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Abstract. Outsourcing databases, i.e., resorting to Database-as-a-Service (DBaaS), is nowadays a pop-
ular choice due to the elasticity, availability, scalability and pay-as-you-go features of cloud computing.
However, most data are sensitive to some extent, and data privacy remains one of the top concerns
to DBaaS users, for obvious legal and competitive reasons. In this paper, we survey the mechanisms
that aim at making databases secure in a cloud environment, and discuss current pitfalls and related
research challenges.
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1 Introduction

Cloud computing offers a variety of services via a pay-per-use model on the Internet. The flexibility that
cloud computing offers is very appealing for many organizations, especially mid-sized and small ones, because
it provides reduced start-up costs and means to financially cope with variations in system usage. Outsourcing
data to the cloud is particularly interesting [75]. However, some data are especially sensitive, e.g., personal
data, health-related data, business data, and generally data used in decision-support processes. Outsourc-
ing a database in the cloud raises security issues, some related to cloud architectures (e.g., untrusted service
providers, curious cloud employees...), and others related to such concerns as data privacy, integrity and avail-
ability. With increasingly sophisticated internal and external cloud attacks, traditional security mechanisms
are no longer sufficient to protect cloud databases [77].

Let us consider a Database-as-a-Service (DBaaS) scenario (Figure 1) where a user outsources a database at
one or more Cloud Service Providers’ (CSPs). The objective is to eliminate storage and minimize computation
at the user’s to take full advantage of cloud benefits. Yet, anything beyond the user is considered untrusted.
CSPs might indeed be honest but curious, i.e., read the user’s data, or even be malicious or maliciously
hacked, i.e., alter data or provide fake query results. Network transactions are also considered unsafe. The
user must thus protect sensitive data and queries before sending them to CSPs, and safely reconstruct query
results “at home”.

Fig. 1. Database outsourcing scenario

In this paper, we survey the security mechanisms that may be exploited in our cloud database scenario,
particularly in terms of privacy. Another recent survey intersects ours [58], but more deeply focuses on
cryptography, while we adopt a broader scope on security, put more emphasis on querying efficiency and



survey non-cryptographic methods (Section 2). We also mostly target database practitioners and researchers
with no background in cryptography. Moreover, we review cryptographic methods that are not covered
in [58], i.e., secret sharing, Private Information Retrieval (PIR) and oblivious RAM (ORAM) schemes. We
classify cryptographic tools that can be exploited within cloud database scenarios into secret sharing schemes
(Section 3), index-based methods (Section 4) and secure databases (Section 5). Finally, we conclude this paper
by a global discussion (Section 6).

2 Non-Cryptographic Methods

2.1 Differential Privacy

Differential privacy aims at protecting data privacy when performing statistical queries [24]. While global
statistics are public, individual data must remain private. To achieve this goal, a noise term is added to
statistical query results, e.g., to an average salary, thus preventing the computation of individual salaries. It
would indeed be easy to compute a new salary that has just been added in the database, knowing averages
avg and the number of records n in the dataset: avgn+1 × (n+ 1)− avgn × (n).

A randomized algorithm A enforces ε-differential privacy if and only if, for any two databases DB1 and
DB2 that differ on exactly one record, the ratio between the probability that A outputs O on DB1 and DB2

is bounded by a constant: P (A(DB1) = O) ÷ P (A(DB2) = O) ≤ eε [76]. The tradeoff is that the smaller
ε is, the better privacy is enforced, but the worse accuracy is. Thus, one major challenge is reducing the
amount of noise while still satisfying differential privacy. Yet, in a DBaaS context, a curious CSP would still
have access to fine-grained data, which is incompatible with our data outsourcing scenario, where we aim at
protecting data event from the CSP.

2.2 Data Anonymization

Data anonymization irreversibly modifies data in a way that prevents the identification of sensitive informa-
tion, while allowing querying data for releasing useful statistical information [25]. Some database management
systems (DBMSs) natively include anonymization schemes. For example, Oracle Data Masking Pack pro-
vides data masking for various types of data, replacing real data with realistic-looking values [51]. Obscuring
query processing and results may also be achieved either by rejecting queries leading to privacy disclosure
or through methods such as k-anonymity and its variants t-closeness and l-diversity, which transform k
distinguishable records into k indistinguishable records [67].

In a DBaaS context, privacy-preserving queries in a distributed environment can be achieved by table
perturbation and reconstruction [5]. Perturbation randomly replaces an element in a table by another with
probability p. Then, reconstruction can estimate COUNT queries over the perturbed table. Unfortunately,
other aggregation functions are not supported. Similarly, random data distortion techniques may be used,
e.g., the zero-sum method provides an accurate estimation of summation for range queries [66], but it induces
a trade-off between privacy and accuracy. Finally, adding different amounts of noise to query answers can be
used, e.g., with iReduct [74]. iReduct initially estimates query answers and iteratively refines its estimates
to minimize relative errors.

