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Abstract
We address the problem of multicriteria ordinal
sorting through the lens of accountability, i.e. the
ability of a human decision-maker to own a recom-
mendation made by the system. We put forward a
number of model features that would favor the ca-
pability to support the recommendation with a con-
vincing explanation. To account for that, we design
a recommender system implementing and formal-
izing such features. This system outputs explana-
tions under the form of specific argument schemes
tailored to represent the specific rules of the model.
At the end, we discuss possible and promising ar-
gumentative perspectives.

1 Introduction
While algorithmic automated decisions or recommendations
are nowadays pervasive, there is a growing demand of insti-
tutions and citizens to make these recommendations trans-
parent and trustworthy, while system designers seek persua-
sive recommendations [Tintarev, 2007]. The recent regulation
adopted by the European Parliament (known as the General
Data Protection Regulation, GDPR) goes further by adding
a “right to explanation”. According to [Goodman and Flax-
man, 2016] “the GDPR’s requirements could require a com-
plete overhaul of standard and widely used algorithmic tech-
niques”. We interpret this requirement in the strong sense of
accountability, its litmus test being the ability of the recipient
of the recommendation to defend it before other, skeptical,
stakeholders of the decision (whereas trust requires the rec-
ommendation to be consistently accurate, but eventually asks
for delegation of the decision to the system; transparency
simply provides access to the underlying algorithm without
concern for technical literacy [Burell, 2016]; and persuasive-
ness is hardly transferable: someone persuaded by a recom-
mendation may not be a good persuader).

Our aim in this paper is thus to build an accountable, ordi-
nal, multicriteria classifier, mapping a candidate object to a
recommendation consisting in one or more categories among
a predefined, ordered collection of these. In a multicriteria
decision aiding (MCDA) context, the only indisputable rela-
tion between objects is the Pareto dominance, occurring when
an object outperforms another on all criteria. As the situation

is seldom so clear, the rules permitting the comparison of ob-
jects need to be enriched, taking into account the knowledge
and values of the decision-maker, collected under the label
preference information, which is also considered as an input
of the classifier. We also consider an additional output, an
explanation aimed at the decision-maker, supporting the rec-
ommendation and enabling the accountability sought for. In
order to reach this goal of accountability, we make two im-
portant assumptions about the recommender system. These
design principles are as follows:

• No jargon. A first step in a MCDA process is to collect
decision-maker’s preferences information. In order to ac-
curately represent the specific decision process, we opt
for an indirect elicitation [Dias et al., 2002]: the decision-
maker is never asked any questions about artifacts of the
model (e.g. weights). Instead she should express prefer-
ences directly in the language of the actual decision situ-
ation, i.e. providing direct assignments of typical exam-
ples, reference objects, to categories.

• No arbitrariness. MCDA usually proceeds by represent-
ing the reasoning of the decision-maker with a formal
parametric model, describing a specific stance. The val-
ues of the preference parameters are often fitted during
an elicitation process, up to a certain point. While many
methods proceed by picking a specific, so-called repre-
sentative value of the parameters, we opt for a robust ap-
proach (to the lack of preference information) [Vincke,
1999; Greco et al., 2008], formulating a –possibly partial
– recommendation that cannot be refuted by any judgment
function consistent with the preference information.

On top of these principles, we make three further assump-
tions about the MCDA model, proceeding from the willing-
ness to keep the model accessible to human reasoning.

• No compensation. This assumption deals with the inter-
pretation of collected data –the evaluation of objects on
various criteria. We assume they are always used compar-
atively, in a purely ordinal manner: on a given criterion,
an alternative is either as good as another one, or strictly
worse. Hence, only the set of criteria for which an alterna-
tive is better is important, regardless of the specific values,
and being very good on some criterion cannot compensate
for low performance on others. This feature enables the
algorithm to proceed without performing any algebraic



computation, which makes it particularly suited for ex-
planation. It is shared with established non-compensatory
ordinal sorting models used in the field of MCDA (eg.
NCS) [Bouyssou and Marchant, 2007]. Moreover, the
use of a 2-valued comparison (≥, <) is similar to [Bouys-
sou, 1986] rather than [Fishburn, 1976] who proposes a
3-valued one (<,=, >).

