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Abstract We demonstrate the possibility of solving planning problems by inter-
leaving locomotion and manipulation in a non-decoupled way. We choose three low-
dimensional minimalistic robotic systems and use them to illustrate our paradigm:
a basic one-legged locomotor, a two-link manipulator with a manipulated object,
and a simultaneous locomotion-and-manipulation system. Using existing motion
planning and control methods initially designed for either locomotion or manipula-
tion tasks, we see how they apply to both our locomotion-only and manipulation-
only systems through parallel derivations, and extend them to the simultaneous
locomotion-and-manipulation system. Motion planning is solved for these three
systems using two different methods : (i) a geometric path-planning-based one,
and (ii) a kinematic control-theoretic-based one. Motion control is then derived
by dynamically realizing the geometric paths or kinematic trajectories under the
Couloumb friction model using torques as control inputs. All three methods ap-
ply successfully to all three systems, showing that the non-decoupled planning is
possible.

Keywords Locomotion Planning · Manipulation Planning · Contact Planning

1 Introduction

Robots are traditionally categorized into fixed-base manipulators [38,16] and mo-
bile navigation robots (wheeled [34] or legged [27]). Many of them, however, do
not fall strictly into one of these two categories, as they feature both locomotion
and manipulation capabilities and are designed for performing indifferently both
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kinds of tasks, falling thus into a third locomotion-and-manipulation category. Hu-
manoid robots [30], which constitute the initial motivation that inspired this work,
are typical examples of such locomotion-and-manipulation integrated systems.

It is well known that, from a motion planning and control point-of-view, loco-
motion and manipulation are conceptually the same problems. Their commonal-
ity comes from their inherent under-actuation that is solved through the contact
forces: a locomotion system is under-actuated in the sense that the position of
the mobile base is not controlled directly through actuators torques, but rather
results from both the actuation torques action and the contact forces with the sup-
port environment; a manipulation system (by manipulation system we mean both
the manipulator and the manipulated object) is also under-actuated in a strictly
equivalent way: the degrees of freedom of the manipulated object are not actuated
and its position is an indirect result of the actuation of the manipulator through
the contact forces that it establishes with the manipulated object. Besides, they
both obey Lagrangian dynamics, they both involve friction, and they both have
contact strata of various dimensions.

Though being equivalent, these two problems have usually been tackled in a
decoupled way for integrated manipulation-and-locomotion systems. A decoupled
approach might be pertinent for classes of systems in which the initial design
imposes totally unrelated locomotion and manipulation components. In that case
the decoupled strategy is arguably the most adequate one. However, for systems
such as humanoid robots, the frontier between the two kinds of tasks is more
blurred, and it is restrictive to exclusively assign upper-body limbs to manipulation
and lower-body limbs to locomotion. For instance, a humanoid robot might be
required to use its arms to climb a ladder [44] or to crawl under a table [19], it
might also need to use its legs to push an object on the floor while walking. In such
situations, decoupled approaches using an upper-body joint-space or task-space
controller for manipulation and an independent lower-body walking subsystem
controller for locomotion [24] can be restrictive and not use the full potential of
the human-inspired design.

As for related work, [31,3,6,5] present examples of mechanical designs of robots
integrating locomotion and manipulation, other than humanoid robots. Very few
works, however, address their motion planning and control problems in an inte-
grated way. [46] considers for example a mobile manipulator and understands the
coordinated locomotion and manipulation in the sense of finding the best loca-
tion of the mobile manipulator to realize the manipulation task. The sequential
and functional decoupling of the locomotion and manipulation components is still
however existing in this approach, which we aim to erase in ours. A similar remark
can be done for approaches such as [28,29,17,39] for humanoid robots, e.g. deploy-
ing a virtual mechanism for the footstep placement to find the best fixed footstep
location from which the whole-body reaching can be performed. On another level,
using a common planning and control framework for locomotion and manipulation
is presented in works such as [49,2], but not with a common ground specification
of the task letting the planner autonomously decompose it in its locomotion and
manipulation components, as necessary for the task completion and taking into
account the kinematics and dynamics of the robot.

