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Introduction

Plasma-sprayed coatings are widely used for thermal protection and wear stability of components and their importance with respect to structural durability is significant. These coatings feature an anisotropic structure as a result of the thermal spraying process in which molten metal is projected onto a substrate at elevated speeds, leading to the formation of flatlike splats. Typically, these splats have diameters of 100-200µm and exhibit thicknesses in the range of 2-10µm [START_REF] Sevastianov | Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations[END_REF]. The presence of lamellar microcracks and pores, often accompanied by the presence of oxides and other impurities, results in anisotropic porous microstructures with porosity volume fractions f amounting to 2-15% [START_REF] Kroupa | Nonlinear elastic behavior in compression of thermally sprayed materials[END_REF]. Whilst the influence of pores and microcracks on the coatings' elastic properties has been studied quite extensively, namely by Sevostianov et al. [START_REF] Sevastianov | Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations[END_REF][2] [START_REF] Sevastianov | Quantitative characterization of microstructures of plasma-sprayed coatings and their conductive and elastic properties[END_REF], to our knowledge few research activities aim to describe the plastic properties of these porous materials.

The purpose of this work is to propose a novel inverse method that identifies the plastic properties of plasma-sprayed coatings by means of macro-indentation and finite element simulations coupled to a Levenberg-Marquardt optimization.

Instrumented indentation techniques are commonly employed for the determination of hardness, elastic modulus, indentation toughness, tensile strength or fatigue and creep behavior [START_REF] Chicot | Hardness of thermal sprayed coatings: relevance of the scale of measurement[END_REF]. The attractiveness of these techniques stems from the fact that material properties can be determined by simple analysis of the indentation load vs. displacement curve obtained in the course of indentation.

Instrumented indentation can be performed at different length scales ranging from the nano to the macro scale. Whilst nanoindentation is commonly employed for the analysis of local phases or very thin films, macroindentation is useful for the study of a material's global behavior as the matter beneath the indenter can be assumed to be homogenous. In this study we consider highly anisotropic plasma-sprayed coatings. Macro-indentation seems to be the obvious choice for these materials if their plastic properties are to be described on a macroscopic scale.

The elastic-plastic properties of materials are commonly identified from the load displacement curve obtained in the course of indentation [START_REF] Clement | Mechanical characterization of highly porous inorganic solid materials by instrumented micro-indentation[END_REF][13] [START_REF] Chen | Novel technique for measuring the mechanical properties of porous materials by nanoindentation[END_REF]. Although this common method is suitable for nano and microindentation, we propose an alternative method in this work. The inverse method proposed in this study does not require knowledge of the entire loading history but it suffices to provide the geometry of the residual macro-indent. There are several advantages of this method compared to the traditional one:

 Knowledge of machine compliance is not necessary if the identification of plastic properties is based on the geometry of the residual indent only. This is in contrast to methods based on the load-displacement history since machine compliance strongly influences the precision of displacement measurements.

 Conventional methods based on the load-displacement history require knowledge of the real contact area between indenter and material which is mostly derived from the indentation depth according to the method developed by Oliver & Pharr [17][18]. The method proposed in this work avoids relating the penetration depth to projected contact area.

 The geometry of the residual indent provides information on the materials' hardening characteristics. This is exemplified by the formation of sink-in or pile-up regions around spherical indents in solids where the sink-in and pile-up phenomena are prevalent for materials exhibiting much strain hardening (n>0.2 where n denotes the strain hardening exponent) and little strain hardening (n<0.2), respectively [10][11]. Apart from the strain hardening characteristics, the formation of sink-in or pile-up is also influenced by contact friction and indentation depth [START_REF] Karthik | Finite element analysis of spherical indentation to study pile-up/sink-in phenomena in steels and experimental validation[END_REF].

In this paper the plastic properties of a Cobalt-based plasma-sprayed coating are determined using a novel inverse method that couples finite element simulations to experimental macro-indentations using a Levenberg-Marquardt algorithm. Section 2 of this article is meant to give an overview of the employed materials and experimental set-ups. We will see that the coating's plastic properties can be described by the Gurson-Tvergaard plasticity criterion which is explained in section 3. The Levenberg-Marquardt method is described in section 4, followed by the presentation of the finite element model that is used to simulate the indentation process in section 5. The proposed method was validated by means of numerically generated solutions. This validation process is described in section 6 and it includes a sensitivity study of white noise, deviation on measurements and friction coefficient. Finally, the results are presented in section 7 of this paper.