• No values. At the heart of the recommender system is a
preference structure encoding the comparison of alterna-
tives. There are two main families of structures: those
based on value [Keeney and Raiffa, 1976], and those
based on outranking relations [Roy, 1991]. We opt for
the latter, as they eschew the construction of a scoring
function. An outranking relation naturally provides four
outcomes when comparing two alternatives: preference
for the former, for the latter, indifference, or incompara-
bility; also, it does not enforce transitivity of preference.

• No frontiers. In MCDA, most classifiers link the prefer-
ence structure and the recommendation of a class by intro-
ducing an explicit frontier between classes, defining the
limit of each class (a single value for value-based models,
a limiting profile for outranking-based ones, e.g. [Leroy
et al., 2011]). We do without this construct, as for in-
stance models based on Logical Analysis of Data (LAD)
techniques [Crama et al., 1988] which output classifica-
tion rules. We shall use simple rules permitting to classify
a new object by comparing it to a set of already classified
reference objects (see Sect.2.3).

The general philosophy of these principles must be clear to
the reader: accountability should exclude in principle the use
of any model artifact that the decision-maker may not prop-
erly handle, but at the same time provide enough understand-
ing of the model so as to allow the decision-maker to defend
the recommendation as if it was her own. Following this, our
approach is to enforce these principles by design, and to in-
vestigate how far we can get with the resulting sorting model.
This approach differs from the recent work of [Ribeiro et al.,
2016] which adopts a model-agnostic approach, and builds
explanations adapted to virtually any classifier. They obtain
extremely promising results in terms of trust. As expected,
the explanation cannot be fully faithful to the model (they are
“locally” faithful though). It also differs from [Datta et al.,
2016] which seeks to extract how influential are input param-
eters, but keeping a black-box access to the model. While for
the trust requirement these approaches are sufficient, our no-
tion of accountability requires to get to grips with the model.

The rest of this paper is as follows. We propose a model
implementing and formalizing the different principles, de-
composing it in a learning phase (Section 2) and a recommen-
dation phase (Section 3). We provide formal explanations of
the recommendation in most cases, in the form of argument
schemes tailored to represent the specific rules of the model.
Section 4 introduces some insights on the description of the
sorting problem through an argumentation system. Section 5
concludes the paper, by putting its findings into perspective.

2 Formal description
In this section, we define a recommender system following
the design principles and assumptions, and describe some of
its properties.

2.1 The recommender system
We consider a multicriteria ordinal sorting problem : a col-
lection of objects are evaluated on a set of criteria N . We
note B := {0, 1}, so that elements of BN are at the same time
vectors with binary coordinates, and subsets of N , partially
ordered by inclusion. The maximal element of BN is the
unanimous coalition N , also denoted (1, . . . , 1). The min-
imal element of BN is the empty coalition ∅, also denoted
(0, . . . , 0). Each criterion i ∈ N maps an object to a perfor-
mance value in a totally ordered set Xi, the higher the better.
Consequently, each object is described by a performance vec-
tor in the partially ordered set X =

∏
i∈N Xi. The objects are

to be assigned to some class chosen among an ordered set
K = {k1 ≺ · · · ≺ kp}, so that assignment to a class with a
high index is desirable.

Formally, let us describe the recommender system as a
function mapping a pair 〈z,P〉 to a pair 〈K, E〉, where:
• The object z ∈ X is a candidate for sorting;
• P denotes preference information collected from the

decision-maker consisting of typical classification exam-
ples, a collection of reference objects X? ⊂ X, and their
assigned categories Class : X? → K. For syntactic rea-
sons, we represent it by a set of object-assignment pairs
P ⊂ X×K.

P :=
⋃

x?∈X?

(x?, Class(x?))

• K ⊂ K is the recommendation, concerning the classes
that could be assigned to the candidate (see Sect. 3);

• E is an explanation yet unspecified, supporting the recom-
mendation K (see for instance [Labreuche et al., 2012;
Belahcene et al., 2017]), and addressed by Sect. 3.

