for the curve
fitting by applying a spectral filtering e−(1/2)(μτprop/2ρv2

s )ω2
. The

Gaussian derivative fit is obtained with δ ≈ 9.6 nm which gives
z0 = eδ

2 ≈ 13 nm for a Ti film, a value in line with previous
observations in different metallic films (e.g., chromium layers
[6]). While the Gaussian derivative profile works nicely for thin
titanium and chromium films under low power laser excitation
it cannot be extended to other metallic films easily. It is a
good approximation in our experiment as long as the pump
absorption in the GaAs substrate stays negligible. Indeed,
different transduction mechanisms occur simultaneously in
GaAs (see Ref. [7] for more details).

Once z0 has been estimated, each term of Eq. (1)
can be evaluated. They are weighted by the con-
stants τ−1

i , i = nl,disp,vis,diff, respectively, whose expres-
sions are given in Ref. [19] and recalled in Table I.
The parameters for GaAs(001) at 20 K are chosen as
follows: vs = 4.78 nm ps−1, ρ = 5.32 × 103 kg m−3, C3 =
−266 GPa, F

2ρvs
= −7.4 × 10−3 nm3 ps−1, ξ 2

[100] = 2.32, and
μ(20 K)

2ρ
= 2.4 × 10−4 nm2 ps−1. The viscosity parameter has

been estimated by measuring the damping of acoustic pulses
propagating linearly back and forth through the substrate at
20 K. For η0 = 10−3, τnl appears to be the only time constant
much shorter than the travel time τprop, while attenuation
and diffraction effects are characterized by a time constant
much larger than the time it takes for the pulse to propagate

TABLE I. Definitions of τi, i = nl,disp,vis,diff. The
values are calculated in nanoseconds for a GaAs(001)
substrate of thickness ds = 370 μm, η0 = 10−3, z0 = 13 nm,
w0 = 8 μm, vs = 4.78 nm ps−1, ρ = 5.32 × 103 kg m−3, C3 =
−266 GPa, F

2ρvs
= −7.4 × 10−3 nm3 ps−1, ξ 2

[100] = 2.32, and
μ(20 K)

2ρ
= 2.4 × 10−4 nm2 ps−1.

τprop τnl τdisp τvis τdiff

ds

vs
− 2ρvs z0

C3η0
− 2ρvs z

3
0

F

2ρz2
0

μ(T )

2r2
0

ξ2z0vs

77.4 2.5 297 704 888

through the sample. Assuming that the strain profile remains
the same as the one measured at low pump fluence, it seems
that the attenuation and the diffraction effects can be neglected.
However, since the definition of z0 depends on the pulse profile
which changes under nonlinear effects during the propagation,
a finer analysis is required for higher fluences (i.e., in the
nonlinear regime).

In fact, at short delays (τ < τnl � τprop) the propagation
is mainly nonlinear, which means that the UAP evolves into
a shock wave which implies a local stiffening of the UAP
profile and therefore a decrease of z0 (∝max{| ∂η

∂z
|}−1). By

equating τnl and τdisp one can find that as z0 approaches√
F

C3η0
≈ 1.2 nm the dispersion effect becomes significant as

well. It prevents the formation of a shock wave by developing
acoustic solitons and/or a dispersive tail. In the meantime the
viscosity contribution increases as well but not as much as the
dispersion ( τvis

τdisp
∝ 1

z0
). By equating τdisp and τvis one can find

that as long as z0 < F
μ(T )vs

(≈31 nm), the dispersion effect is
always larger. Moreover, when z0 decreases, the diffraction
effect decreases as well so that it can be neglected during the
soliton formation. (It is interesting to note the analogy between
the Rayleigh criteria and the τdiff criteria.) Therefore, the KdV
equation is a good approximation in GaAs at low temperature
when using a thin metallic transducer (z0 < 31 nm) and as
long as τ < τvis (i.e., the sample thickness must be such that
τprop < τvis). One can then expect to observe KdV solitons
as mentioned in the Introduction with a = −12 τnl

τdisp
, b = 4

τdisp
,

and c = vs . At larger times τ > τvis, t > τdiff , viscosity and
diffraction dissipate the UAP (decreasing η0 while increasing
z0) and will finally become the leading terms of a quasilinear
propagation equation.