Materials and experimental set-up 1.1 Coatings

The materials investigated in this study are Co-based coatings that are plasma-sprayed onto a 40CVD12 steel substrate. These coatings, depicted in Figure 1a, exhibit a thickness of approximately 140μm. The heterogeneous coating is constituted of a solid phase (base alloy and oxides) and a porous phase (microcracks and large pores).

The porosity volume fraction of these coatings, hereafter denoted as f, can be estimated by image binarization of cross-sectional views obtained by optical imagery. Figure 1b depicts several binarized images of the same cross-section for different threshold values of contrast where the porous and solid phases are marked in white and black, respectively. One can see that the corresponding porosity volume fractions range between 1.3% and 9.2%. It is obvious that porosity volume fractions determined by this method are influenced to a significant extent by the choice of threshold value of contrast and they will differ to some extent between different cross-sectional views.

As will be shown in subsequent sections f has a significant influence on the plastic behavior of the coatings and it is of outmost importance to correctly determine this parameter. However, since f cannot be precisely determined using optical imagery, we have chosen this parameter to be one of the unknown variables to be identified using the proposed method.

As an initial guess for the Levenberg-Marquardt optimization we set f0=1.5% considering that the seemingly porous spaces in between splats are mostly solid oxides and only the very dark cavities are actual porosities. The obtained indents are measured by profilometry making use of a Veeko non-contact profilometer at a magnification of 5 and a resolution of 1.97μm. An example of the obtained 3D indentation profiles is depicted in figure 3a. Here, the indent was carried out at a load of 16000N.

The Abaqus model associated with this problem is an axisymmetric model of the indenterspecimen-system which implies that the numerically computed indentation profiles are twodimensional only. For the Levenberg-Marquardt algorithm to work, the 3D profiles obtained by profilometry need to be averaged around the indent's central axis in order to obtain a representative 2D profile. The averaged profile is depicted in figure 3b as a red line. The filtering of profilometric raw data as well as subsequent azimuthal averaging and smoothing strongly reduces the measurement noise. Applying this procedure to all profilometric data of the indents, the indentation profiles depicted in figure 4 were obtained. The maximum indentation depth at the center of the indent amounts to approximately 3µm at a corresponding indentation load of 16kN. Furthermore it is important to note that only very little or almost no pile-up occurs at the edges of the indent which could be sign of significant strain hardening. We also observed relatively good repeatability of these tests; that is the deviation of indentation depth from an averaged depth over several tests amounts to a maximum of 0.06µm. The effect of variation on measurements is discussed in section 6.3. For nanoindentation we used a modified Berkovich and a cubecorner indenter exhibiting different representative strains within the material during loading. The representative strain ε during penetration is approximated as ε = 0.2•tan(β) where β is given by the angle of attack of the indenter [START_REF] Tabor | Hardness of metals[END_REF]. For the modified Berkovich and cubecorner tips εBerkovich = 6.8% and εcubecorner = 20.0%, respectively. The yield strength of solids can be approximated as σy = HIT/3.0 where HIT is the material hardness as determined by the method of Oliver and Pharr [17][18]. Making use of several indenters each exhibiting different representative strains, the materials' strain hardening behavior and yield strength at zero plastic strain can be reconstructed assuming a linear work hardening of the matrix. This method is illustrated in figure 5. More precisely, the parameters K and σyo are given by