Our driving objective is to erase high-level distinction between manipulation
and locomotion, both in terms of specification of the tasks and of the planning
method to plan the motion to realise them. In the resulting motion, interleaved
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manipulation and locomotion should emerge with no prior high-level distinctive
formulation. See Fig. 1.
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Fig. 1 Overview of the approaches.

level and the extension to the above-mentioned humanoid problems is beyond its
scope. The three systems we chose are representative of the three categories of
robots we mentioned earlier:

– one exclusively locomotion-oriented system,
– one exclusively manipulation-oriented system,
– one hybrid locomotion-and-manipulation (L&M) system.

We then investigate two main existing motion planning methods from the
literature applicable to our systems:

– a geometric path planning approach based on a reduction property proved
initially in [1] and used in a randomized planning algorithm in [29].

– a control-theoretic BVP (Boundary Value Problem) approach for kinematics
systems based on a controllability theorem proved in [12] and a BVP resolution
algorithm developed in [13].

The first approach deals directly with the obstacle avoidance problem. The second
is more adequate for dealing with the velocity constraints and nonholonomy which
may not translate directly into geometric terms. To make our study complete and
self-contained, we also tackle the dynamic trajectory generation problem along the
geometric paths resulting from these motion planning algorithms, using the works
of [30] and [5] as a basis. We derive a time-optimal open-loop torques control law
that realizes a given contact motion.

Taking each one of these three motion planning and control techniques, we first
apply it the the locomotion system, then we show formal equivalence with the ma-
nipulation system, before finally extending it to the locomotion-and-manipulation
system, which is the main contribution of this work.

Following this methodology, the rest of the paper is structured as follows:
Section 2 introduces the three robots we will study with their configuration spaces,
Section 3 applies the geometric path planning approach to our motion planning
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The methodology chosen is to capture the locomotion and manipulation prob-
lems into the the lowest possible configuration spaces’ dimension. The systems are
only theoretical planar academic examples but we believe they are still pertinent
enough to illustrate our point. As such, this paper is primarily focused on this the-
oretic and conceptual level and the extension to the above-mentioned humanoid
problems is beyond its scope. The three systems we chose are representative of the
three categories of robots we mentioned earlier:

– one exclusively locomotion-oriented system,
– one exclusively manipulation-oriented system,
– one hybrid locomotion-and-manipulation (L&M) system.

We then investigate two main existing motion planning methods from the
literature applicable to our systems:

– a geometric path planning approach based on a reduction property proved
initially in [1] and used in a randomized planning algorithm in [41];

– a control-theoretic BVP (Boundary Value Problem) approach for kinematic
systems based on a controllability theorem proved in [21] and a BVP resolution
algorithm developed in [22].

The first approach deals directly with the obstacle avoidance problem. The second
is more adequate for dealing with the velocity constraints and nonholonomy which
may not translate directly into geometric terms. To make our study complete and
self-contained, we also tackle the dynamic trajectory generation problem along the
geometric paths resulting from these motion planning algorithms, using the works
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of [42] and [7] as a basis. We derive a time-optimal open-loop torques control law
that realizes a given contact motion.

Taking each one of these three motion planning and control techniques, we first
apply it the locomotion system, then we show formal equivalence with the manip-
ulation system, before finally extending it to the locomotion-and-manipulation
system, which is the main contribution of this work.

Following this methodology, the rest of the paper is structured as follows:
Section 2 introduces the three robots we study with their configuration spaces,
Section 3 applies the geometric path planning approach to our motion planning
problem, Section 4 uses control theory for solving the motion planning problem
seen as a BVP, finally Section 5 synthesizes time-optimal control law that realizes
the geometric paths provided in previous sections. Each of these sections is divided
into three subsections: one for the locomotion robot, one for the manipulation
robot, and one for the locomotion-and-manipulation robot.