Data anonymization is less complex than encryption and straightforwardly allows querying anonymized
data. However, it typically reduces data granularity, which may cause a loss of effectiveness and correctness
in computation [1]. Moreover, the various anonymization methods have different impacts on data utility. As
a result, the same anonymized table may provide accurate answers to some queries and inaccurate results
to others. More importantly, data anonymization cannot provide an adequate level of security since private
personal data can be re-identified by an adversary who has some knowledge about data [23].

2.3 Data Fragmentation

In data fragmentation [2], data are assumed not to be sensitive per se. What is sensitive is their association
with other data. Privacy is thus guaranteed by concealing such associations with respect to a predefined set
of security constraints that express restrictions on one or more attributes in a table [20, 37]. For instance,
given a Patient table, constraint C = {Name, Illness} indicates that associations between patient names



and illnesses should not be disclosed. Then, the table is split into fragments such that attributes listed in a
constraint belong to different fragments. For instance, table Patient would be split in two fragments Patient1
and Patient2, with Name ∈ Patient1 and Illness ∈ Patient2. Yet, most data fragmentation approaches
apply to numerical data and specific methods most be used to handle categorical data [56].

In a cloud context, data can be partitioned at independent CSPs’ with respect to security constraints.
When a query is issued, an appropriate subquery is transmitted to each CSP, then the results are pieced
together at the user’s. Moreover, intrinsically sensitive attributes such as social security numbers are stored
locally at the user’s. Eventually, fragmentation-based approaches yield little overhead on query computation,
but are vulnerable in cases of CSP collusion and CSP inference on data updates [35]. Additionally, retaining
sensitive data at the user’s requires local storage capacities, which is incompatible with our data outsourcing
scenario.

3 Secret Sharing-Based Methods

Secret sharing is a particular cryptographic method introduced by Shamir in which a secret piece of data is
mathematically divided into so-called shares that are stored at n participants’ [60]. One single participant
has no means to reconstruct the secret. A subset of k ≤ n participants is indeed required to reconstruct the
secret, providing perfect theoretical privacy when at most k − 1 participants collude, i.e., exchange shares.
Moreover, computations can run directly on shares, outputting unintelligible results that can only be put
together through k participants. Finally, up to n − k participants may disappear without compromising
data availability; and message authentication code or signature can be applied to guarantee data integrity.
Thus, secret sharing is a promising solution to security challenges in cloud data outsourcing [35] since one
can easily imagine participants being CSPs. In the following subsections, we review the secret sharing-based
approaches that aim at outsourcing databases, and then discuss them globally.

3.1 Verifiable Secret Sharing

Thompson et al.’s scheme allows participants to collaboratively compute aggregation queries without gain-
ing knowledge of intermediate results [68]. A lightweight cryptographic scheme is introduced for privacy-
preserving computation and verification of SUM and AVG aggregation queries. Moreover, users can verify
query results with the help of signatures, while the data values contributing to the results are kept secret
from both users and the CSPs. The query issuer indeed interacts with a single CSP to obtain aggregation
results and can verify whether the CSP returns correct results. However, aggregation queries other than SUM

and AVG cannot be computed with this scheme.
Attasena et al. specifically target cloud data warehouses through a flexible, verifiable secret sharing

scheme named fVSS [11]. fVSS minimizes shared data volume, provides inner and outer data verification
to check data correctness and the honesty of CSPs, improves the ability to update shares in case of CSP
failure, and adjusts share volume with respect to CSP pricing policies. Moreover, in addition to queries
explicitly handled by previous schemes, fVSS also allow grouping queries that are ubiquitous in On-Line
Analysis Processing (OLAP). However, although some queries can be computed directly over shares (e.g.,
exact match queries), others require that some or all data are decrypted first (e.g., range queries).

Wang et al. propose a framework for secure and efficient query processing of relational data in the
cloud that allows exact match and range queries, as well as updates [71]. B+-tree indexes are also built to
optimize query response. Both data and indexes are organized into matrices, encrypted and stored at CSPs’.
Additionally, data integrity is achieved by using checksum and an index structure. This framework is robust
against statistical attacks.

Statistical attacks refer to an adversary obtaining some information about ciphertexts, i.e., encrypted
data, through prior knowledge about plaintexts, i.e., clear data [35]. For instance, the adversary may know
plaintext distribution or frequency. Then, by extracting statistics from ciphertexts, the adversary can infer
ranges containing dense data or highlight ciphertexts bearing the same frequency as plaintexts.