Example 1. Objects are evaluated according to four cri-
teria a, b, c, d (higher is better). Six reference objects:
X? := {A1, A2, B1, B2, C1, C2}, described by the perfor-
mance table below, are assigned to three classes: K := {? ≺
?? ≺ ? ? ?} and make up the preference information P . We
consider two candidates: X,Y and try to assign them to some
possible classes.

Object a b c d Assignment
A1 3 3 2.5 0 ? ? ?
A2 3 2 2.1 1 ? ? ?
B1 2 2 1.3 1 ??
B2 3 1 3.7 0 ??
C1 2 1 1.6 1 ?
C2 1 1 4.1 0 ?
X 2 2 1.1 0 ?
Y 2 3 1.8 0 ?

2.2 The reasoning of the decision-maker
A non-compensatory outranking relation can be represented
by a Boolean composite function:

∀x, y ∈ X, xSφy ⇐⇒ φ ◦ON (x, y) = 1



where the observation function ON maps a pair of objects
to its concordance set, and the consistent judgment of the
decision-maker, based on these concordance sets, is repre-
sented by the judgment function φ mapping a concordance
set to a truth value.

ON : X× X → BN
(x, y) 7→ {i ∈ N : xi ≥ yi}

Antecedents of 1 by φ, called true points in the language
of the LAD [Crama et al., 1988], represent sufficient coali-
tions of criteria, while antecedents of 0 by φ are false points
or insufficient coalitions of criteria. φ is supposed non-
decreasing, meaning that a superset of a sufficient coalition
of criteria is also sufficient, and a subset of an insufficient
coalition is also insufficient. Compatibility of the outranking
relation S to the Pareto dominance imposes that a unanimous
support of criteria is always sufficient, so φ(N) = 1. Con-
versely, φ(∅) = 0 must hold, so the relation S is not reduced
to generalized indifference. Finally, we define the set of any
possible judgment function :

φ ∈ Φ̂ := {φ : BN → B : φ↗ and φ(N) = 1 and φ(∅) = 0}

2.3 Learning from the assignment examples
To assign a new object to a category, we shall use the follow-
ing classification rules:
• (R1) an object cannot outrank any object assigned to a

strictly better class;
• (R2) an object outranks objects assigned to a strictly

worse class;
• (R3) objects in the same class can be in any position with

respect to outranking.
To account for that, we first denote %P the complete pre-

order between reference objects induced by P:{
x? %P y? ⇐⇒ Class(x?) % Class(y?)
x? �P y? ⇐⇒ Class(x?) � Class(y?)
x? ∼P y? ⇐⇒ Class(x?) = Class(y?)

We consider the strict enforcement of the model rules for ref-
erence objects:
• (R1) : ∀x?, y? ∈ X?, x? �P y? ⇒ Not (y?Sφx

?);
• (R2) : ∀x?, y? ∈ X?, x? �P y? ⇒ x?Sφy

?.
Hence, the assignment of reference objects expressed by P
places upper (by (R1)) and lower (by (R2)) bounds upon the
outranking relation between reference objects. so that:

�P ⊆ Sφ ∩ (X?)2 ⊆ %P
These constraints transfer to the judgment functions. Each
pair (x?, y?) is mapped by the observation function ON to a
coalition of criteria. The observed coalitions ON (X? × X?)
serve as a learning set for the judgment function φ. They are
sorted between three sets, yielding necessary conditions on φ:
• insufficient coalitions ON (≺P) should be mapped to 0;
• sufficient coalitions ON (�P) should be mapped to 1;
• ON (∼P), which images by φ are not constrained.

Consequently, we define the set Φ(P) of judgment func-
tions compatible to the preference information P:

Φ(P) := {φ ∈ Φ̂ : φ◦ON (�P) = 1 and φ◦ON (≺P) = 0}

Example 2. (ex. 1 continued) In the following table, we de-
tail all the relevant observed coalitions. Sufficient coalitions
appear in the upper right side, boldfaced, while insufficient
coalitions are in the lower left side. N stands for unanimity,
which is self-explanatory.