2 Systems

Throughout this paper, we thoroughly study three low-dimensional planar me-
chanical systems:

– R1: a locomotion robot
– R2: a manipulation robot
– R3: a locomotion-and-manipulation (L & M) robot

We have chosen these robots for they have the lowest-dimensional possible config-
uration spaces but yet can capture higher dimensional locomotion and manipula-
tion related concepts. This low dimensionality allows visualizing the configuration
spaces in 3D at the expense of simple projections and homeomorphisms. The other
purpose of these low-dimensional planar systems is to have explicit analytical ex-
pressions for our problems and their solutions.

For all these systems, C denotes the configuration space, also known as the “C-
space”. A configuration is denoted q ∈ C, q is the generalized coordinates vector
of the system [38]. An important mathematical property in our study is the fact
that C is a smooth manifold. This makes it suited for being described inside the
framework of differential geometry theory [26]. Velocities q̇ are as such elements
of the tangent spaces and generalized forces are elements of the cotangent spaces.

We can classify all the possible forms that the C-space can take for sys-
tems commonly considered in robotics. A free-flyer yields the manifold SE(3) =
SO(3)oR3 (semi-direct product). Let Sn be the n-dimensional sphere. A revolute
joint yields the manifold S1, a spherical joint yields S3. Let Tn = (S1)n be the
n-dimensional torus. A prismatic joint yields the manifold R. In most robotics
systems the configuration space C is a Cartesian product of a given number of
these elementary smooth manifolds, thus it is a smooth manifold.

Let O be the obstacle region in the Euclidean workspace. O is a compact
subset of R2. Let Cobs be the image of O in the configuration space, consisting
of all configurations where the robot collides with O. Cobs is a compact subset of
C [33]. Let Cfree be the subspace of C consisting of all configurations that are not
in collision with obstacles, within the joint limits, and not in self-collision. Cfree is
an open subset of C [33]. Studies such as [4] are concerned with the computation
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of explicit representation of the frontier of Cobs in particular cases, for instance
polygonal robots and obstacles in planar world.

We now detail the models and notations for each of the three robotic systems.

2.1 Locomotion robot

The robot R1 is made of a sliding base along the x-axis and a two-link planar
manipulator linked with two revolute joints, see Fig. 2. Two actuators control the
two revolute joints; the sliding joint is passive, i.e. not actuated and frictionless.
The sliding of the base along the x-axis can be performed by using friction of
end-effector’s rubber on the ground.

Title Suppressed Due to Excessive Length 5

two revolute joints; the sliding joint is passive, i.e. not actuated and frictionless.
The sliding of the base along the x-axis can be performed by using friction of
end-effector’s rubber on the ground.
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Fig. 2 R1 and its configuration variables. Rectangles symbolize a prismatic joint while circles
represent a revolute joint.

The configuration space of the system is

C = R× T
2 (1)

On the manifold C we use the following coordinates chart (ξ, θ1, θ2) ∈ R
3. We

denote by (x(q), y(q)) the end effector coordinates in the (x, y)-plane. We do not
take into account self-collision of the robot. There are no joints limits. l denotes
the length of the two links. The robot is not allowed to traverse the ground, thus:

Cfree = C \ Cobs = {q ∈ C | π > θ1 > 0 and π > 2 θ1 + θ2 > 0} (2)

The 2-dimensional torus T2, is naturally embedded in R
3, which means that C

is embedded in R
4, thus Cfree is also embedded in R

4. However, a projection trick
will make it embedded in R

3. We simply notice that the projection of Cfree onto
T
2 is a 2D manifold which is homeomorphic to a subspace of (0, π)× S

1 and thus
Cfree is homeomorphic to a subspace of R×(0, π)×S

1 which is naturally embedded
in R

3. See Fig. 3.

The 3D representation of the C-space of R1 allows for an explicit representation
of Cobs for any obstacle O for which the frontier is a parametrized 2D curve ∂O :
s 7→ (xO(s), yO(s))). See Fig. 4.

