
HAL Id: hal-01523933
https://hal.science/hal-01523933

Preprint submitted on 18 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OCCI-Compliant Cloud Configuration Simulation
Mehdi Ahmed-Nacer, Walid Gaaloul, Samir Tata

To cite this version:
Mehdi Ahmed-Nacer, Walid Gaaloul, Samir Tata. OCCI-Compliant Cloud Configuration Simulation.
2017. �hal-01523933�

https://hal.science/hal-01523933
https://hal.archives-ouvertes.fr


OCCI-Compliant Cloud Configuration Simulation

Mehdi Ahmed-Nacer∗†, Walid Gaaloul† and Samir Tata‡
∗University of Sciences and Technology Houari Boumediene, Algiers, Algeria

†SAMOVAR, Telecom SudParis, CNRS. Universite Paris-Saclay. 9, rue Charles Fourier. 91011 Evry Cedex, France
‡IBM Research-Almaden. San Jose, CA, 95120, United States

{firstname.lastname}@telecom-sudparis.eu, m.ahmed.nacer@usthb.dz, stata@us.ibm.com

Abstract—In recent years many organizations such as, Ama-
zon, Google, Microsoft, have accelerated the development of
their cloud computing ecosystem. This rapid development has
created a plethora of cloud resource management interfaces
for provisioning, supervising, and managing cloud resources.
Thus, there is an obvious need for the standardization of cloud
resource management interfaces to cope with the prevalent is-
sues of heterogeneity, integration, and portability issues. To this
end, Open Cloud Computing Interface (OCCI) proposed one
of the first widely accepted, community-based, open standard
for managing any kinds of cloud resources. However, there is a
strong need for having a simulation environment to study and
analyze the performance of OCCI-compliant applications for
two main reasons: (i) in absence of a simulation environment,
these applications have to be tested on real cloud infrastructure,
which induces a cost issue and (ii) various conditions prevailing
in cloud environments are beyond the control of the developers
involved in analyzing cloud resource allocation. Therefore, in
this paper we propose, (i) an extension to the OCCI metamodel
dedicated to the simulation of cloud resources using an open-
source cloud simulation framework called CloudSim, (ii) a user-
friendly graphical interface to generate the OCCI configuration
for simulation.

Keywords-Cloud Computing, Open Cloud Computing Inter-
face, Simulation;

I. INTRODUCTION

The evolution of cloud computing over the past few years
is potentially one of the major advances in the history
of computing. Many companies, such as Amazon, Google,
Microsoft and so on, have accelerated the development of
their cloud computing ecosystem and have been providing
their services to a larger number of users. However, in
order to achieve its full potential, cloud computing needs to
tackle many challenges involved in cloud resource manage-
ment [1]. Indeed, each cloud offering has its own cloud re-
source management (CRM) interfaces to precise how cloud
clients/applications/users interact with the cloud resources.
This has led to a plethora of CRM-API’s, proposed by
Amazon, CloudStack, OpenStack, CloudBees, OpenShift,
Cloud Foundry, to name a few.

Thereby there is an obvious need for cloud computing
standards to cope with four main issues: (i) heterogeneity
of cloud offers, (ii) interoperability between CRM-API, (iii)
integration of CRM-API for building multi-cloud systems,
and (iv) portability of cloud management applications.

To this end, Open Cloud Computing Interface (OCCI) was
introduced [2]. It proposes one of the first widely accepted,
community-based, open standards for managing any kinds of
cloud resources [3]. But as it is specified in natural language,
OCCI is considered to be imprecise, ambiguous, incomplete,
and needs a precise definition of its core concepts. This being
a relevant issue has been recently addressed by the scientific
community and has been supported by many scientific calls
for research projects. The OCCIware1 project is one of such
projects. It proposes a new precise metamodel for OCCI,
named OCCIware metamodel [4], along with an enhanced
tooling environment called OCCIware Studio.

OCCIware Studio is a set of tools developed for designing,
managing and analyzing any kind of cloud computing re-
sources. Through OCCIware Studio, users are able to graph-
ically design a cloud system called ’OCCI Configuration’.
The users can validate this configuration and deploy it in
real cloud computing infrastructure. This configuration is
composed of OCCI resources instances and links between
them. However, porting an OCCI configuration over a real
cloud platform and evaluating it at scale comes with a
high cost. That motivated the research idea on integrating
a simulation tool into OCCIware Studio.