𝐾 = 𝛥𝑦 𝛥𝑥 = 𝜎 𝑐𝑢𝑏𝑒𝑐𝑜𝑟𝑛𝑒𝑟 -𝜎 𝐵𝑒𝑟𝑘𝑜𝑣𝑖𝑐ℎ 𝜀 𝑐𝑢𝑏𝑒𝑐𝑜𝑟𝑛𝑒𝑟 -𝜀 𝐵𝑒𝑟𝑘𝑜𝑣𝑖𝑐ℎ (1) 
𝜎 𝑦0 = 𝜎 𝐵𝑒𝑟𝑘𝑜𝑣𝑖𝑐ℎ -𝐾𝜀 𝐵𝑒𝑟𝑘𝑜𝑣𝑖𝑐ℎ = 𝜎 𝑐𝑢𝑏𝑒𝑐𝑜𝑟𝑛𝑒𝑟 -𝐾𝜀 𝑐𝑢𝑏𝑒𝑐𝑜𝑟𝑛𝑒𝑟 [START_REF] Kroupa | Nonlinear elastic behavior in compression of thermally sprayed materials[END_REF] In this study nanoindents were made at a maximum indentation load of 50mN and at a loading rate of 100mN/min for both the modified Berkovich and cubecorner indenter. A total of 30 indents were made for each indenter on both the cross-section of the coating and its top side. Table 1 gives an overview of the Young's modulus EIT, hardness HIT and yield strength σy obtained by means of nanoindentation as well as the standard deviation s of these parameters. For the indents carried out on the cross-section and top side of the sample a work hardening coefficient K of approximately 11900MPa and 9300MPa was found, respectively. The yield strength σy0 at 0.2% plastic strain can be obtained in a similar fashion assuming a linear work hardening. For the indents carried out on the cross-section and on the top side of the sample this parameter amounts to 2600MPa and 1930MPa, respectively. This influence of sample orientation on obtained yield strengths and work hardening coefficient illustrates well the materials' heterogeneity. We will use Ktop=9300 MPa and σy0,top=1930 MPa for comparison with results obtained by the Levenberg-Marquardt method. 

Gurson-Tvergaard plasticity criterion

From the experimental indentation profiles in figure 4 it can be seen that indentation depths of up to 3µm can be obtained at the center of the indent. This deep indentation at the center can be explained by the closure of cracks and porosities under negative hydrostatic pressure. In order to sufficiently describe the plastic behavior of these coatings we therefore need a criterion that takes into account hydrostatic pressure. Furthermore, this criterion should be readily implementable in common finite element software. For these two reasons we have chosen the Gurson model as a first approach to this problem. In fact, this criterion, developed in 1977, is commonly used to describe the plastic behavior of porous ductile materials and therefore seems to be suitable.

In the Gurson model the matrix is taken as a continuum, obeying the von Mises yield criterion, where the effect of voids is averaged throughout the solid and where the porosity volume fraction f evolves with hydrostatic pressure. The yield function of the classical Gurson model is given as follows:

𝛷 = ( 𝜎 𝑣𝑚 𝜎 𝑦 ) 2 + 2𝑓 • 𝑐𝑜𝑠ℎ (- 3 2 𝜎 𝑚 𝜎 𝑦 ) -(1 + 𝑓 2 ) = 0 (3)
Here, σvm is the equivalent von Mises stress, σy the uniaxial yield strength of the matrix in absence of voids, σm the hydrostatic pressure and f the porosity volume fraction of the solid. For a nonporous solid for which f=0, the Gurson criterion simply reduces to the von Mises yield criterion.

Tvergaard proposed a phenomenological extension of the original Gurson model in order to account for the interaction between voids and plastic work hardening by introduction of the nondimensional fitting parameters q1, q2 and q3. This model is known as the Gurson-Tvergaard model whose yield function is given by equation 4. The factors q1, q2 are often assumed to take on values between 0 < q1, q2 < 1.5 whilst q3 is commonly approximated as q3 = q1 2 . Although the Gurson-Tvergaard yield criterion was further extended by Needleman in order to account for void coalescence under tension, in this study we make use of the Gurson-Tvergaard model as the considered materials are deformed under compressive loads only.

𝛷 = ( 𝜎 𝑣𝑚 𝜎 𝑦 ) 2 + 2𝑓𝑞 1 𝑐𝑜𝑠ℎ (- 3 2 𝑞 2 𝜎 𝑚 𝜎 𝑦 ) -(1 + 𝑞 3 𝑓 2 ) = 0 (4) 
In the Gurson model and its extensions the solid matrix obeys the von Mises yield criterion. For this study we assumed the metallic matrix (without pores) to undergo linear work hardening where the work hardening exponent n=1. Although a power-law hardening (n<1) would be more appropriate to describe the matrix' yield behavior we used linear hardening as a first approach since it reduces the number of variables to be identified. Figure 6 depicts linear vs. power-law hardening. In fact, the elastic-plastic properties of plasma-sprayed coatings have previously been described by powerlaw relations [19][20]. 