First let us consider a point obstacle O located at the (xO, yO) coordinates.
The configurations q that make the robot in collision with O can be computed by
giving the inverse kinematics solution for the end-effector of a copy robot of R1,
but with the second link having a parameter length λ. Then we make λ vary in
[0, l], and we get all the configurations q that make the second link of the robot
collide with O. We use the same method by removing the second link, vary the
length of the first link, and compute inverse kinematics for this robot, which gives
us the second component of Cobs. See Fig. 4.

Now for the full obstacle ∂O : s 7→ (xO(s), yO(s))) we apply the method we
have just described by varying the parameter s.

Fig. 2 R1 and its configuration variables. Rectangles symbolize a prismatic joint while circles
represent a revolute joint.

The configuration space of the system is

C = R× T2 (1)

On the manifold C we use the following coordinates chart (ξ, θ1, θ2) ∈ R3. We
denote by (x(q), y(q)) the end effector coordinates in the (x, y)-plane. We do not
take into account self-collision of the robot. There are no joints limits. l denotes
the length of the two links. The robot is not allowed to traverse the ground, thus:

Cfree = C \ Cobs = {q ∈ C | π > θ1 > 0 and π > 2 θ1 + θ2 > 0} (2)

The 2-dimensional torus T2 is naturally embedded in R3, which means that C
is embedded in R4, thus Cfree is also embedded in R4. However, a projection trick
makes it embedded in R3. We simply notice that the projection of Cfree onto T2 is
a 2D manifold which is homeomorphic to a subspace of (0, π)× S1 and thus Cfree

is homeomorphic to a subspace of R× (0, π)× S1 which is naturally embedded in
R3. See Fig. 3.

The 3D representation of the C-space of R1 allows for an explicit representation
of Cobs for any obstacle O for which the frontier is a parameterized 2D curve
∂O : ρ 7→ (xO(ρ), yO(ρ))). This parameterized curve would be for example the
circle that represents the frontier of the circular obstacle in Fig. 11a.

First let us consider a point obstacle O located at the (xO, yO) coordinates.
The configurations q that make the robot in collision with O can be computed by
giving the inverse kinematics solution for the end-effector of a copy robot of R1,
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𝜃2

𝜃1

𝜉

𝜃2

𝜃1

Fig. 3 Embedding the C-space in R3. The blue part represents Cfree, the red part is C \ Cfree.
Left: T2 embedded in R3. Middle: Free part of T2 embedded in R2. Right: Adding the ξ
dimension.

but with the second link having a parameter length λ. Then we make λ vary in
[0, l], and we get all the configurations q that make the second link of the robot
collide with O. We use the same method by removing the second link, vary the
length of the first link, and compute inverse kinematics for this robot, which gives
us the second component of Cobs. See Fig. 4.

Now for the full obstacle represented by a parameterized curve ∂O : ρ 7→
(xO(ρ), yO(ρ))) we apply the method we have just described by varying the pa-
rameter ρ.

𝜃2

𝜃1
𝜉

𝜃2

𝜃1
𝜉

Projection of the C-space on the  𝜉 = 0 plane

Configurations that bring the second link in collision

Configurations that bring the first link in collision

Fig. 4 Components of Cobs for a point obstacle for the robot R1.
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2.2 Manipulation robot

The robot R2 is a standard two-link planar manipulator fixed to the ground,
manipulating a sliding object. See Fig. 5. The manipulated object is pictured in
red; it consists of a theoretically infinitely long sliding platform. The manipulator
has to put its rubber end-effector on the platform and use friction force to push
or pull the object.
Title Suppressed Due to Excessive Length 7
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Fig. 5 R2 and its configuration variables. Joints symbols are the same as Fig. 2. In red the
infinitely long sliding platform.