? ? ? ?? ?
A1 A2 B1 B2 C1 C2

A1 − − abc abd abc abd
A2 − − N abd N abd
B1 d bd − − abd abd
B2 acd ac − − abc abd
C1 d d acd bd − −
C2 cd c c bcd − −

2.4 Consistency of judgment
The set Φ(P) is empty if, and only if, Pareto dominance
is contradicted (∃ x?, y? ∈ X?, ∀i ∈ N, x?i ≥ y?i and
Class(x?) < Class(y?)), or some coalition of criteria M ∈
BN observed as being sufficient is weaker (for inclusion) than
some coalition M ′ ∈ BN observed as being insufficient. In
such a case, we call the preference information P inconsis-
tent; otherwise, it is consistent and Φ(P) is a partially de-
fined Boolean function [Crama et al., 1988]. Combining the
constraints on the judgment functions expressed by Φ̂ and
by P , we can compute the true points of Φ(P). They are
the antecedents of 1 common to every judgment function
φ ∈ Φ(P), and represent the coalitions established as suf-
ficient, by the virtue of being at least as strong as an observed
sufficient coalition.

TP := {t ∈ BN : ∃ tobs ∈ ON (�P), tobs ⊆ t}

Conversely, the false points are the antecedents of zero com-
mon to every φ ∈ Φ(P) and represent the coalitions estab-
lished as insufficient.

FP := {f ∈ BN : ∃ fobs ∈ ON (≺P), fobs ⊇ f}

Proposition 1 details three manners to express inconsistency:

Proposition 1. For any P ⊂ X × K, the three following
conditions are equivalent and characterize inconsistency:

1. Absence of compatible judgment function: Φ(P) = ∅
2. Conflicting constraints: TP ∩ FP 6= ∅
3. Explicit contradiction: ∃t ∈ ON (�P),∃f ∈ ON (≺P) :
t ⊆ f

Example 3. (ex. 2 continued) Coalitions are sorted accord-
ing to the observations, and monotonicity:
ON (�P) = {N,abc,abd} = TP
ON (≺P) = {c,d,ac,bd,cd,acd,bcd}
FP = {∅,a,b,c,d,ac,ad,bc,bd,acd,bcd}
There is no dispute, as TP ∩ FP = ∅, but the coalition ab

is left undecided.

3 Recommendations and explanations
In the previous section, we saw how the decision-maker in-
terprets pairwise comparisons between reference objects be-
longing to different classes as sufficient or insufficient coali-
tions of criteria. Here comes a new candidate, z ∈ X. It



gauges every reference object in X?, yielding |P| observa-
tions −→o (z,P) :=

⋃
x?∈X? ON (z, x?), and is also evaluated

by every reference object, yielding |P| other observations←−o (z,P) :=
⋃
x?∈X? ON (x?, z). Each of these 2|P| obser-

vations is interpreted as a sufficient, insufficient or undecided
coalition of criteria.
Example 4. (ex. 3 continued) The following table aug-
ments the one presented in example 2 with the coalitions
resulting from comparisons between the reference objects
A1, A2, B1, B2, C1, C2 and the candidates X,Y .

? ? ? ?? ? ? ?
A1 A2 B1 B2 C1 C2 X Y

A1 − − abc abd abc abd N N
A2 − − N abd N abd N acd
B1 d bd − − abd abd N ad
B2 acd ac − − abc abd acd acd
C1 d d acd bd − − acd ad
C2 cd c c bcd − − cd cd

X d b (ab) bd (ab) abd
Y bd b abc bd abc abd

Non-bracketed coalitions have already been sorted accord-
ing to the preference information: boldfaced coalitions are
those previously established as sufficient, the others are in-
sufficient. Bracketed coalitions are yet undecided. ∀z ∈
{X,Y }, −→o (z,P) appears in the corresponding line, and←−o (z,P) in the appropriate column.

In this section, we specify the mapping between these ob-
servations and the output of the classifier system, the recom-
mendation K(z,P) ⊂ K and an explanation E(k,P) sup-
porting it.