𝜎 𝑦 = 𝜎 𝑦0 + 𝐾𝜀 𝑒𝑞 𝑝 𝑛 (5) 
Figure 7 illustrates well that using this criterion we can achieve non-zero indentation depths at the center for f>0.0% whereas this is not possible for f=0.0% (which reduces to the von Mises criterion)

for an indentation load of F=15kN, σy=1000MPa, K=25000MPa, q1=1.0 and q2=1.5. 

Levenberg-Marquardt method

In order to solve for the vector 𝑐 = (𝑞 1 , 𝑞 2 , 𝜎 𝑦0 , 𝐾, 𝑓) 𝑇 of unknown material parameters we make use of the Levenberg-Marquardt method in combination with a parametric approximation to the problem.

The Levenberg-Marquardt method is a standard technique for non-linear least-square problems combining features of the steepest descent method and the Gauss-method [START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by Ievmar[END_REF]: Whilst the algorithm behaves like a steepest descent method if the parameter guess is far from the solution (slow but guaranteed to converge), it behaves like a Gauss method if the parameter guess is close to it. The Levenberg-Marquardt algorithm aims to identify the vector c * which minimizes the cost function J(c) that can be expressed as the sum of squares of non-linear real-valued functions, representing the error between experimental and numerical results. In other words, c * contains the parameter set for which the computed indent geometry comes closest to the experimental one; that is we would like to minimize the error between the vertical displacement obtained experimentally (Un exp ) and numerically (Un calc ). This error can be represented as either relative or absolute, depending on the problem at hand. In order to guarantee convergence of the algorithm it is useful to have a rough idea of the solution space and to provide a meaningful initial parameter guess c 0 . We obtain the initial parameter guess 𝑐 0 = (𝑞 1,0 , 𝑞 2,0 , 𝜎 𝑦0,0 , 𝐾 0 , 𝑓 0 )

𝐽(𝑐

𝑇 by means of a parametric approximation to the problem where we simulate the indentation problem by FEM for a certain number of parameter combinations. For this purpose we have considered the following ranges for the four parameters q1, q2, σy0 and K (we set f0 = 1.5% as discussed in section 2.1): 200MPa< σy0<1500MPa, 5000<K<30000MPa, 0.5<q1<3.0, 0.5<q2<3.0. For these parameter ranges numerical indentation profiles can be generated and compared to those obtained experimentally. The parameter combination that leads to error minimization is used as an initial guess c 0 .

Subsequently the Levenberg-Marquardt algorithm is executed. In this optimization process the initial parameter guess c 0 is updated such that it minimizes the cost function J(c) according to:

𝑐 𝑘+1 = 𝑐 𝑘 + 𝛼 𝑘 𝑔 𝑘 (9)
Here, α k is the step size and g k the search direction. The search direction g k can be determined by knowledge of the first and second derivatives of the objective function using the following relations [START_REF] Springmann | Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[END_REF] [START_REF] Assire | Algorithmes de recalage[END_REF]:

𝑔 𝑘 = -(𝐴 𝑇 𝐴 + 𝜆𝐼) -1 • 𝐴 𝑇 𝑗 (10) (𝛻 𝑐 𝐽(𝑐)) 𝑖 = 2 ∑ 𝑗 𝑛 (𝑐) 𝜕𝑗 𝑛 𝜕𝑐 𝑖 = 2𝐴 𝑇 𝑗 𝑁 𝑛=1 (11) 
(𝐻(𝑐)

) 𝑖 = 2 ∑ 𝑗 𝑛 (𝑐) 𝜕𝑗 𝑛 𝜕𝑐 𝑖 • 𝑁 𝑛=1 𝜕𝑗 𝑛 𝜕𝑐 𝑗 + 𝑗 𝑛 (𝑐) 𝜕 2 𝑗 𝑛 𝜕𝑐 𝑖 𝜕𝑐 𝑗 ≈ 2 ∑ 𝑗 𝑛 (𝑐) 𝜕𝑗 𝑛 𝜕𝑐 𝑖 = 2𝐴 𝑇 𝐴 𝑁 𝑛=1 (12) 
In the numerical implementation of the given problem the vector j is given as follows where ux1 calc , ux2 calc ... and ux1 exp , ux2 exp ... are the residual vertical displacements at different coordinates along the indentation profile x1, x2... as determined from FEM simulation and from 3D profiling of the actual indent, respectively, for different indentation loads f1, f2 etc. The notation of the vertical displacements is illustrated by means of Figure 9. Furthermore, the Jacobian A can be determined by finite differences of that vector, where ci is represented by q1, q2, σy0, K or f:

𝜕𝑗 1 1 𝜕𝑐 𝑖 (𝑐 1 , … , 𝑐 𝑖 , … , 𝑐 𝑛 ) ≈ 𝑗 1 1 (𝑐 1 ,…,𝑐 𝑖 +𝛼𝑐 𝑖 ,…,𝑐 𝑛 )-𝑗 1 1 (𝑐 1 ,…,𝑐 𝑛 ) 𝛼𝑐 𝑖 (14) 
The damping parameter λ is adjusted in every iteration and initially set to a large value corresponding to a variable update according to the gradient descent method [START_REF] Gavin | The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems[END_REF]. If the iteration results in a worse approximation to the solution, λ is increased and otherwise decreased, usually by the factors λup = λdown = 10 [START_REF] Tanstrum | The geometry of nonlinear least squares, with applications to sloppy models and optimization[END_REF]. As λ decreases, the Levenberg-Marquardt method approaches the Gauss-Newton method and typically converges rapidly towards a local minimum. The adjustment of λ during iteration is controlled by the gain ratio R k where λ is increased or decreased depending on the value of R k [START_REF] Oliver | Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology[END_REF], where 𝑄(𝑐) = 𝐽(𝑐 𝑘 ) + (𝑐 -𝑐 𝑘 ) 𝑇 𝐴 𝑇 𝑗 + 1 2 ⁄ (𝑐 -𝑐 𝑘 ) 𝑇 (𝐴 𝑇 𝐴 + 𝜆𝐼)(𝑐 -𝑐 𝑘 ).

𝑅 𝑘 = 𝐽(𝑐 𝑘 )-𝐽(𝑐 𝑘+1 ) 𝑄(𝑐 𝑘 )-𝑄(𝑐 𝑘+1 ) (15) 
The traditional scheme for updating λ is to multiply and divide its value by the same factor, say λup = λdown = 10. In this study the less common updating scheme by delayed gratification was used which implies raising and lowering the value of λ by different amounts. We have found that λup = 2 and λdown = 10 guarantees convergence. These findings are in agreement with the work of [START_REF] Tanstrum | The geometry of nonlinear least squares, with applications to sloppy models and optimization[END_REF].

Figure 10 depicts the general flowchart of the optimization method that combines a parametric approximation with a Levenberg-Marquardt algorithm. 

Finite element model

The finite element simulation of conical indentation was carried out using the commercial Abaqus 6.10 software. The components of the axisymmetric model are the indenter and the substratecoating system. The flat-ended conical 100C6 steel indenter is modeled as a purely elastic solid with an elastic modulus of E=210 GPa and a Poisson's ratio of v=0.3, having a diameter of 𝜙=3.18 mm as measured by profilometry. The substrate-coating system has been created by assigning the corresponding material properties to different sections of the same part where the substrate is an elastic-plastic material with E=210 GPa. For the contact between indenter and coating a friction coefficient of μ=0.5 was measured.

The finite element model used to identify the coating's plastic properties is depicted in figure 11.