Furthermore, simulation technology has become increas-
ingly popular, both in the cloud industry and in academia.
It allows users to evaluate their algorithms and applications
before deploying them on a real cloud environment. Using a
real cloud infrastructure limits the experiments to the scale of
the infrastructure, and makes the reproduction of results an
extremely difficult task. The main reason for this being that,
the conditions prevailing in the internet-based environments
are beyond the control of the developers involved in analyz-
ing the resource allocation and application of the scheduling
algorithms. To avoid these issues, simulation tools open the
possibility of experimenting and evaluating the hypothesis
in an environment where one can reproduce tests easily
prior to the actual software development. This is of special
significance in the case of cloud computing, where access
to the cloud infrastructure incurs payments in real currency.

Given the importance of the simulation in cloud envi-
ronment and the lack of OCCI metamodel for supporting

1http://www.occiware.org/



a simulation of OCCI resources, we propose in this paper
an extension of OCCIware metamodel for supporting a
simulation of OCCI based cloud configurations. To achieve
this aim, different tracks have to to be studied. These tracks
are summarized in Figure 1 and the study is conducted as
follows:

1) Study the suitability and the compatibility of various
cloud simulators with OCCIware metamodel. This
study allows us to select the suitable simulator and
extract the entities used by this simulator;

2) Extend OCCIware metamodel for simulation envi-
ronment. This extension defines the position of the
simulator entities in the context of OCCIware;

3) Develop a user-friendly simulation studio using which
the users can design and model a simulation configu-
ration;

4) Integrate a simulator tool in OCCIware metamodel and
connect it with the simulation studio.

Figure 1: Simulation Flow

Thus, the objective of our research is to provide the users
of the OCCIware framework with a possibility to perform
simulations in a easy and intuitive manner along with sup-
porting the principle of interoperability. We will measure the
easiness and efficiency of our tool based on the time taken
to complete the design of the configuration file using our
tool and the number of lines-of-code (excluding whitespace).
Likewise, the principle of interoperability would be assessed
through showing various use cases being supported by our
tool.

The remainder of this paper is structured as follows:
Section II provides information about the OCCI Standard,
OCCIware metamodel along with OCCIware studio. Sec-
tion III presents the proposed OCCI extension for simula-
tion. Section IV describes the implementation. Section VI
evaluates the existing related work. Section VII concludes
the paper and discusses the planned future works.

II. BACKGROUND

In this section, we provide basic information about the
OCCI standard and the OCCIware Metamodel. We also
introduce the OCCIware studio in this section, as we use
this studio to design the simulation extension for the OCCI
Metamodel.

A. OCCI Standard

The Open Cloud Computing Interface (OCCI) is a REST-
ful protocol and provides API’s for all kinds of management

tasks in cloud environments [5]. The OCCI core model is
represented as an UML class diagram where cloud resources
and their relationships have been represented. Among var-
ious OCCI specifications, in context of this paper, we are
mainly interested in two of them i.e. OCCI Core (v1.1) [2]
and OCCI Infrastructure (v1.1) [6].

Figure 2: OCCI Core Model

The OCCI Core provides the formal definition of the
OCCI core model as shown in the figure 2. This model is
an abstraction of real-world resources, including the means
to identify, classify, associate and extend those resources.
It describes cloud resources as instances of Resource or a
sub-type thereof. Resources could be combined and linked
to each other using instances of Link or a sub-type of
this latter. Resource and Link are sub-types of Entity. Each
Entity instance is typed using an instance of the class Kind
and could be extended using one or more instances of the
class Mixin. Kind and Mixin are subtypes of Category and
each Category instance can have one or more instances of
the class Action. A fundamental advantage of the OCCI
Core Model is its extensibility. It is noteworthy that any
extension will be discoverable and visible to an OCCI client
at run-time. An OCCI client can connect to an OCCI im-
plementation using an extended OCCI Core Model, without
knowing anything in advance, and still be able to discover
and understand, at run-time, all the instance types supported
by that implementation. Extending OCCI core is possible
using sub-types of the existing types or using Mixins.

OCCI Infrastructure [6] is an extension of the core model
to represent the cloud infrastructure layer. This extension
provides the definition of new resources that inherit the
core basic types, Resource and Link. As shown in Figure
3, new Resource subclasses are Network, Compute and
Storage while the new Link subclasses are StorageLink
and NetworkInterface. The Compute resource represents



Figure 3: OCCI Infrastructure Model

a generic information processing resource like a virtual
machine. However, Network resource represents networking
entity like a virtual switch. The last defined resource type
for this extension is the Storage that represents resources
that record information to a data storage device.

Even though OCCI standatd is widely accepted in cloud
computing community, it lacks a precise definition of its
core concepts. In [4], the authors identify five conceptual
drawbacks/limitations on the OCCI Core Model, which
are: (i) Informal model, (ii) Imprecise type classification
system, (iii) Non-extensible data type system,(iv) Vague and
incomplete extension concept, (v) Configuration concept un-
defined. To tackle these issues, OCCIware project proposed
a new and precise metamodel for OCCI, named OCCIware
Metamodel [4].