3.1 Possible assignments
As defined by the works of [Greco et al., 2010] about neces-
sary and possible preference relations, the definition of possi-
ble assignments is closely related to the notion of consistency
of an assignment with respect to the corpus of preference in-
formation. Defining, as we did in Section 2, Φ(P) as the set
of preference parameters compatible to P , and assuming it is
not empty:
• necessary assignments are yielded by every possible com-

pletion of these preference parameters;
• possible assignments are yielded by some possible com-

pletion of these preference parameters;
• impossible assignments are yielded by no possible com-

pletion of these preference parameters;
These sets of assignments are concisely described referring
to the set:

K̂(z,P) := {k ∈ K : Φ(P ∪ {(z, k)}) 6= ∅}

A possible assignment is in K̂(z,P), an impossible one is
not. When K̂(z,P) boils down to a singleton, then it is a
necessary assignment for z.

This definition of possible assignment is straightforward to
implement, simply iterating through the set of possible as-
signments classes k ∈ K, updating the preference informa-
tion P ′ ← P ∪ {(z, k)}, and checking the consistency of

P ′. Unfortunately, it is a tricky notion when it comes to ex-
plaining. The actual unveiling of a Boolean judgment func-
tion compatible to the assignment is not very appealing, as it
introduces at the same time elements of jargon –describing
the judgment of the decision-maker as the partition of coali-
tions of criteria between sufficient and insufficient– and ar-
bitrariness, as some coalitions may very well be undecided
and should remain so. Consequently, we adopt the following
principle: “Everything is possible, unless proven otherwise”.

Doing so shifts the burden of proof towards impossibil-
ity, focusing on the exhibition of constraints restricting the
set K̂(z,P). We aim at explaining these constraints thanks
to statements of the form [premises : conclusions]scheme.
We define several argument schemes, as formalized by [Wal-
ton, 1996] in order to capture stereotypical patterns of hu-
man reasoning. These schemes specify the nature and con-
ditions imposed to both premises and conclusions, yielding
to valid arguments. We are looking for complete expla-
nations, so we must ensure the validity of the implication
premises ⇒ conclusions, and provide grounded sets of
statements, such that any premise is either the conclusion of
another argument, or directly referencing the assumed avail-
able information (pairwise comparisons between the refer-
ence objects or the candidate, based on criteria or assign-
ment).

In order to make apparent the cause of impossibility, we
consider the potential consequences of assigning a candidate
to a class through the additional (in)sufficient coalitions con-
ditional to the assignment of the candidate z to the class k:

∆TP(z, k) := TP∪{(z,k)}\TP ; ∆FP(z, k) := FP∪{(z,k)}\FP
We rewrite the impossibility of assigning the candidate z to
the class k using the conflicting constraints characterization
of inconsistency (see Prop. 1). We consider three poten-
tial sources of impossibility, sorted by evidence: K̂(z,P) =⋂
i∈{1,2,3}Ki(z,P) where:

• K1(z,P) := {k ∈ K : TP ∩∆FP(z, k) = ∅} highlights
conflicts between established sufficient coalitions, and the
assignment of z;

• K2(z,P) := {k ∈ K : ∆TP(z, k) ∩ FP = ∅} highlights
conflicts between established insufficient coalitions, and
the assignment of z;

• K3(z,P) := {k ∈ K : ∆TP(z, k) ∩ ∆FP(z, k) = ∅}
takes into account the least obvious situation where some
assignment of z may be self-contradictory, without con-
flicting with any previously acknowledged information.

The next section details the impossibilities captured by the set
K1(z,P), and proposes a supporting explanation E1(z,P),
while the other cases are briefly presented in section 3.3.

3.2 Assignments contradicting previously
established sufficient coalitions

In this section, we focus on the set K1(z,P) := {k ∈ K :
TP ∩ ∆FP(z, k) = ∅}. As seen in the previous section this
set provides a range of possible assignments for the candidate
z, and partially implements the model described by the mani-
festo exposed in the introduction. We first describe K1(z,P)



as an intersection of constraints, for which we provide a de-
scription based on arguments. We prove K1(z,P) is an in-
terval of K, and provide a short, yet complete, explanation
accounting for this recommendation.