V. SAMPLE TEMPERATURE CONTROL TO MEET THE
KDV REQUIREMENTS FOR SOLITON OBSERVATION

At the highest laser fluences, where nonlinearity is expected
to be the strongest, the heating of the sample may be an issue.
Indeed, since the viscosity parameter increases drastically
above 70 K, the KdV requirements may be nullified when
the excitation power increases. To illustrate this issue, we
will discuss the results of experiments where the acoustic
pulse is generated in a 100-nm-thick chromium film which
is slightly transparent. The UAP is detected in a chromium
film as well after propagation through the GaAs(001) substrate
which is then heated by the pump pulses. By varying the pump
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FIG. 3. Example of laser heating in ultrafast acoustic experiment
in the case of a 100 nm chromium film as transducer on top of
370-μm-thick GaAs cooled down to T0 = 30 K. The average power
is changed while the energy per pulse is kept constant by controlling
the duty cycle (DC). Average pump power is 1 W at DC = 100%.

(a) UAPs measured for different DC with a vertical offset applied
for the purpose of clarity. (b) Measurements (black diamonds) and
calculated values (dashed line) for the relative change of velocity
�vs

vs
(DC) (black scale). The corresponding temperature is provided

by Ref. [22] and is given by �vs

vs
(T ) (gray curve, gray scale).

(c) Acoustic power detected when varying the DC.

power while keeping the same energy per pulse (12.5 nJ) by
adjusting the illumination time tp, different acoustic pulses
are detected. The results shown in Fig. 3(a) are obtained
with the cryostat temperature set to 30 K and for different
duty cycles DC = tp

tref
. A duty cycle of 100% corresponds to

1 W of laser pump power incident on the sample. When the
mean power increases, the acoustic pulse is delayed, which
is a clear signature of the stationary sample heating. Since
the temperature dependence of the sound velocity is known, it
is possible to estimate the temperature rise by extracting the
change of velocity �vs

vs
(DC) from the experiments. The relative

change of velocity �vs

vs
(DC) is obtained from the phase of the

signal (after Fourier transform) which is averaged between
10 and 40 GHz to minimize the dispersion contribution. The

results (black diamonds, black scale) are plotted in Fig. 3(b).
The temperature dependence of the sound velocity is obtained
from Ref. [22] where the temperature dependence at 56 GHz
can be well fitted by �vs

vs
(T ) = A([1 + ( T

B
)C]1/C − 1) with

A = −5.3(±0.3)10−3, B = 125(±5) K, and C = 2.9(±0.1).
The fitting curve is plotted in Fig. 3(b) (gray curve, gray scale).
Once the heat capacity dependence with temperature [24]
is taken into account, the measurements of �vs

vs
(T ) compare

well with the expected values (dashed gray curve) plotted in
Fig. 3(b). At DC = 50%, the stationary temperature reaches
170 K, 140 K above the set temperature. This spectacular
effect under a high power (500 mW) is likely due to a poor
thermalization of the sample, which can be modeled as a
contact thermal resistance at the GaAs–cold finger interface.
This result can be compared to those of a recent thermal
study of pump-probe experiments on a GaAs substrate [25].
Using a different approach, a temperature rise of a few tens
of Kelvins was estimated, and could indeed be well accounted
for numerically with such a thermal resistance.

It is possible in fact to check experimentally that the
attenuation may still be neglected within precisely controlled
experimental conditions while generating high amplitude
strain pulses. It is clear from Fig. 3(a) that the strain pulse
amplitude decreases as the DC increases above 10% (i.e.,
�vs

vs
< −4 × 10−4). It is confirmed when the acoustic power

Pac carried by the UAPs is estimated after the propagation
through the substrate [26]. Figure 3(c) displays the dependence
on the DC of Pac: above 10%, Pac continuously drops to reach
a value as low as Pac(50%) ≈ Pac(10%)