B. OCCIware Metamodel

OCCIware metamodel [4] is a precise metamodel for
OCCI. This metamodel rigorously defines the static se-
mantics of the OCCI core concepts, which comprises of a
precise type classification system, of an extensible data type
system, and of both extension and configuration concepts.
This metamodel is based on the eclipse modeling framework
(EMF). The structure of OCCIware metamodel is illustrated
in Figure 4.

Figure 4: Diagram of OCCIware Metamodel

For our study of OCCI compliant simulation, we have
to provide basic definitions of OCCI Extension and OCCI
Configuration.

1) OCCI Extension: The OCCI Extension specifications
consist of multiple documents each describing a par-
ticular extension of the OCCI Core Model. The exten-
sion documents describe additions to the OCCI Core
Model defined within the OCCI specification suite
[7]. Various extensions have been proposed such as
infrastructure extension [6], platform extension [8],
application extension [8], etc.

2) OCCI Configuration: A configuration is an abstraction
of an OCCI-based running system, and is composed
of resource and link instances. A configuration must
explicitly state which extensions it uses. Modeling a
configuration offline could allow designers to think
about and analyze their cloud systems without requir-
ing to deploy them actually in the clouds.

The OCCIware Metamodel enhanced tooling paradigm
called OCCIware Studio that is able to design, analyze and
manage any kind of cloud computing resources. Through
OCCIware Studio the users create their extensions and
configurations graphically.

C. OCCIware Studio

OCCIware studio is a set of tools designed to ease the
development and the deployment of OCCI-based solutions.
The studio implementation is based on Eclipse, which pro-
vides various frameworks for simplifying the development
of OCCI studio’s tools

To conduct our study, we use this studio to design the
simulation extension and generate OCCI simulation configu-
ration. Figure 5 shows the main feature of OCCIware Studio
that interests us in order to design an OCCI simulation.
Three of them have already developed: OCCI Designer (a
graphical tool, based on Sirius, for designing the extension
and configurations using diagrams), OCCI Editor (a textual
editor to edit OCCI models) OCCI Validator (a tool to val-
idate OCCI extensions and configurations). The fourth tool
OCCI Simulator is the purpose of this paper. It simulates an
OCCI configuration in order to evaluate performance metrics
without deploying it into the clouds and paying for cloud
resource usage

III. OCCI SIMULATION

In this section, we first define the OCCI simulation
extension. Afterward, we describe the generation of OCCI
simulation configuration.

A. Tool selection

To develop and analyze any new cloud environment with
the help of the simulators, it is required to understand the
existing cloud simulators along with their pros and cons.
Among the various existing simulators, we need to study



Figure 6: Overview of the Defined Extension

Simulation

OCCI DesignerOCCI Editor

STUDIO

Figure 5: OCCIware Simulation Studio

and choose the most appropriate simulator for OCCIware
Metamodel. Such a study will allow us to define the different
entities for the simulation extension.

In the literature, many cloud simulators exist such as
SimGrid [9], CloudSim [10], GreenCloud [11], iCanCloud
[12], GridSim [13] and many others. However because of
the varieties of challenging issues of cloud computing, one
particular existing cloud simulator isolates clearly the multi-
layer service abstractions (SaaS, PaaS, and IaaS) differenti-
ation. This simulator is the CloudSim [10].

We believe that CloudSim [10] is the most appropriate
simulator to achieve our goal. CloudSim is a generalized
and extensible simulation framework that allows seamless
modeling, simulation, and experimentation of emerging
cloud computing infrastructures and application services. It
is open source and has been developed in java program-
ming language which makes it compatible with OCCIware
metamodel. By using CloudSim, researchers and developers
can test the performance of a newly developed application
service in a controlled environment. Moreover, CloudSim

allows a user to model and simulate all the cloud infras-
tructure resources. It also requires much less effort and
time to implement cloud based application. The developers
can model and test the performance of their application
services in heterogeneous cloud environments with little
programming and deployment effort.

Since OCCI simulation extension uses CloudSim entities,
we define in the following the different entities of CloudSim.

B. CloudSim entities

The main components of CloudSim are: Datacenters,
Hosts, Virtual Machines (VM) and Cloudlets. Datacenter
class models the core infrastructure level services (hardware,
software) offered by resource providers in cloud computing
environment. The Datacenters encapsulates a set of Hosts
and their resource configurations (memory, cores, capacity,
and storage). Furthermore, every Datacenter component
instantiates a generalized resource provisioning component
that implements a set of policies for allocating bandwidth,
memory, and storage devices. Each Host component can
instantiate multiple VMs and allocate cores based on pre-
defined processor sharing policies. Each VM has an owner,
which can submit Cloudlets to the VM to be executed.