For increased readability, we introduce notations for par-
ticular sets of classes. For k ∈ K, let K- k (resp. K% k) the
interval of classes not greater (resp. not lower) than k.

By construction, the recommended set K1(z,P) is built in
order to reject some impossible assignments. To illustrate and
understand its behavior, we make up a situation that specifi-
cally triggers this rejection flag. Suppose we know that:

(1) the coalition of criteria T ∈ BN is already known to be
sufficient, and

(2) the candidate z ∈ X is at least as good as the reference
object x? ∈ X?, assigned to class k ∈ K, for all criteria
in T .

Then, z outranks x? and cannot be assigned to a class strictly
worse than k by application of (R1). This constraint is cap-
tured by the set K1(z,P), as the assignment of z to any class
k ≺ k would lead to conclude that the coalition of criteria
ON (z, x?) is insufficient, so that the coalition of criteria T
would belong to both sets ∆FP(z, k) and TP . Consequently,
k /∈ K1(z,P).
If we replace the assumption (2) by:

(2’) the reference object x? ∈ X?, assigned to class k ∈ K,
is at least as good as the candidate z ∈ X for all criteria
in T .

then x? ∈ X? outranks z and z cannot be assigned to a class
strictly better than k, as

k � k ⇒ TP 3 T ⊆ ON (x?, z) ∈ ∆FP(z, k)⇒ k /∈ K1(z,P)

Reciprocally, any assignment k0 /∈ K1(z,P) results in
a non-empty intersection TP ∩ ∆FP(z, k0), which involves
at least one sufficient coalition T ∈ TP , as in assumption
(1), and one stronger, insufficient coalition resulting either
from the observations−→o (z,P), as in assumption (2), or from←−o (z,P), as in (2’).

A statement of type (1) needs to be backed by evidence, so
we introduce two argument schemes:
Definition 1. For any reference objects a?, b? ∈ X?
and any coalition of criteria T ∈ BN , we say the
tuple [a?, b? : T ]T instantiates the argument scheme
SUFFICIENT COALITION(P) if, and only if, T ⊇ ON (a?, b?)
and a? �P b?. We also say the tuple [∅ : N ]1 instantiates the
argument scheme WEAK DOMINANCE.
Proposition 2 (Argumentative structure of the sufficient
coalitions).

TP = {N} ∪
⋃

[a?,b?:T ]T

{T}

The sufficient coalitions are exactly the conclusions of
the arguments instantiating the SUFFICIENT COALITION(P)
scheme.

In order to account for the atoms of reasoning (2) and (2’)
and present them to the recipient of the recommendation, we
define the corresponding argument schemes.

Definition 2. For any coalition of criteria T ∈ BN , any ref-
erence object x? ∈ X? and any class c ∈ K, we say that:

• the tuple [T, x? : K% c ]T /−→o instantiates the argument
scheme OUTRANKING(z,P) if, and only if, T ∈ TP and
∀i ∈ T, zi ≥ x?i and class(x?) = c.

• the tuple [T, x? : K- c ]T /←−o instantiates the argument
scheme OUTRANKED(z,P) if, and only if, T ∈ TP and
∀i ∈ T, x?i ≥ zi and class(x?) = c

Proposition 3 (Argumentative structure of the recommenda-
tion).

K1(z, p) = K ∩
⋂

[T,x?:k]T /−→o

K% k ∩
⋂

[T,x?:k]T /←−o

K- k

Proposition 3 is a concise rewording of the necessary and
sufficient conditions for a given class not to belong to the set
K1(z,P) detailed previously. As a corollary, it shows that
K1(z,P) is an interval of K. Consequently, K1(z,P) can be
completely described by a pair (k1, k1) such that:

• K1(z,P) = K% k1 ∩ K- k1

• the lower bound k1 is maximal, as there is no class strictly
better than k1 which is supported by an argument instan-
tiating the OUTRANKING(z,P) scheme. It is trivial if
k1 = minK (either when the set OUTRANKING(z,P)
is empty, or when it does not support a stronger out-
come), in which case it does not need any explanation.
If k1 � minK, then it admits at least one explanation E1

composed of an argument [T, x? : K% k1 ]T /−→o ∈ OUT-
RANKING backed by an argument [a?, b? : T ]T ∈ SUFFI-
CIENT COALITION;