32 [see Fig. 3(b)]. This is a
clear signature of increasing acoustic attenuation with increas-
ing DC. The decrease of Pac observed at the lowest DC is not
very significant (see error bars) since the finite time response
of the AOM (around 8 ns) partially damps several pump pulses
located at the front and the back of the gate which contains only
≈20 pulses at DC = 1.3%. Therefore the attenuation cannot
be neglected any more when DC > 10%, i.e., when �vs

vs
<

−4 × 10−4 or when the temperature goes above 80 K [see
Fig. 3(b)]. Such temperature dependence of the attenuation of
acoustic pulses has also been observed when the GaAs sample
is efficiently cooled by a helium flow cryostat which was set
to different temperatures above and below 80 K. Thanks to the
good accuracy of the measurement of �vs

vs
(of the order of 10−5)

it is possible to ensure experimentally by the right choice of DC
that the sample temperature remains below 50 K, which allows
one to safely ignore the viscosity effect as required for real
KdV soliton observation. By checking that the sound velocity
is independent of mean pump power at fixed energy/pulse, the
DC has been set at 10% during the experiments performed on
samples covered with Ti thin films, which are discussed below.

VI. OBSERVATION OF KdV SOLITONS

Figure 4 shows the UAP detected after propagation
through a 370-μm-thick GaAs(001) substrate for different
energies per pump pulse and different layer thicknesses of
the transducer. As in Fig. 1, the signal curve displays a train
of discrete transients traveling faster than the sound, which
is typical of solitons. However, solitonic waves possess other
more specific properties. In particular, the second property
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FIG. 4. Trains of solitons observed at 20 K (DC = 10%) for (a)
different pump energies Epump but same titanium film thickness dTi =
120 nm and (b) different titanium film thicknesses dTi but same pump
energy Epump = 8.75 nJ.

of a KdV soliton as recalled in the Introduction implies that
different initial UAPs may lead to identical solitons if they
share a common k value. Figures 4(a) and 4(b) display the
strain pulses generated in Ti thin films 60 or 120 nm thick
and detected in 60-nm-thick Ti film after propagation through
the GaAs substrate. While Fig. 4(a) compares different
energy/pulse Epump but same film thickness dTi = 120 nm,
Fig. 4(b) compares different film thicknesses dTi but same
Epump = 8.75 nJ. The initial strain pulse differs mainly by
its amplitude in the former case [Fig. 4(a)], while it differs
also by its width in the latter case [Fig. 4(b)]. The difference
in the initial pulse shape is evidenced by differences in the
train of solitons. Let us rank the solitons from the fastest to
the slowest and use the quotation mark to distinguish solitons
from different trains (i.e., different initial UAP). Solitons 1′
and 3 in Fig. 4(a) and solitons 1 and 1′ in Fig. 4(b) are almost
identical. The same velocity means the same amplitude
and the same width, as expected. Such observations are
experimental evidence that the KdV soliton properties are
entirely determined by a single parameter—its velocity, for
example. In principle, it is possible, thanks to the time reversal
property of the KdV equation, to numerically back-propagate
the soliton distribution provided the soliton profiles follow
the theoretical ones. Let us check whether this is the case.

Figure 5 offers a closer look at the shape of the fastest soliton
detected at 12.5 nJ/pulse with dTi = 60 nm. The detected
soliton shows an asymmetric shape in contrast to the KdV
soliton which is symmetric, which implies the signal is not
proportional to the strain amplitude. Indeed, the experiment
is mostly sensitive to a superposition of solitons associated
to different k parameters and/or different arrival times at the
surface of the sample. To compute the detected soliton profile,
one must consider an integral expression such as

ηk0 (z,t) =
∫ ∫ ∫

ηk(z,t)g
(
k,k′,zs

)
dk dk′ dzs (2)

FIG. 5. Zoom on the fastest soliton profile for dTi = 60 nm and
Ep = 12.5 nJ as measured by the interferometric setup. Expected
soliton profile (solid line) when averaging over the probe spot. The
soliton profile at r = 0 μm and r = 1.6 μm are plotted (dotted and
dashed curves, respectively) scaled down by 3.

where g(k,k′,zs) weights the contribution of each soliton to
the soliton shape of the k0 parameter and can be expressed
as a product of three different weight functions. Let us
review the effects which are involved in the expression of
g(k,k′,zs) = gδk(k,k′)gδzs