3.2 Order-preserving Secret Sharing

Agrawal et al. propose a complete approach to execute exact match, range, and aggregation queries over
shares outsourced at multiple CSPs [3]. Original data are divided using order-preserving polynomials such



that the order of shares is the same as that of original data. However, while this solution allows efficiently
processing any kind of queries, including updates, it is susceptible to statistical attacks [35].

Hadavi et al. introduce a framework to provide data privacy based on threshold secret sharing [36].
First, secret values are encrypted by an Order Preserving Encryption (OPE) scheme (Section 5.1). Then, a
B+-tree is built over ciphertexts and sent to an index server. The user receives query responses, including
record numbers, from the index server and can then request these records from the CSPs. As Agrawal et
al.’s scheme, this approach supports different kind of queries over shares, including exact match, range and
aggregation queries, as well as updates. Moreover, it provides stronger security than Agrawal et al.’s scheme.
It is indeed secure against frequency attacks, and an extension uses distribution perturbation to improve its
robustness against statistical attacks in general [35]; but at the price of a higher computational overhead.

3.3 Discussion

Table 1 provides a comparison of secret sharing-based database outsourcing methods with respect to the
queries that can run directly on shares and security features beyond privacy and availability, i.e., integrity
checks and robustness against statistical attacks.

Table 1. Comparison of secret sharing-based methods

Allowed queries Additional security features
Exact match Range Aggregate Update Integrity Statistical attacks

Thompson et al. [68] No No SUM/AVG No Signature Not robust
Attasena et al. [11] Yes Yes Yes Yes Signature Not robust
Wang et al. [71] Yes Yes Yes Yes Checksum Robust

Agrawal et al. [3] Yes Yes Yes Yes None Not robust
Hadavi et al. [36] Yes Yes Yes Yes None Robust

Despite secret sharing’s benefits, it is not trivial to process some queries directly over shares, especially
queries requiring data ordering. Obviously, it is not efficient to send back all shares in response to a query,
and execute the query over reconstructed values at the user’s. However, the techniques that allow directly
processing such queries as range queries over shares reveal some information about plaintexts, e.g., duplicates
[3]. Moreover, since every secret is shared n times, global share size can be quite large. Communication
between the user and multiple CSPs is not optimal in terms of bandwidth resources either. As a result,
storage and communication overhead of secret sharing-based approaches is remarkably high for moderately
large databases [44].

4 Index-Based Methods

In databases, data encryption is usually managed at the tuple level [22], which prevents any computation over
ciphertexts. Thus, indexes based on plaintexts are stored together with the encrypted database to help return
ciphertexts in response to queries. We distinguish three types of index-based methods, namely bucketization,
order preserving indexing and indexes used in Searchable Encryption (SE) schemes. We review them in the
following subsections before providing a global discussion.

4.1 Bucketization-Based Indexing

Bucketization-based indexing involves dividing data into buckets and providing explicit labels for each bucket
[49]. The domain of an attribute is partitioned into a set of non-overlapping buckets. Labels may preserve the
order of values in the original domain or not. They are stored along with encrypted tuples. Such indexing
allows exact match, range (if data order is preserved) and join queries, but also induce false positives in
query answers. Thus, query post-processing is needed at the user’s to filter out false positives [59].

Hacigümüs et al. partition data as in histogram construction, e.g., by equi-depth and equi-width par-
titioning [33]. Then, it assigns a random tag to each bucket. Any table T (A1, A2, ..., An) from a database



is stored at the CSP’s as TS(etuple, AS1 , A
S
2 , ..., A

S
n), where etuple is the encrypted tuple and each ASi is

the index of attribute Ai. Each query is rewritten into server-side and user-side subqueries QS and QC ,
respectively. QS is executed by the CSP over ciphertexts using indexes ASi . The result of QS is then sent
back to the user, who decrypts it and executes QC to filter out false positives. Query rewriting requires
maintaining metadata, including bucket labels.

With the help of an homomorphic function, this approach is extended to support aggregation queries
over ciphertexts [34]. The homomorphic encryption function is based on the Privacy Homomorphism (PH)
scheme [57], which relies on the difficulty of factoring large composite integers, just like the famous Rivest-
Shamir-Adleman (RSA) public-key cryptosystem. Unfortunately, Mykletun and Tsudik demonstrate that
the CSP can obtain plaintexts with access to ciphertexts only [49].