The minimum element size in the vicinity of the contact amounts to approximately 15µm. Elements further away from the contact were increased in size in order to reduce computation time. The indenter and substrate-coating system were meshed using four-node axisymmetric CAX4R and threenode axisymmetric CAX3 elements. For the Levenberg-Marquardt optimization we retrieve the vertical displacements ux1, ux2 etc. of the surface nodes in the vicinity of the contact. The number of surface nodes amounts to 168. indentation profiles for mesh sizes above 20µm are discontinuous this is no longer the case for profiles created with mesh sizes below and including 20µm. For this study we chose a mesh with a minimum element size of 15µm since it yields a smooth indentation profile and does not consume too much computational time. All calculations were made by use of a personal computer (dual core Intel® Core™ i5-3210M CPU at 2.5GHz, 8GB RAM, 64 bits Windows 7 Entreprise operating system). Typical processing times required to compute the indentation process for several loads are given in table 2. Processing times increase steadily for a refined mesh. that is the experimental profiles that are used for the identification of material parameters were obtained at those loads. In order to verify sufficient convergence of the Levenberg-Marquardt method, the initial parameter sets were chosen to be more or less far from the solution; that is by a maximum of 15%. The choice of a maximum divergence from the target value of 15% was made because we have a rough idea of the range for all parameters after the parametric approximation. Table 4 gives the numerical test conditions in terms of percentage divergence of initial parameters from the solution as well as the relative errors after a number of iterations. The results of a selection of convergence tests are depicted in more detail in figure 14. From these figures one can see that convergence of most parameters can be achieved within a maximum number of iterations of less than 15. More specifically it can be seen from figure 14 that all material parameters (except for q1) approach the solution to a sufficient extent after the 5 th iteration already. However, whilst the relative errors of identified parameters are very low for σy0, K, q2 and d with a maximum value of 3.44% for q2 (test 4), the relative error for q1 is relatively large with a maximum value as high as 16.94% (test 4). As a result, the value of q1 as identified by the proposed method is not very reliable. The number of indentation profiles for which the material parameters are to be identified should be increased in order to improve convergence of this parameter. 

Influence of friction coefficient

The proposed method assumes knowledge of the coating's friction coefficient which, in this study, was measured as μ = 0.5. We have determined the influence of a wrong estimation of the friction coefficient on the inverse parameter identification. For this purpose we have taken the initial parameter set corresponding to test#1 where σy0 = 900MPa, Ko =18000MPa, q1,0 = q2,0 = 2.7 and do = 0.9865. The reference profiles have been generated for a friction coefficient of µ = 0.5. The following table shows in how far a deviation of this target value influences the parameter identification. From table 5 it becomes apparent the relative errors of identified parameters are relatively low with values ranging between 0.0% and 6.9%. Furthermore it is striking that the highest errors, though acceptably low, occur for the parameter q1. This result again is in line with the convergence tests which have shown that the identification of q1 is not very reliable. Since the experimentally obtained indentation profiles are not very smooth but on the contrary are subject to irregularities we have studied the influence of adding white noise to the reference profiles. Figure 16 depicts noisy profiles that were generated for signal-to-noise ratios of 0.90, 0.85, 0.80, 0.75 and 0.70. In table 6 the associated results are given. From the results presented in table 6 the following can be concluded: First of all the porosity volume fraction d is identified with high precision even for large signal-to-noise ratios. This observation again undermines the fact that porosity is the factor that mostly influences the shape of the residual profile. It also seems that all parameters except for q1 can be determined sufficiently well up to a signal-to-noise ratio of SNR = 75. Below that value, that is for SNR=70, the noisy profiles are insufficient for inverse identification of parameters. The profiles corresponding to this very low value of SNR=70 are much more perturbed than the experimental profiles (figure 4). In other words, the experimental profiles' irregularity would rather correspond to a noisy profile of SNR=85 or SNR=80 for which the material parameters are identified sufficiently well. For this reason we can conclude the irregular shape of the experimental profiles to have a limited influence on the obtained results.

Influence of variation in measurements

When experimentally repeating an indentation experiment for the same conditions (temperature, load, indenter) we observed relatively good repeatability of these tests; that is the deviation of indentation depth from an averaged indentation depth over several tests amounts to a maximum of 0.06µm. We have reproduced the effect of variation in measurements by shifting the indentation curves up or down by a random value within the limits of 0.06µm. An example of such a randomly generated set of indentation profiles is depicted in figure 17 (corresponding to set 3 of table 7).