According to the resources needed by CloudSim, some of
them must be defined as a new Kind in OCCI metamodel,
while others are defined as a Mixins applied for the existing
Kind from OCCI core and infrastructure model.

Figure 62 presents an overview of the different OCCI
resources and the connection of these types with OCCI core
and infrastructure entities. In the following we present, the
relationships between the main OCCI resources types and
the simulator entities.

2Please note that the figure of the simulation extension illustrated in Fig
6 is not an UML digram. The figure was generated through the OCCI studio
which is designed for the generation of OCCI extensions. The Kinds are
in green color, while the Mixins are in blue.



The Datacenter resource type represents the resource
providers in CloudSim. It is the main hardware infrastructure
that provides services for servicing user requests. Datacenter
has a set of hosts (physical machine), VM and Object Con-
straint Language (OCL) different management components
and policies. A Datacenter has a set of interconnected hosts
that are managed by a set of management policies. The
Datacenter is a Mixin applied for COMPUTE resources, base
type defined in OCCI infrastructure.

Host executes actions related to management of virtual
machines (e.g., creation and destruction). A host has a
defined policy for provisioning memory and bandwidth, as
well as an allocation policy for processing elements (Pe’s)
to virtual machines. A host is associated to a datacenter. It
can host virtual machines. The Host is a Mixin applied for
COMPUTE resources, base type defined in OCCI infrastruc-
ture..

VM runs inside a Host, sharing hostList with other VMs.
It processes cloudlets. This processing happens according to
a policy, defined by the CloudletScheduler. Each VM has an
owner, which can submit cloudlets to the VM to be executed.
The VM is a Mixin applied for COMPUTE resources, base
type defined in OCCI infrastructure.

Cloudlet models the cloud-based application services or
the CloudSim task running in Vms. Each cloudlet is defined
by the number of CPU operations it requires. The Cloudlet is
a Mixin applied for COMPUTE resources, base type defined in
OCCI infrastructure. HardDriveStorage represents the stor-
age system and the behaviour of a typical hard drive storage.
The HardDriveStorage is a Mixin applied for STORAGE
resources, base type defined in OCCI infrastructure.

SanStorage represents a storage area network composed
of a set of hard disks connected in a LAN. The SanStorage
is a Mixin applied for STORAGE resources, base type defined
in OCCI infrastructure.

Furthermore, we also define new Kinds derived from
OCCI core model as follows:
• Contains to connect the resources between them. For

example, Datacenter contains a list of hosts. Each host
contains a list of VM. Each VM contains a list of
CloudLet, etc. Contains link extends LINK resource of
OCCI core model.

• SimulationResource this kind is a generic cloud re-
source. It extends RESOURCE of OCCI core model.

In addition to that, we define some Types. These types are
associated to the attributes of CloudSim entities:
• CloudletScheduler: represents the policy of scheduling

performed by a virtual machine (VM).
• VmScheduler: represents the policy used by a VM to

share processing power among VMs running in a host.
• RamProvisioner: represents the provisioning policy of

memory to virtual machines inside a host.
• BwProvisioner: represents the provisioning policy of

bandwidth to virtual machines inside a host.

• PeProvisioner: defines native types of processing ele-
ments provisioners

.
The OCCI simulation extension is implemented as an

Eclipse modeling project, which is an instance of OCCIware
metamodel. Based on this extension, the users generate an
OCCI simulation configuration.

C. OCCI simulation configuration

Through OCCI Designer the user generates an OCCI sim-
ulation configuration. This configuration uses the described
extension and contains two kinds of resources:

1) Resource to simulate: are the resources defined in
OCCI metamodel such as compute and link instances

2) Simulation resources: represent the resources used by
CloudSim simulator such as datacenter, host, VMs and
cloudlets

During the generation of OCCI simulation configuration,
the user have to map from resources to simulate to sim-
ulation resources. This step specifies which resources to
simulate is associated to which simulation resources. In
other words, it is a traduction from OCCI defined entities to
CloudSim entities.

The OCCI simulation designer allows to generate an
OCCI simulation configuration in two different ways:

1- From an existing configuration: the users generate
an OCCI simulation configuration from an existing OCCI
configuration. In this case, the user intervention is needed.
Indeed, OCCI configuration does not contain enough infor-
mation that allows to map from resource to simulate →
simulation resources. In addition, it is difficult to understand
the intention of the user about which resource is to be
simulated (e.g. a compute resource can be a datacenter,
host, VMs, etc). Thus, the user intervention is required to
specify which resource to simulate corresponding to which
simulation resource.