(zs)gk0 (k). The power fluctuations of
the pump pulse do lead to a change δk of the k parameter
and thus of the soliton detected from one pulse to the other.
Since the laser noise is Gaussian, a typical weight function
looks like gδk(k,k′) = 1

δk
√

2π
e−(1/2)[(k′−k)/δk]2

. However, unlike
previous experiments performed with amplified laser systems
[6], it cannot be invoked as the main cause of soliton averaging.
The pulse-to-pulse root mean square (rms) energy fluctuation
over 10 min has been measured to be less than 0.5%, which
means a fluctuation δk of less than 1.0%. The metallic
film quality has also been asserted by measuring its rms
roughness by atomic force microscopy. The KdV soliton
profile is averaged over zs to take into account the thickness
fluctuation of the metallic film measured around δzs = 1.8 nm
(root-mean-square deviation). It can be compared to 0.6 nm
for the bare GaAs substrate. This leads to the weight function
gδzs

(zs) = 1
δzs

√
2π

e−(1/2)(zs/δzs )2
. Both of these effects induce a

small increase of the soliton width as well as a small decrease
of the soliton amplitude but the profile remains symmetric.

As previously suggested [2,6], the averaging of the surface
displacement in the transverse direction by the probe spot
affects the soliton shape as well. Indeed, the soliton properties
have a radial dependence as illustrated in Fig. 5: solitons
generated on the side (dashed curves) are slower than solitons
generated at the epicenter (dotted curves). Such an effect
can be computed by calculating the k(η) values depending
on the initial pulse strain η for a given pulse profile with
the help of Eq. (1). The initial pulse profile is assumed
to follow the pump profile such that η(r) = η0e

−(r/rp)2
with

rp = 8 μm. Once k(η) is known, the soliton profile is averaged
over r by taking into account the Gaussian probe profile
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1
πr2

s
e−(r/rs )2

with rs = 1.6 μm. Overall, the spatial averaging
can be written as an integral over the different k values from
0 to k0 with η(k0) = η0 given the weight function gk0 (k) =
1
η0

( rp

rs
)2( η(k)

η0
)(rp/rs )2−1 dη

dk
. The soliton profile with nominal k0

parameter is asymmetrically broadened since the profile is
averaged over lower k value only (i.e., slower solitons). Note
that a good approximation of gk0 (k) can be obtained for large
strain amplitude soliton by assuming the k2 values follow the
strain profile (i.e., k2 = Aη).

The comparison between the experimental and the com-
puted solitons for an initial UAP amplitude η0 = 1.37 × 10−3

(fitting parameter) is shown in Fig. 5. The asymmetry of the
detected soliton profile is well reproduced. For this experiment,
it implies a soliton amplitude at r = 0 μm as large as
ak2 = 1.9 × 10−3 and a soliton width as short as k−1 =
0.64 ps (i.e., 3.1 nm) (see dotted curved in Fig. 5). The
spatial width appears to be comparable with the soliton widths
measured in MgO [3] (2.7 nm for ak2 = 0.43 × 10−3) and
sapphire [6] (2.0 nm for ak2 = 3.4 × 10−3) keeping in mind
that the width of solitons scale like k−1. Hence the computation
confirms that the probe averaging effect can explain the mea-
sured soliton shape, while the other two effects, also introduced
numerically, are much less significant. As a side note, a better
fit can be obtained if a small photoelastic contribution is
included after the averaging (not shown). Once the soliton
amplitude is retrieved, the sensitivity of the setup can be cali-
brated (see the vertical scale of Fig. 5, which is not arbitrary).

While the probe spot is almost five times smaller than the
pump spot (1.6 μm compared to 8.0 μm) the averaged soliton is
still three times broader and smaller than the soliton expected at
the epicenter. On the other hand, its arrival time is only delayed
by 1 ps. The arrival time of the soliton at r = 0 μm can then
be retrieved from the measurement with an accuracy better
than 1%. Thanks to the unique properties of KdV solitons, it
is then possible to get from the arrival time (i.e., the excess
of sound velocity) the amplitude and the width of the soliton
with good accuracy as well. Moreover, since the arrival time
measurement allows one to retrieve the k parameters for each
soliton, it seems possible to retrieve the initial UAP with the
help of the inverse scattering method. Soliton distribution
analyses like the one performed by Singhsomroje et al. [3]
are then possible. (This is the topic of an upcoming report.)