We generated 5 random sets of shifted profiles for which the results are given in table 8. Here again we can see that the porosity volume fraction d is very well identified. Also the parameters σy0 and q2

are sufficiently well identified. The largest errors occur again for the parameter q1. As a concluding remark of this present section we can say the following: The optimization by the Levenberg-Marquardt method works very well provided that the initial parameter set is sufficiently close to the solution. We ensure to provide an appropriate initial parameter set using a parametric approximation as explained in section 4 and 7. However, the identification of q1 is not reliable as errors in the range of 20% can be observed. We propose to increase the number of indentation profiles used for inverse identification in order to increase the reliability of this parameter. In section 6.1 we could show that an erroneous estimation of the friction coefficient only has a limited effect on the inverse identification of all parameters. In section 6.2 we added white noise onto the reference profiles in order to verify in how far the surface irregularities affect the inverse identification. We found that all parameters except for q1 could be identified with sufficient accuracy. Similar results were found when studying the effect of a variation in measurements on the identification of parameters in section 6.3.

Results

The coatings' mechanical properties were determined from the parametric approximation and the Levenberg-Marquardt algorithm. For this purpose we selected 5 out of the 9 experimentally obtained indentation curves, namely those obtained at indentation loads of 10016N, 12024N, 14016N, 15017N and 16013N. As outlined in section 4 we first apply a parametric approximation in order to find a set of parameters 𝑐 0 = (𝑞 1,0 , 𝑞 2,0 , 𝜎 𝑦0,0 , 𝐾 0 , 𝑓 0 ) 𝑇 that is sufficiently close to the experimental profiles and which can serve as an initial guess for the Levenberg-Marquardt algorithm. We set f0 = 1.5% and generate numerical indentation profiles for several parameter combinations that are in the following ranges: 200MPa< σy0<1500MPa, 5000<K<30000MPa, 0.5<q1<3.0, 0.5<q2<3.0. For those combinations we found that σy0 = 1000MPa, K=20000 MPa, q1 = 3.0 and q2 = 3.0 minimizes the error between numerical and experimental profiles. This set of parameters will hence serve as an initial guess for the Levenberg-Marquardt method. Furthermore, this set provides indentation profiles that are close to the experimental profiles (see figure 18) with Δ≈1µm. In section 5 we have shown that the Levenberg-Marquardt algorithm even converges if the profiles' difference is Δ≈10µm! For this reason we assume this initial parameter set to be sufficiently close to the solution as to guarantee convergence of the algorithm.

For the Levenberg-Marquardt algorithm applied to the experimental profiles we observed the following: Whilst for validation of the method by means of numerically generated profiles minimization of relative errors led to convergence towards the solution, this is not the case for the experimentally obtained indentation profiles. Here, convergence was only achieved when absolute errors between the vertical displacements of iteratively generated and experimental curves were considered along the entire surface featuring 168 nodes. However, convergence towards a solution was achieved relatively quickly after as little as 3 iterations. This aspect is illustrated in figure 18 which depicts the indentation profiles for all iterations, the red line indicating the profile after the third iteration which comes sufficiently close to the experimental profile. 

Summary and conclusions

In this paper we proposed a novel inverse method for the identification of plastic properties of plasma-sprayed coatings by means of macro-indentation and the Levenberg-Marquardt algorithm.

In contrast to conventional indentation techniques that require knowledge of the entire loading history the proposed method is based on the geometry of residual indents only which potentially makes it a powerful tool. The plastic properties of the coatings investigated in this study have been represented by the Gurson-Tvergaard plasticity criterion which is readily implemented in commercial finite element software such as Abaqus. The Levenberg-Marquardt algorithm created

for the problem at hand aimed to fit numerically generated indentation profiles to the experimentally obtained ones. We could show that this method leads to a good fit between experimental and numerical results and that convergence towards a realistic solution is achieved after as little as three iterations.

Future work will be devoted to exploit the entire loading history in addition to the residual indents in order to retrieve elastic-plastic properties of plasma-sprayed coatings. Other indenter geometries will be considered in order to verify the proposed method. This method also allows the identification of material parameters at elevated temperatures since the influence of thermal expansion within the experimental setup is minimized. Future work will hence also include the identification of the coatings' properties at high temperature.
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Figure 1 :

 1 Figure 1 : (a) microstructure and (b) image binarization of optical images

Figure 2 :

 2 Figure 2 : experimental set-up for macro-indentation (left and right); indenter (bottom right)

Figure 3 :

 3 Figure 3 : a) 3D profilometry and b) azimuthal averaging of that profile around its central axis; red: average profile; black: sum of all profiles
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 4 Figure 4 : indentation profiles after azimuthal averaging for flat indenter
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 5 Figure 5: Determination of yield strength and work hardening coefficient