2- Configuration specific for simulation: this configuration
contains Entities that can be Resources or Links defined in
OCCI Core Model (Fig 2). From the simulation designer, the
user inserts the Kind instances defined for the infrastructure
sub-types of Resource and Link, e.g. a Compute, Storage,
etc (Fig 3). At this stage, the configuration is a set of
infrastructure entities. To understand what the user wants to
simulate, the user intervention is not required. Indeed, the
user needs to associate these entities to the defined Mixins,
e.g. datacenter, host, VMs, etc (Fig 6). For instance, the
user can associate a Compute resource to it a Datacenter
mixin. Therefore this Compute is considered as a datacenter
simulation resource.

To help the users to design an OCCI simulation configu-
ration, we developed a user-friendly simulation GUI on top
of Eclipse: OCCI simulation Designer. In the next section,
we detail the implementation.



IV. A TOOL FOR OCCI SIMULATION CONFIGURATION

In order to extend OCCI Studio for supporting a simula-
tion environment, we define a new modeler. This modeler
provides a graphical interface developed on top of Eclipse
Sirius3 and a textual editor developed with Xtext. The mod-
eler also provides a powerful constraint checking, helping
developers to generate correct configuration. The OCCI
Simulation Designer, generated from OCCI Simulation ex-
tension, allows the creation of simulation resources layout
and runs the simulation. Figure 7 presents this simulation
designer.
• Frame (a) in figure 7 displays the Eclipse Model

Explorer used to navigate through the simulation project
containing the OCCI simulation configuration.

• Frame (b) in figure 7 shows the OCCI Editor that
provides a textual representation of simulation config-
uration.

• Frame (c) in figure 7 shows the OCCI Simulation
Designer that provides a graphical representation of
simulation configuration.

• Frame (d) of figure 7 shows the palette of the OCCI
Designer, with palette elements to import an existing
configuration, create OCCI resources and map them
to Cloudsim resources, establish relations between re-
sources, and assign new attributes to resources.

• Frame (e) of figure 7 contains the Eclipse properties
editor for viewing and modifying attributes of a selected
modeling element.

From OCCI simulation designer, the user has the ability
to import any OCCI configuration. In this case, the OCCI
configuration contains some resources, but not sufficient to
run the simulation. As discussed in the previous section, the
user intervention is required. To this end, a set of Cloudsim
entities is proposed to annotate the resources. Moreover, the
user can add another simulation resource and attributes from
the modeler. Please note that when the user annotates an
OCCI resource with CloudSim entity, all the attributes of
this entity are imported from the simulation extension and
included in the annotated resource.

Some verifications are performed to guarantee a correct
configuration. These verifications ensure taht (1) all re-
sources needed by CloudSim are in the configuration, (2)
a resource is tagged by only one tag, (3) a correct match
between the tag and resources (e.g. a storage cannot be
tagged by a Datacenter or a Host).

Once the simulation configuration is created, the user has
to execute the simulation by selecting the ”Run Simulation”
from the right-click menu. This will start the simulation.
Once the simulation is completed, a new window appear in
which we display the simulation result. The results will list
out the data collected from the simulation presented in table
I.

3https://eclipse.org/sirius/

Metric Description
MemoryUsage % memory used
DiskUsage % disk used
AvgCpu average CPU utilization
TimeExec total simulation time
CostPe cost of processing used
CostMem cost of memory used
CostStorage cost of storage used
CostBw cost of bandwidth used

Table I: List of Metrics

Basically, CloudSim lacks the ability to bind the specified
resources defined by the user. It assumes that the physical
infrastructure is abstracted from Cloud users/brokers. For
instance, it is not possible to create two VMs in two different
datacenters if only one datacenter can host them. However,
in our metamodel we need to give to the users the ability to
choose where the cloud resources should be placed on. To
this end, we need to develop a custom broker and override
several methods. Thereby, we extend these two main classes:

1) DatacenterBroker: modifying the way VM provision-
ing requests are submitted to data centers and the way
cloudlets are submitted and assigned to VMs.

2) VmAllocationPolicy: we extend this abstract class to
implement your own algorithms for deciding which
host a new VM should be placed on.

Once the simulation configuration file is created, the users
can easily launch the simulation by a simple right click. The
simulation measures the system performance and the cost of
some resource consumed. The list of metrics measurement
are illustrated in Table I.

V. EXPERIMENTS

In the section, our objective is to experimentally prove the
efficiency (in terms of easiness, coverage) of our simulation
tool. In fact, the proposed extension can be easily integrated
into any existing cloud computing API based on OCCI
model such as OpenStack, Rackspace and Amazon S3 [14].
A user-friendly simulation GUI based on the proposed ex-
tension is provided to design easily the simulation configura-
tion. Through this GUI, the users do not need to understand
the concepts and principles of cloud computing such as,
data centers and their federation, load balancing and task
scheduling. The users just have to slide a CloudSim entities
from the panel and generate their simulation configuration.
This model contributes to saving time by decreasing the
programming effort.