Based on their rebuttal of Hacigümüs et al., Mykletun and Tsudik propose a simple alternative for
supporting aggregation queries [49]. The user precomputes aggregation values (e.g., SUM and COUNT) for each
bucket, encrypts and stores them at the CSP’s. Moreover, instead of using the PH scheme, Mykletun and
Tsudik use provably secure additive homomorphic encryption schemes such as Paillier’s [53] and El Gamal’s
[27]. Precomputing aggregations decreases security risks, but requires extra storage and makes updates more
complex. Updates must indeed be executed in two steps: 1) actual data update and 2) update of related
precomputed aggregates in a bucket.

Hore et al. also address shortcomings of Hacigümüs et al.’s method. They notably optimize the accuracy
of range queries to minimize false positives in query results [40]. They also introduce a re-bucketization
technique, in which the user can fine-tune bucketization to achieve a desired level of privacy. Moreover, they
propose a new method for answering range queries on multidimensional data [38]. Range queries over multiple
attributes, e.g., age < 20 and salary > 25k, are allowed, while minimizing the cost of multidimensional
bucketization. Yet, a threshold is defined to help the user control the trade-off between risk of data disclosure
and cost.

4.2 Order-Preserving Indexing

Order Preserving Encryption Scheme (OPES) Agrawal et al.’s OPES is an OPE indexing scheme that
supports range and equality queries over integers [4]. OPES transforms plaintexts with an order preserving
function so that transformed values (e.g., index values) follow a target distribution. Comparison operations
can be directly applied at the CSP’s without inducing spurious tuples nor false positives. However, this
scheme has been demonstrated to be vulnerable to statistical attacks [45].

OPE with Splitting and Scaling (OPESS) The OPESS scheme encrypts XML databases [72]. Wang et
al. adopt splitting and scaling techniques to create index values following a uniform distribution. Plaintext
order is preserved over indexes. Moreover, identical clear values are transformed into different indexes so that
this scheme is robust against statistical attacks. However, this scheme flattens the frequency distribution of
index values.

B+tree indexing Shmueli et al. [61] and Damiani et al. [21] use B+-trees built on database plaintext
attribute values to preserve order in secure environments. B+-trees must either be stored in a trusted
machine [36] or be encrypted at the CSP’s, where each B+-tree is stored in a table with two attributes:
node identifier and node content. In addition to ordering, B+-tree indexes support exact match, range and
grouping queries, as well as predicates such as LIKE. For example, to execute a range query, the user sends a
sequence of queries until reaching the leaf corresponding to the range’s lower bound. Then, the node identifier
helps retrieve all the tuples belonging to the range. The advantage of such indexing is that index content is
not visible to the CSP and reveals no information about underlying plaintexts [21].

4.3 Searchable Encryption

SE allows the CSP to run keyword-based searches on encrypted data [63] that are particularly suitable
to data outsourcing [16]. Considering a set of documents {Di}i=1,n and an index of keywords {wj}j=1,m

describing the documents, users encrypt both documents Di with any secure encryption scheme using a key



KEnc and keywords wj with a searchable scheme using a key KIndex. The encrypted documents and index
are then outsourced. When searching for documents containing some keywords, the user sends a so-called
trapdoor encapsulating the keywords to the CSP [65]. Then, the CSP can search the encrypted index and
the trapdoor to find the corresponding documents and send them back to the user. Both symmetric (private)
and asymmetric (public) key encryption can be used to build symmetric SE (SSE) and asymetric SE (ASE)
schemes, respectively [65]. ASE schemes support various query types such as range and subset queries, but
are computationally intensive. SSE is more efficient than ASE, but supports fewer query types. SE induces
a trade-off between security, efficiency and query expressiveness. SE schemes with higher levels of security
induce higher complexity, while SE schemes supporting more query types are either less secure and/or less
efficient [16]. Moreover, most SE schemes reveal access patterns, i.e., which documents contain a keyword.
Only techniques based on PIR or ORAM do not.

PIR [17, 18, 47] enables a user to retrieve data from an outsourced database while preventing the CSP
from learning any information about retrieved data [19], i.e., PIR enforces query privacy. Unfortunately,
in a single-server setting, the only thing a user can do is retrieving the whole database, which induces
communication overhead and annihilates the benefits of outsourcing. However, in a multiple-server setting
where copies of the database are stored at k non-communicating/colluding CSPs, a user can hide queries by
querying each server for a part of data, so that no server knows the whole query.

ORAM allows reading and writing to memory without revealing access patterns to the CSP [32]. In
ORAM schemes, a user stores encrypted data at the CSP’s and continuously shuffles and re-encrypts data
as they are accessed [64]. Let P = (q1, . . . , qn) be an access pattern. The shuffling process induces the
transformation of each query qi into multiple queries, producing a new access pattern P ′. An ORAM protocol
is secure if two access patterns ORAM(P ) and ORAM(P ′) are computationally indistinguishable.ORAM can
be implemented using symmetric or fully homomorphic encryption (Section 5.1). An alternative solution for
hiding access patterns is to frequently send fake queries to CSPsto prevent any adversary from inferring
correlations between frequently queried data [48]. Yet, generating fake but realistic-looking queries is a
challenge.