Figure 6 :

 6 Figure 6: linear vs. power-law hardeningHere, σy0 is the yield strength of the matrix in absence of voids, K the work hardening coefficient and εeq p the equivalent plastic strain. From equations 4 and 5 one can see that the parameters to be

Figure 7 :

 7 Figure 7 : indentation depths obtained by von Mises (f=0.0%) vs. Gurson criterion (f>0.0%)

8 )Figure 8

 88 Figure 8 illustrates the method of determining the cost function J(c) by comparison of numerical

Figure 8 :

 8 Figure 8 : Determination of cost function J by comparison of numerical and experimental indentation profiles

Figure 9 :

 9 Figure 9 : definition of residual vertical displacements

Figure 10 :

 10 Figure 10: flowchart of optimization process

Figure 11 :

 11 Figure 11 : finite element model for the conical indenter Hereafter it will be shown in how far the minimum element size influences the shape of the

Figure 12 Figure 13 : 6 .

 12136 Figure 12: influence of mesh size on profiles
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 14 Figure 14: convergence performance of algorithm for all parameters

Figure 15 :

 15 Figure 15: convergence of indentation profile towards solution
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 16 Figure 16: reference profiles with added white noise of SNR=90,85,80,75,70

Figure 18 :

 18 Figure 18 : convergence of indentation profiles for F = 16013N

Figure 19 :

 19 Figure 19 : iteratively generated indentation profiles after the third iteration vs. experimentally obtained profiles

Table 1 : Results nano-indentation ; s * = standard deviation orientation

 1 

	Top view			
	Berkovich	127.5 (27)	9624 (2589)	3208.1 (863)
	Cube-corner	147.9 (41)	13304 (2923)	4434.7 (975)
				Ktop = 9300 MPa
				σy0,top =1930 MPa
	Cross-section			
	Berkovich	124.2 (25)	8162 (1495)	2720.6 (498)
	Cube-corner	172.1 (45)	14222 (3894)	4288.0 (1298)
				Kside = 11900 MPa
				σy0,side =2600 MPa

E [GPa] (s) * H [MPa] (s) * σy [MPa] (s) *

Table 3 : Material parameters used for the generation of reference profiles Generation of reference profiles

 3 

	Coating's	σy0 1000MPa
	plastic	K	20000MPa
	properties	q1	3.0
		q2	3.0
		d	0.985
	Indentation load 10kN, 12kN,14kN,15kN,16kN

Table 4 : Convergence test results deviation of initial parameters Relative error of identified parameters

 4 

	[%]

Table 5 : influence of deviation of friction coefficient on identified parameters µ

 5 

			Relative error of identified parameters
			[%]				
	Test		σy0	K	q1	q2	d
	1.1	0.3	3.90	3.08	6.59	1.94	0.03
	1.2	0.4	0.34	0.50	4.69	1.31	0.00
	1.3	0.6	3.99	2.71	6.90	1.88	0.02
	1.4	0.7	0.82	1.05	6.27	1.31	0.00
	6.2 Influence of scatter				

Table 6 : Influence of white noise on parameter identification SNR Relative error of identified parameters

 6 

			[%]				
	Test		σy0	K	q1	q2	d
	1.5	90	0.33	0.28	7.35	2.46	0.01
	1.6	85	2.49	2.69	6.52	0.28	0.03
	1.7	80	1.85	3.67	23.37 6.29	0.01
	1.8	75	4.21	6.94	0.72	5.23	0.02
	1.9	70	13.48 15.81 79.69 28.79 0.01

Figure 17: Shifted vs. original indentation profiles Relative error of identified parameters

  

			[%]				
	Test		σy0	K	q1	q2	d
	1.11	set 1	2.08	5.06	4.74	0.77	0.03
	1.12	set 2	4.92	6.10	7.05	3.12	0.04
	1.13	set 3	8.90	10.04 29.21 0.35	0.04
	1.14	set 4	5.84	5.18	55.49 7.88	0.03
	1.15	set 5	1.33	0.30	1.08	0.91	0.06

Table 7 : Influence of variation in measurements on parameter identification

 7