Otherwise, the users have to generate a manifest file
that describes the simulation configuration manually. This
manifest is the only input required by CloudSim simulator.
Once the manifest file is generated, the users need to write
around 200 line of Java code for a simple configuration.
They need to go through a very complex process: (1)
Initialize the Cloudsim packages; (2) Create Datacenters and



Figure 7: A Screenshot of Simulation Designer

set the needed Datacenter Characteristics; (3) Create Broker;
(4) Create virtual machine and set the configuration of each
virtual machine, such as mips, size, ram and processing
element number; add virtual machine to the virtual machine
list; submit the virtual machine list to the broker; (5) Create
Cloudlet (6) similarly, set the properties of each Cloudlet and
add it into the cloudlet list; (7) submit the cloudlet list to
the broker; (8) Implement a tasks scheduling function in the
DatacenterBroker; (9) Bind the cloudlets to VMs by calling
the function defined in DatacenterBroker to apply your own
task scheduling algorithm; and (10) Start the simulation.
While, by using our proposed GUI, the users have just to
slide CloudSim entities from a panel and the manifest is
generated automatically without the need of any code.

In order to quantitatively evaluate our approach, we use
15 use cases described in the three different standard speci-
fications : 4 use cases from TOSCA, 4 use cases from OCCI
and 2 use cases for CIMI4.

We use our simulation designer to construct the configu-
rations of these use cases. The number of entities that can
be represented, the coverage percentage and the number of
code lines that can be reduced are shown in Table II. The
results show that most of the configuration are fully covered
by simulation designer, apart of CIMI, which has a coverage
of 60%. Basically, we found that all use cases from OCCI
and TOSCA are fully generated for simulation by taking
into account all the described features. However, in CIMI,
only the user profil and cloud federation features are not
supported by the simulation designer. Therefore, we can
conclude, by taking into consideration these experiments,
that our simulator ensures good standard coverage interop-
erability by handling representative uses cases coming from

4available at http://www-inf.it-sudparis.eu/SIMBAD/tools/linked-cr/
usecases

Nbr of Nbr of
Standard Entities Covered reduced Lines
TOSCA 8 100% 1600
OCCI 4 100% 1400
CIMI 3 60% 800
Total 15 90% 3800

Table II: Use case experiments

three of the most used Cloud standards.
Moreover, our experiments show that our approach re-

duces drastically the user efforts, in terms of code lines,
that have been avoided thanks to our simulation designer.
Concretely, without our our simulation designer the users
may have to write 3800 code lines in total for the 15 use
cases in order to simulate them in CloudSim.

VI. RELATED WORK

Simulations tools are essential for carrying out research
experiments in cloud computing. In the past decade, many
simulation techniques to investigate behavior of cloud com-
puting systems have been developed. In this section, we
describe some of them. Since the simulator needs to be
included in OCCIware Metamodel, the chosen simulator tool
must be (i) compatible with this metamodel in programming
languages, (ii) extensible to open new functionalities and (iii)
isolate the multi-layer service abstractions (SaaS, PaaS, and
IaaS) differentiation.

SimGrid [9] is a generic framework for simulation of
distributed applications in Grid platforms. It is mostly
written in C and has dependencies with Python and Perl.
SimGrid is opensource and can be extensible. From early
2009 up until today, SimGrid has been extended to P2P, HPC
and Cloud infrastructures and applications [15].However,
SimGrid is limited in memory and suffers on scalability



[16] that impedes the simulation of large-scale systems. In
addition, SimGrid is restricted to a single scheduling entity
and time-shared systems while there are many space-shared
resources needing to be supported in simulation.

GreenCloud [11] is a packet-level simulator that uses the
Network Simulator 2 (NS2) libraries for energy-aware data
centers. GreenCloud simulator confines its scalability to only
small data centers [17] due to very large simulation time
and high memory requirements. In addition, GreenCloud is
written in C++ and OTcl, two different languages must be
used to implement one single experiment. Since GreenCloud
is used quite less as compared to other cloud simulators,
there is no extension of GreenCloud to our best knowledge.

iCanCloud [12] is a software simulation framework for
large storage networks. It can predict the trade-off between
costs and performance of a particular application in a
specific hardware in order to inform the users about the
costs involved. iCanCloud has been developed in C++ on
the top of OMNeT++ and INET frameworks. iCanCloud
is open source and extensible simulator. New components
can be added to the repository of iCanCloud to increase the
functionality of the simulation platform. The disadvantages
of iCanCloud are firstly, only Cost per Performance (C/P)
modeling of cloud computing environments is simulated or
validated and secondly, it models and simulates only EC2
(Elastic Compute Cloud) environments.