Unfortunately, a common limitation of PIR and ORAM schemes is a prohibitive query execution time
[73].

4.4 Discussion

Table 2 provides a comparison of index-based methods with respect to the query types they allow and
whether they require a post-processing step to eliminate false positives.

Table 2. Comparison of index-based methods

Allowed queries
Exact match Range Aggregation Post-processing

Hacigümüs et al. [33] Yes Yes Yes Yes
Mykletun & Tsudik [49] No No Yes No
Hore et al. [40] Yes Yes No Yes

Agrawal et al. [4] Yes Yes No No
Wang et al. [72] Yes Yes No No
Shmueli et al. [61], Damiani et al. [21] Yes Yes No No

Searchable Encryption [17, 18, 32, 47, 63, 65] Yes No No No

When defining an indexing method, it is important to consider two conflicting requirements. On one
hand, the index should be related to the data well enough to allow efficient query execution. On the other
hand, this relationship between plaintexts and the index should minimize the risk of any disclosure or
loss of privacy [28, 59]. For example, in bucketization-based indexing, decreasing the number of buckets
impairs performance, while a larger number of buckets increases the risk of data disclosure. In our database
outsourcing scenario, a critical drawback of bucketization-based indexing is the loss of data granularity,
which prevents grouping operations. The CSP can indeed not distinguish between tuples in buckets and the



user has to filter intermediate results sent by the CSP to reconstruct the global result. Hence, bucketization-
based methods induce computational overhead at the user’s, too. Such an overhead can be high, especially
for queries that return a large number of encrypted tuples [70], e.g., grouping queries running on fine-grained
data.

Finally, although index-based approaches are quite popular in cloud data outsourcing due to their ef-
ficiency [35, 59], their main limitation lies in data update. Typically, such methods but SE exploit the
distribution of plaintexts, while update operations may change it, making index regeneration unavoidable
[35]. As a result, index-based solutions but SE are suitable for read-only data. Yet, SE schemes are either
too costly or too limited in query expressiveness to be used in practice.

5 Secure Databases

5.1 CryptDB

CryptDB is a pioneer system that allows efficient SQL query processing over ciphertexts into a DBMS [54].
The properties of a cryptographic scheme determine the kinds of queries that can be directly executed over
ciphertexts. Thus, CryptDB implements several schemes with respect to different user-determined security
requirements and query needs. Thus, we first describe these cryptographic schemes, and then we detail
CryptDB’s architecture.

Query-Aware Encryption Schemes

Random Encryption (RND) RND schemes are the strongest security schemes. They indeed guarantee se-
mantic security, i.e., it is computationally impossible to distinguish two ciphertexts. For instance, let x be
a plaintext value and E an RND encrypting function. If, using the same encryption key, e1 = E(x) and
e2 = E(x), then with high probability, e1 6= e2. However, RND schemes do not allow any computations nor
queries over ciphertexts. They are only designed for safe storage.

Homomorphic Encryption (HE) HE allows performing arbitrary arithmetic operations over ciphertexts with-
out decryption [31] while still providing semantic security. For instance, with an additive HE scheme, for any
two encryptions E(x) and E(y), there exists a function f such that f(E(x), E(y)) = E(x+ y). Fully homo-
morphic encryption (FHE) is prohibitively slow and requires so much computing power that it cannot be used
in practice as of today. However, partially homomorphic encryption (PHE) is efficient for specific operations
and can be used in practice. PHE allows either addition or multiplication over ciphertexts and guarantees se-
mantic security. Paillier’s [53] and El Gamal’s [27] are examples of PHE schemes. For instance, with Paillier’s
PHE, the product of two encryptions encrypts the sum of the encrypted values, i.e., E(x)×E(y) = E(x+y).

Deterministic Encryption (DET) DET encrypts identical data values into identical encryptions when using
the same key, i.e., ∀x, y: x = y ⇔ E(x) = E(y). Thus, DET allows queries with equality predicates, equi-
joins, as well as GROUP BY, COUNT and DISTINCT queries [55]. DET is secure only when there is no redundancy
in data. It is not robust against statistical attacks. Although some public key encryption schemes allow exact
match queries with stronger security guarantees [15], search takes linear time with the size of the database,
while DET operates in logarithmic time [13], thus explaining its adoption in CryptDB.