• the upper bound k1 is minimal, as there is no class strictly
worse than k1 which is supported by an argument instan-
tiating the OUTRANKED(z,P) scheme. It is trivial if
k1 = maxK, in which case it does not need any explana-
tion. If k1 ≺ maxK, then it admits at least one explana-
tion E1 composed of an argument [T ′, x? : K- k1

]T /←−o ∈
OUTRANKED backed by an argument [a?, b? : T ′]T ∈
SUFFICIENT COALITION.

Finally, the recommended interval K1(z,P) is supported by
an explanation E1 in the form of a pair (E1, E1), where E1

and E1 can be either the empty set or a pair of arguments.
Taken together, all these 0, 2 or 4 arguments prove that any
assignment k ∈ K \K1(z,P) should be rejected as ”impos-
sible”. Such explanation is not necessarily unique, and we
denote by Ê1(z,P) the set of suitable explanations.

Example 5. (ex. 4 continued)
Using the table presented in Example 4, the set K1 can

be interpreted as “a candidate cannot be assigned a class
laying strictly on the right of, nor a class strictly above, a
case containing a boldfaced coalition”: Consequently,

•
{
K1(X,P) = {?, ??}
E1(X,P) 3 (∅, {[∅ : N ]1, [N,B1 : - ??]T /←−o })

X cannot be ranked higher than ??, becauseB1 is rated ?? and
dominates X .



•
{
K1(Y,P) = {??, ? ? ?}
Ê1(Y,P) 3 ({[A1, C1 : abc]T , [abc, B1 : % ??]T /−→o }, ∅)

Y cannot be ranked lower than ??, because it outranks B1.
Indeed, Y compares to B1 the same way as A1 to C1: it is at
least as good on the sufficient coalition of criteria abc.

3.3 Other impossible assignments
The set K2(z,P) is defined symmetrically from K1(z,P)
w.r.t. sufficient and insufficient coalitions. Assignments
not in K2(z,P) result from the collision of a coalition
of criteria known to be insufficient, and the observation
of a candidate object resulting in an even weaker coali-
tion, so outranking is excluded, and all the classes strictly
above or below (depending on the direction of observa-
tion) the one of the reference object are therefore for-
bidden. Mutatis mutandis, we can define the argument
schemes INSUFFICIENT COALITION(P), WEAKLY DOMI-
NATED, NOT OUTRANKING(z,P), NOT OUTRANKED(z,P)
and obtain the same structural results, leading to define simi-
lar explanations for the lower and upper bounds of the interval
K2(z,P).
Example 6. (ex. 4 continued)

Using the table presented in Ex. 4, the set K2 interprets
the insufficient coalitions of the table, those not boldfaced nor
parenthesized. A candidate cannot be assigned a class strictly
below, nor strictly on the left, of such cases. For instance,
ON (B2, X) = acd ∈ FP (e.g. because ON (C1 ≺P B1) =
acd), so X is not outranked by B2 and should be at least
assigned the same class (??), and ON (X,B2) = bd ∈ FP
(e.g. because it is weaker than bcd = ON (C2 ≺P B2)),
so X does not outrank B2 and should not be assigned a
strictly better class (??). In terms of preference, objects X
and B2 are incomparable, and thus should be assigned the
same class. Finally, K2(X,P) = {??}.

The set K3(z,P) excludes inconsistent judgments on yet
undecided coalitions of criteria. There is no guarantee that
K3(z,P) has an interval structure. We omit this case due to
space limitations.

4 An argumentative perspective
Along this paper, we proposed the construction of explana-
tions supporting results of a multi-criteria sorting problem,
as combinations of arguments schemes. Each instantiation of
one of the six previous main schemes (see Def. 1, 2 and their
symmetrical forms) provides one type of argument. These ar-
guments may be conflicting, and two different relations can
be distinguished:

Conflicting coalitions: we have evidence indicating that a
given coalition is potentially at the same time sufficient and
insufficient (i.e. there are two coalitions t ⊆ f such that
[a?, b? : t]T and [c?, d? : f ]F ). This situation represents an
explicit contradiction corresponding to an inconsistency situ-
ation (see Sec. 2.4). Such conflicts are not illustrated through
the previous examples, however inconsistencies are classical
situations within decision problems, as it concerns a human
decision-maker.