GridSim [13] provides facilities for the modeling and sim-
ulation of resources and network connectivity with different
capabilities, configurations, and domains. It is implemented
in Java by leveraging SimJavas [18] basic discrete event sim-
ulation infrastructure. GridSim is opensource and extensible.
Many extensions of GridSim were developed in[19], [20],
[21]. Even if GridSim is a powerful simulator, it does not
explicitly define any specific application model.

Although the aforementioned toolkits are capable of mod-
eling and simulating cloud application management behav-
iors, none of them are able to clearly isolate the multi-layer
service abstractions (SaaS, PaaS, and IaaS) differentiation
required by Cloud computing environments.

CloudSim [10] is an open source simulation application
which enables seamless modeling, simulation, and experi-
mentation of cloud computing and application services due
to the problem that existing distributed system simulators
were not applicable to the cloud computing environment.
The CloudSim is implemented at the next level by program-
matically extending the core functionalities exposed by the
GridSim layer [22]. It provides novel support for modeling
and simulation of virtualized cloud-based data center envi-
ronments such as dedicated management interfaces for VMs,
memory, storage, and bandwidth. CloudSim is extensible and
many features can be easily added enabling the modeling of
new types of applications, not supported by CloudSim.

We have chosen CloudSim as a simulation tool for sup-
porting simulation of OCCI based cloud configuration. This

decision was due to its ability to support many more func-
tionalities than other simulation tools, as well as the flexibil-
ity in which it was designed for. CloudSim is open source,
completely written in Java, and having many extensions
being developed and published having it as the bases such as,
CEPSim [23], WorkflowSim [24], DynamicCloudSim [25]
and CloudAnalyst [26]. Moreover, its layered architectural
model makes it easy to understand and differentiate clearly
the cloud computing layers service abstractions.

The Table III provides a summary of the critical evaluation
provided in this section.

Simulator
Requirements Extensible Programming Resources

Language IaaS SaaS PaaS
SimGrid [9] Yes C Yes No No

GridSim [13] Yes Java Yes No No
CloudSim [10] Yes Java Yes No Yes

GreenCloud [11] No C++, OTcl Yes No No
iCanCloud [12] Yes C++ Yes No HPC

Table III: Related Work Evaluation Synthesis

VII. CONCLUSION

OCCIware projet proposes a new precise metamodel for
Open Cloud Computing Interface (OCCI) standards. How-
ever, this metamodel lacks a simulation environment. Given
the importance of cloud simulation, this paper proposes
an OCCI extension and a methodology for simulation of
OCCI based cloud configuration. The extension defines the
representation of CloudSim entities in OCCI context, while
the methodology precises how the resources extracted from
OCCI configuration are expressed in CloudSim.

The conducted study provides a user-friendly GUI for
easily designing and modeling a simulation configuration.
This tool is open source, generic, extensible and developed
on top of Eclipse IDE.

As future work, we will continuously improve the simu-
lation extension to support other abilities such as network
topologies, elasticity, sharing resources policies and include
a behavioral study of cloud resources.

ACKNOWLEDGEMENTS

This work is partially supported by OCCIware, a research
project funded by French FSN (Fonds national pour la
Societe Numerique) program.

AVAILABILITY

Open source code for the OCCIWARE STUDIO and the SIM-
ULATOR is available at https://github.com/occiware/ecore/
tree/master/clouddesigner/

OCCIWARE STUDIO binary bundles for Linux, Windows
and MacOS are available at http://www.obeo.fr/download/
occiware/.



REFERENCES

[1] J. Martin-Flatin, “Challenges in cloud management,” IEEE
Cloud Computing, no. 1, pp. 66–70, 2014.

[2] R. Nyrn, A. Edmonds, A. Papaspyrou, and T. Metsch,
“Open Cloud Computing Interface – Core,” GFD-P-R.183,
April 2011. [Online]. Available: {http://ogf.org/documents/
GFD.183.pdf}

[3] A. Edmonds, T. Metsch, A. Papaspyrou, and A. Richardson,
“Toward an open cloud standard,” Internet Computing, IEEE,
vol. 16, no. 4, pp. 15–25, July 2012.

[4] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata,
“A precise metamodel for open cloud computing interface,”
in Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on, June 2015, pp. 852–859.

[5] T. Metsch, A. Edmonds et al., “Open cloud computing
interface-restful http rendering,” in Open Grid Forum-OCCI
Working group technical report, 2011.