Order Preserving Encryption (OPE) OPE is a deterministic encryption scheme that preserves plaintext order
in ciphertexts. Let x and y be two plaintext values and E an OPE scheme. If x ≤ y, then E(x) ≤ E(y). This
feature allows range queries, MIN and MAX aggregations, and ordering over ciphertexts. In terms of security,
OPE is weaker than DET because it reveals data order. Yet, it can provide sufficient security for some
applications, e.g., when the adversary does not possess any prior knowledge, while increasing the efficiency
of query processing [52].

Table 3 summarizes the features of the cryptographic schemes used in CryptDB.



Table 3. Features of CryptDB’s encryption schemes

Allowed queries RND HE DET OPE

DISTINCT No No Yes Yes
WHERE (=, 6=) No No Yes Yes
Range queries No No No Yes
ORDER BY No No No Yes

JOIN No No Yes Yes
SUM, AVG No Yes No No
MIN, MAX No No No Yes
GROUP BY No No Yes Yes

Information leakage None None Duplicates Data order

CryptDB’s Architecture CryptDB follows three principles to solve the problem of querying encrypted
databases: 1) SQL-aware encryption that uses cryptographic schemes within SQL queries; 2) adjustable
query-based encryption to minimize data leakage; and 3) chain cryptographic keys in user passwords to
enable data decryption only for authorized users with access privileges.

In CryptDB’s core, encryption is structured in multiple embedded levels akin to onion layers. Each onion
layer helps process given classes of queries. The outermost layers are RND and HE, HE actually being Pail-
lier’s PHE scheme. RND and HE provide the highest level of security, whereas inner layers, OPE and DET,
provide more functionality. The OPE layer is an enhancement of [14]. Eventually, two new cryptographic
schemes enable join operations.

Ciphertext access is achieved through a trusted proxy server that encrypts data, rewrites queries (by
anonymizing table and attribute names and encrypting constants) and decrypts query results. The proxy
server stores encryption keys, the database schema and the onion layers of all attributes in the database.
When a query is issued, the proxy dynamically peels off onion layers downs to a layer corresponding to the
given computation. For instance, consider the query SELECT * FROM employee WHERE name = ’Alice’.
First, the proxy issues a query to peel off the RND layer for attribute name down to the DET layer. Then,
the proxy rewrites the query as SELECT * FROM T1 WHERE A2 = ’0xac18f’, where T1 and A2 denote the
anonymization of table employee and attribute name, respectively, and 0xac18f = EDET (’Alice’). Similary,
aggregation query SELECT SUM(salary) FROM employee would translate as SELECT SUMHE(A3) FROM T1,
where SUMHE is a user-defined function implementing Paillier’s PHE and A3 is the anonymization of attribute
salary.

5.2 MONOMI

While CryptDB offers one of the first practical solutions for secure DBMSs, there are still a lot of queries
that are not supported, especially OLAP-like queries. As an illustration, CryptDB supports only 2 queries
out of 22 from the TPC-H decision support benchmark [69]. Thence, MONOMI builds upon CryptDB to
allow the execution of analytical workloads [70].

To this aim, MONOMI adds in a designer that optimizes the physical database layout at the CSP’s and
a query planner that splits query execution between the CSP and the user. The optimal plan for executing
some queries may indeed involve sending intermediate results between the user and the CSP several times to
execute different parts of a query [70]. For instance, to run a SUM / GROUP BY / HAVING query, MONOMI
computes the SUM and GROUP BY at the CSP’s through the HE and DET encryption schemes, respectively.
Then, since HE does not preserve data order, the HAVING statement is executed at the user’s after decryption.
This strategy helps MONOMI allow 19 out of the 22 queries of TPC-H.

5.3 Multi-Valued Order Preserving Encryption (MV-OPE)

Lopes et al. rightly claim that “little attention has been devoted to determine how a data warehouse hosted
in a cloud should be encrypted to enable analytical queries processing” [46]. Thence, they propose the MV-
OPE scheme that allows GROUP BY queries over ciphertexts. Such a scheme could replace CryptDB’s and
MONOMI’s OPE without having to compute anything at the user’s.



Generally speaking, MV-OPE extends OPE by encrypting the same plaintext into different ciphertexts
while preserving the order of the plaintexts [41]. Thus, given two clear values x and y and an MV-OPE
function E, if x < y then E(x) < E(y). MV-OPE can be used to compute operations such as equality,
difference, inequalities, minimum, maximum and count [46]. MV-OPE improves robustness against statistical
attacks and only leaks the order of data. Lopes et al.’s scheme combines MV-OPE with FHE (Section 5.1).
Moreover, as CryptDB and MONOMI, it involves a secure host, e.g., a trusted proxy server. Despite using
FHE, Lopes et al. experimentally show that computing queries over ciphertexts at the CSP’s is significantly
faster than computing them at the user’s after decryption.