Conflicting classification: it may occur that, for some can-
didate, arguments based on the outranking relation point to-
wards an empty interval of possible assignments. This sit-

uation corresponds to the fact that the sets K1(z,P) and
K2(z,P) are disjoint, which may happen when either is
empty, or when the lower bound of one exceed the upper
bound of the other.
Example 7. (ex. 4 cont.) Y andA2 are incomparable, Y and
B2 are incomparable, yetA2 is preferred toB2. In particular,
A2 (???) does not outrank Y and Y does not outrankB2 (??)
so K2(Y,P) = ∅.

The impossibility to provide any recommendation is
clearly critical from the point of view of decision aiding.
These unfortunate situations cannot be ruled out in the gen-
eral case, as they may stem from Condorcet paradoxes (fail-
ures of transitivity) concerning the necessary outranking
relation or the necessary not-outranking relation (see e.g.
[Köksalan et al., 2009] for a discussion).

The argumentative treatment for our multi-criteria ordinal
sorting problem is thus to construct arguments pro and against
each possible assignment (of the reference object and the can-
didate), and to determine among conflicting arguments the
acceptable ones. This can be done by taking two different
perspectives. One way is to rely on the work of [Dung, 1995]
- the next question being to identify which semantics are ap-
propriate in our situation. This is close in spirit to an ap-
proach presented in [Amgoud and Serrurier, 2007] for classi-
fication in unordered classes (however in our context the rela-
tion between arguments would be symmetric [Coste-Marquis
et al., 2005]). Another perspective is to consider the con-
struction of the argumentation system as a dialogue game
and to rely on critical questions [Walton, 1996] to evaluate
the arguments. This perspective has the advantage to keep
the decision-maker in the loop, which is often essential in a
decision situation [Labreuche et al., 2015]. Both approaches
look promising and are made possible thanks to the modeling
presented in this paper.

5 Conclusion
We have presented a fully accountable multi-criteria ordi-
nal sorting model, based on several design principles and as-
sumptions. The strength of the model is that it solely relies
on a simple set of classification rules, which means that each
recommendation can be justified by instantiating and com-
bining these rules–nothing else. Several argument schemes
have been proposed for that purpose. Interestingly, some of
these schemes have a flavour of analogical reasoning, which
was studied in the context of classification [Hug et al., 2016].
Now the simplicity of our model comes at a price: there are
different situations where inconsistency might occur, and the
model is not equipped yet to handle such situations. Facing
this issue we can take two stances. The first one is to relax
some of our design assumptions. For instance, we may decide
that it is actually acceptable for the model to use a frontier
between classes (allowing to eschew the Condorcet paradox).
This would require original explanation techniques to main-
tain the desired accountability. Another avenue is to handle
the inconsistencies thanks to defeasible and non-monotonic
reasoning techniques [Brewka et al., 2008]. Our discussion
in Sect. 4 points to formal argumentation as a natural and
promising opportunity for future research.
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R. Słowiński. Ordinal regression revisited: multiple
criteria ranking using a set of additive value functions.
EJOR, 191(2):416–436, 2008.

[Greco et al., 2010] S. Greco, R. Słowinski, J. Figueira, and
V. Mousseau. Robust ordinal regression. In Trends in Mul-
tiple Criteria Decision Analysis, pages 241–284. Springer
Verlag, 2010.

[Hug et al., 2016] N. Hug, H. Prade, G. Richard, and M. Ser-
rurier. Analogical classifiers: A theoretical perspective. In
ECAI 2016 - 22nd European Conference on Artificial In-
telligence, pages 689–697, 2016.

[Keeney and Raiffa, 1976] R.L. Keeney and H. Raiffa. De-
cisions with multiple objectives: Preferences and value
tradeoffs. J. Wiley, New York, 1976.
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