[6] T. Metsch and A. Edmonds, “Open Cloud Computing
Interface – Infrastructure,” GFD-P-R.184, April 2011.
[Online]. Available: {http://ogf.org/documents/GFD.184.pdf}

[7] ——, “Open Cloud Computing Interface – HTTP Rendering,”
GFD-P-R.185, April 2011. [Online]. Available: {http:
//ogf.org/documents/GFD.185.pdf}

[8] S. Yangui and S. Tata, “An occi compliant model for paas re-
sources description and provisioning,” The Computer Journal,
p. bxu132, 2014.

[9] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: A
generic framework for large-scale distributed experiments,”
in Computer Modeling and Simulation, 2008. UKSIM 2008.
Tenth International Conference on. IEEE, 2008, pp. 126–
131.

[10] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
simulation of scalable cloud computing environments and
the cloudsim toolkit: Challenges and opportunities,” in High
Performance Computing & Simulation, 2009. HPCS’09. In-
ternational Conference on. IEEE, 2009, pp. 1–11.

[11] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a
packet-level simulator of energy-aware cloud computing data
centers,” The Journal of Supercomputing, vol. 62, no. 3, pp.
1263–1283, 2012.

[12] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G.
Castañé, J. Carretero, and I. M. Llorente, “icancloud: A
flexible and scalable cloud infrastructure simulator,” Journal
of Grid Computing, vol. 10, no. 1, pp. 185–209, 2012.

[13] R. Buyya and M. Murshed, “Gridsim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing,” Concurrency and compu-
tation: practice and experience, vol. 14, no. 13-15, pp. 1175–
1220, 2002.

[14] H. Brabra, A. Mtibaa, L. Sliman, W. Gaaloul,
B. Benatallah, and F. Gargouri, “Detecting cloud
(anti)patterns: OCCI perspective,” in Service-Oriented
Computing - 14th International Conference, ICSOC
2016, Banff, AB, Canada, October 10-13, 2016,
Proceedings, 2016, pp. 202–218. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-46295-0 13

[15] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and
F. Suter, “Simgrid: a sustained effort for the versatile sim-
ulation of large scale distributed systems,” arXiv preprint
arXiv:1309.1630, 2013.

[16] S. De Munck, K. Vanmechelen, and J. Broeckhove, “Im-
proving the scalability of simgrid using dynamic routing,”
in Computational Science–ICCS 2009. Springer, 2009, pp.
406–415.

[17] R. Malhotra and P. Jain, “Study and comparison of various
cloud simulators available in the cloud computing,” Interna-
tional Journal of Advanced Research in Computer Science
and Software Engineering, vol. 3, no. 9, pp. 347–350, 2013.

[18] F. Howell and R. McNab, “Simjava: A discrete event simu-
lation library for java,” Simulation Series, vol. 30, pp. 51–56,
1998.

[19] R. Albodour, A. E. James, and N. Yaacob, “An extension of
gridsim for quality of service.” in CSCWD, 2010, pp. 361–
366.

[20] A. Caminero, A. Sulistio, B. Caminero, C. Carrión, and
R. Buyya, “Extending gridsim with an architecture for failure
detection,” in Parallel and Distributed Systems, 2007 Inter-
national Conference on, vol. 2. IEEE, 2007, pp. 1–8.

[21] J. L. Albın, J. A. Lorenzo, J. C. Cabaleiro, T. F. Pena, and
F. F. Rivera, “Simulation of parallel applications in gridsim,”
in Proceedings of the Iberian Grid Infrastructure Conference,
2007, pp. 208–219.

[22] R. N. Calheiros, R. Ranjan, C. A. De Rose, and R. Buyya,
“Cloudsim: A novel framework for modeling and simula-
tion of cloud computing infrastructures and services,” arXiv
preprint arXiv:0903.2525, 2009.

[23] W. A. Higashino, M. A. Capretz, and L. F. Bittencourt, “Cep-
sim: Modelling and simulation of complex event processing
systems in cloud environments,” Future Generation Computer
Systems, 2015.

[24] W. Chen and E. Deelman, “Workflowsim: A toolkit for simu-
lating scientific workflows in distributed environments,” in E-
Science (e-Science), 2012 IEEE 8th International Conference
on. IEEE, 2012, pp. 1–8.

[25] M. Bux and U. Leser, “Dynamiccloudsim: Simulating hetero-
geneity in computational clouds,” Future Generation Com-
puter Systems, vol. 46, pp. 85–99, 2015.

[26] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloud-
analyst: A cloudsim-based visual modeller for analysing
cloud computing environments and applications,” in Ad-
vanced Information Networking and Applications (AINA),
2010 24th IEEE International Conference on. IEEE, 2010,
pp. 446–452.