5.4 Secure Trusted Hardware

Trusted hardware devices are widely used for security, e.g., smart cards for secure authentication and secure
coprocessors in automated teller machines (ATMs). Quite naturally, the idea of processing queries inside
tamper-proof enclosures of trusted hardware, such as a secure coprocessor or Field Programmable Gate Array
(FPGA)-based secure programmable hardware [26], came up. Such components are physically hosted at the
CSP’s. They have access to encryption keys and allow performing a limited set of queries over ciphertexts.

TrustedDB TrustedDB is an SQL database processing engine that makes use of IBM 4764/5 cryptographic
coprocessors [10] to run custom queries securely [12]. Coprocessors offer several cryptographic schemes such
as the Advanced Encryption Standard (AES), the Triple Data Encryption Standard (3DES), RSA, pseu-do-
random number generation and cryptographic hash functions. Yet, cryptographic coprocessors are signifi-
cantly constrained in both computation ability and memory capacity. Thus, a trade-off must be considered
between cheap query processing on untrusted main processors (at the CSP’s) and expensive computation
inside secure coprocessors.

Sensitive data can only be decrypted and processed by the user or a secure coprocessor. Only non-sensitive
data are stored unencrypted at the CSP’s. When a query is issued, it is encrypted at the user’s, rewritten
as a set of subqueries and executed at the CSP’s or in the secure coprocessor database engine, with respect
to data sensitivity. The final result is assembled, encrypted by the secure coprocessor and sent back to the
user.

Cipherbase Cipherbase aims at deploying trusted hardware for secure data processing in the cloud [9].
Cipherbase actually extends Microsoft SQL Server with in-server, customized FPGA-based trusted hardware.
The FPGA is a trusted black box for computing operations over ciphertexts, which are encrypted with a non-
homomorphic encryption scheme such as AES. The FPGA decrypts data internally, processes the operations
and encrypts the result back. As in TrustedDB, query processing on non-sensitive data is handled by the
CSP.

5.5 Discussion

CryptDB is much cited, but is quite insecure and introduces some loopholes. Its onion adjustable encryption
architecture is indeed unidirectional, i.e., once an attribute is set down to a weak scheme such as DET,
it never returns to a higher encryption level [43]. Moreover, attributes targeted by exact match and range
queries are encrypted with DET and OPE, respectively, and are vulnerable to statistical attacks. As a result,
once an exact match or range query is issued, the system becomes vulnerable ever after. DET and OPE have
even been shown to be much more insecure than previously expected [50]. Additionally, peeling down onion
layers induces an overhead, especially in the case of big tables.

Moreover, although CryptDB does support many types of queries, there are still many unsupported types
of queries, e.g., predicate evaluation on more than one attribute. MONOMI addresses this shortcoming, but
retains the same security mechanisms as CryptDB. MONOMI also induces a heavy communication overhead
between the user and the CSP, since intermediate results may be exchanged several times to execute different
parts of a query [70].

Despite a distributed architecture, Lopes et al’s solution requires a trusted server to securely execute
GROUP BY queries. In our database outsourcing scenario, all service providers that are external to the user’s



are considered untrusted. Thus, Lopes et al’s trusted server would be located at the user’s, inducing costs
that do not fit our scenario. Additionally, this solution does not support MIN and MAX aggregation operators
directly over ciphertexts.

Finally, beside computation ability and memory capacity limitations, trusted hardware is still very ex-
pensive, which is again contrary to our scenario that aims at using cheap commodity machines in the cloud.
Moreover, leaving unencrypted attributes jeopardizes ciphertext, because relationships between ciphertexts
and plaintexts may reveal information about ciphertexts [8].

6 Conclusion

Although encryption methods enforce privacy, in some cases, the impact on performance makes them inappli-
cable to cloud databases. It is indeed currently impossible to develop a system that meets both state-of-the-art
cryptographic security standards and query performance requirements. In this final section, we provide a
global discussion on security, performance and storage requirements for secure databases, before concluding
the paper.

6.1 Security

The DET and OPE schemes, which are notably used in CryptDB, allow efficiently performing queries over
ciphertexts. Database optimization techniques, e.g., usual indexing methods, can also be used to enhance
query performance. However, DET and OPE leak a non-negligible amount of information and are vulnerable
to statistical attacks [42]. For example, a large fraction of tuples from DET encrypted attributes can be
decrypted by statistical attacks [50]. The vulnerability of DET is extremely detrimental to DBs with high
redundancy, e.g., data warehouses. The weak security of OPE makes it inappropriate, too. It is indeed even
worse than DET in terms of security [29, 42]. Eventually, a recent class of generic attacks against private
range query schemes invalidates much of the existing literature [42].