VII. INITIAL PULSE RETRIEVAL

According to the two-temperature model of photothermal
transduction in metallic thin films [27], the acoustic pulse
profiles can be sorted into three categories:

(1) The exponentially decaying profile as given for weakly
conducting metallic film and predicted by the one-temperature
photothermal model.

(2) The square profile consistent with highly conducting
metallic thin film, when the film thickness is smaller than the
penetration depth of the photoexcited carriers [3].

(3) The Gaussian derivative profile which may be viewed as
the intermediate case where the photocarrier penetration depth
is not negligible but is smaller than the film thickness [6].

According to the inverse scattering method, an exponen-
tially decaying profile should lead to a soliton distribution

FIG. 6. (a) Ultrafast acoustics signal (black line) measured at
20 K (DC = 10%) for Epump = 12.5 nJ and dTi = 60 nm and expected
strain profile (blue line) computed with η0 = 1.083(±0.006) × 10−3

and z0 = 19.5 nm. (b) Corresponding pulse profiles at r = 0 μm
before propagation (τ = 0 ns) and after propagation (τ = 77.4 ns)
through the substrate.

where the faster the solitons are, the further apart they are. In
contrast, the square profile should lead to the opposite. Hence,
it is straightforward to rule out these two initial profiles in the
case of the thin Ti film. Indeed, measurements in the Ti film
case show solitons which are more or less equidistant, which
means the initial pulse must be quasiharmonic (Fig. 4). Since
the Gaussian derivative profile measured at low laser fluence
is close to a harmonic profile, it looks like a good candidate
to fit the experiments. Indeed, Fig. 6(a) displays the measured
and fitted signal using a Gaussian derivative profile as the
initial pulse profile. The initial pulse width and the initial
pulse amplitude are the only free parameters of the fit. The
overall agreement strongly supports the use of the Gaussian
derivative profile in Ti thin film cases. The resulting UAP
is shown in Fig. 6(b) and the corresponding strain profile
after propagation is drawn for r = 0 μm. It is interesting to
note that the width parameter z0 has to be 50% larger than
the width measured at low pump power. It can be explained
within the two-temperature model, which takes into account
the heat diffusion by the electrons which is temperature
dependent. A detailed study of this is out of the scope of this
report but nicely illustrates how the study of acoustic soliton
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distribution can help to investigate photothermal transduction
mechnanisms up to the ablation threshold.

VIII. SUMMARY

The Korteweg–de Vries equation has been revisited in
the framework of ultrafast acoustics in order to find the
right experimental conditions to generate acoustic solitons.
Emphasis is given on the laser heating of the sample which
hampers the propagation of solitons. A way to deal with the
thermal issue when performing nonlinear ultrafast acoustic
experiments is demonstrated by carefully choosing a cryogenic
working temperature and by imposing a low enough on/off
time ratio for the pump beam. Then the existence of KdV-type
solitons is demonstrated in a GaAs(001) substrate. Their
intriguing properties have been illustrated experimentally and
the very specific soliton profile is retrieved once the radial
part of the signal is taken into account. Since the soliton
amplitude is unambiguously determined by its velocity, its

observation means a de facto calibration of the apparatus
sensitivity. Moreover, the soliton properties as revealed by
the inverse scattering method can be put to good use to
study the photothermal strain generation by retrieving the
initial pulse. Such measurements should be possible even at
higher laser power where the photo-thermal strain generation
becomes a highly nonlinear process. Practically, one can
measure the soliton distribution created by the shock wave
induced by the laser excitation in order to access fundamental
material properties under strong light-matter interaction such
as electronic conductivity, thermal conductivity, heat capacity,
and so on. The accurate detection of KdV-type acoustic
solitons opens new perspectives in ultrafast acoustics.
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