Thus, FHE looks like a more appropriate choice for encryption. In particular, PHE encryption can be
used to sum ciphertexts, but the cost of decryption at the client’s can remain high. As of today, it is indeed
usually more efficient to decrypt data at the client’s and then perform the aggregation, rather than processing
aggregation queries over ciphertexts at the CSP’s [70]. Yet, FHE is likely to become a viable alternative in
the upcoming decade, with both new FHE schemes and improvements in hardware performance. However,
since preserving the order of data is necessary when running queries such as sorting, grouping and range
operations, the issue of designing order preserving FHE schemes will have to be addressed.

6.2 Query Post-Processing

Tuple and table-level encryption are casually considered preferable to attribute-level encryption, because
of lower startup costs at the user’s and minimal storage costs at the CSP’s [39]. However, the loss of data
granularity is an important deficiency in scenarios such as OLAP. Thus, some solutions that use tuple-
level encryption (Section 4) handle query processing by means of auxiliary indexes at the CSP’s (e.g.,
bucketization-based indexing) and perform final query processing at the user’s. Similarly, MONOMI splits
the execution of queries between the user and CSP. In such solutions, it is essential to cut down the bandwidth
required to transfer intermediate results and user computational resources for user side query processing [70],
which is quite an open issue. CPU and storage usage at the user’s must indeed be minimum for maintaining
the benefits of outsourcing.

6.3 Storage Overhead

CryptDB, MONOMI and Cipherbase use attribute-level encryption, i.e., each attribute value is encrypted
independently [9], at the cost of storage overhead. For instance, using classical AES in Cipher-Block Chaining
(CBC) mode, a 32-bit integer is encrypted on 256 bits [9]. Worse, Paillier’s PHE scheme, which is used
in CryptDB, operates over 2048-bit ciphertext [70]. MONOMI addresses this issue by packing multiple
values from a single tuple into one PHE encryption, using Ge and Zdonik’s scheme [30]. This optimization



works properly for a table with many PHE-encrypted attributes, but would complicate partial updates that
reset some but not all attribute values packed into a PHE tuple encryption [55]. Thus, although security
vs. performance is necessarily a tradeoff, there is still some room for improving the storage overhead of
cryptographic schemes, especially for secret sharing schemes.

6.4 Computational Overhead

Operations at the CSP’s should not involve any expensive arithmetic operations such as modular mul-
tiplication or exponentiation [62]. However, for instance in Paillier’s scheme, encrypting the sum of two
clear values x and y requires multiplying ciphertexts E(x) and E(y) modulo a 2048-bit public key, i.e.,
E(x + y) = E(x) × E(y). Such modular multiplications are computationally expensive, especially on big
tables.

MONOMI implements a grouped homomorphic addition optimization. All to-be-aggregated attributes
are packed in such a way that aggregation queries can be computed with a single modular multiplication.
This implies that all queries must be declared ahead of time, which it is not possible for all applications, e.g.,
OLAP ad-hoc navigation. Yet, performance optimization techniques, such as indexing, partitioning or view
materialization, can apply onto ciphertexts. However, although they speed up some queries, they also slow
down others [70]. As a result, it is crucial to select a cryptographic method that meets all usage constrains.
Again, a tradeoff must be defined to meet the intended level of privacy while minimizing the impact on
performance.

6.5 Wrap-up

In this paper, we review the security mechanisms that can nowadays be used in the deployment of cloud
databases. We particularly focus on the cryptographic schemes and the (would-be) secure systems that
enable executing queries over ciphertexts without decryption. This survey highlights the potential benefits
of existing solutions in a cloud computing context, but also that one must take great care about security
guarantees before selecting one such solution.

Moreover, cryptography cannot prevent all attacks by malicious adversaries, e.g., Distributed Denial of
Service (DDoS) attacks. It is thus essential to clearly specify the objectives of cloud database deployment,
to adopt security mechanisms that are adapted to these objectives. Such preliminary work shall determine
the initialization of secure protocols, the choice of cryptographic schemes, the need for a trusted third party,
etc.

Finally, since computational performance is currently still a bottleneck, resorting to data distribution and
query parallelization must be a priority. Thus, cloud frameworks such as Hadoop [7] and Spark [6] should be
exploited in future secure cloud DBMSs.
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33. Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Executing SQL over encrypted data
in the database-service-provider model. In ACM SIGMOD International Conference on Management of Data
(SIGMOD), Madison, WI, USA, pages 216–227, 2002.
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