To get a parametric representation of Cobs we use the same trick that we
introduced in the computation of R1’s Cobs. For a point obstacle (xO, yO) we
compute the inverse kinematics solution of a robot similar to R2 but varying the
length of the second link as a parameter λ ∈ [0, l], then we extrude in the α
dimension (given that the obstacle region does not depend on the position of the
sliding base), we thus get a first component of Cobs as a 2D submanifold of C. The
second component comes simply from removing the second link and computing
the trivial inverse kinematics of a one-link robot, which reduces to a constant θ1.
See Fig. 6.

For an obstacle given by a parametrization of its contour s 7→ (xO(s), yO(s)),
we directly add s as a third parameter of our manifold, and we get the represen-
tation depicted in Fig. 7 for a circular obstacle for example.

(a) Cobs,1, correspond-
ing to the configura-
tions that bring the
second link into colli-
sion with the point.

(b) Cobs,2, correspond-
ing to the configura-
tions that bring the
first link into collision
with the point.

Fig. 6 Components of Cobs for a point obstacle for the system R2.

2.3 L & M robot

The robot R3 combines R1 and R2. It is made of sliding two-link planar manipu-
lator manipulating a infinitely long sliding platform. See Fig. 8. Its configuration

Fig. 5 R2 and its configuration variables. Joints symbols are the same as Fig. 2. In red the
infinitely long sliding platform.

The configuration space of R2 is the same as R1

C = R× T2 (3)

However we use a different notation for the coordinates chart (α, θ1, θ2) where
α denotes the horizontal position of any reference point on the red sliding base.
Similarly to R1, we consider no self-collision, no joint limits, and Fig. 3 provides
a 3D visualization of R2’s C-space (in the caption read “adding the α dimension”
instead of “adding the ξ dimension”). The only difference with R1 is the repre-
sentation of the obstacle region in the C-space, which is basically the Cobs of a
standard two-link manipulator, as detailed in the following paragraph.

To get a parametric representation of Cobs we use the same trick that we
introduced in the computation of R1’s Cobs. For a point obstacle (xO, yO) we
compute the inverse kinematics solution of a robot similar to R2 but varying the
length of the second link as a parameter λ ∈ [0, l], then we extrude in the α
dimension (given that the obstacle region does not depend on the position of the
sliding base), we thus get a first component of Cobs as a 2D submanifold of C. The
second component comes simply from removing the second link and computing
the trivial inverse kinematics of a one-link robot, which reduces to a constant θ1.
See Fig. 6.

For an obstacle given by a parameterization of its contour ρ 7→ (xO(ρ), yO(ρ)),
we directly add ρ as a third parameter of our manifold, and we get the represen-
tation depicted in Fig. 7 for a circular obstacle for example.

2.3 L & M robot

The robot R3 combines R1 and R2. It is made of sliding two-link planar manipu-
lator manipulating an infinitely long sliding platform. See Fig. 8. Its configuration
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(a) Cobs,1, correspond-
ing to the configura-
tions that bring the
second link into colli-
sion with the point.

(b) Cobs,2, correspond-
ing to the configura-
tions that bring the
first link into collision
with the point.

Fig. 6 Components of Cobs for a point obstacle for the system R2.

(a) Cobs,1, correspond-
ing to the configura-
tions that bring the
second link into colli-
sion with the circle.

(b) Cobs,2, correspond-
ing to the configura-
tions that bring the
first link into collision
with the circle.

Fig. 7 Components of Cobs for a circular obstacle for the system R2.

space is

C = R2 × T2 (4)

It is a four-dimensional smooth manifold that cannot be embedded in R3, this time.
We skip the representation of the C-space and its obstacle region but we come back
to this issue later (Section 3) as we restrain to a special 3D submanifold of the
C-space.
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space is
C = R

2 × T
2 (4)

It is a four-dimensional smooth manifold that cannot this time be embedded in R
3.

We skip the representation of the C-space and its obstacle region but we will come
back to this issue later (Section 3) as we will restrain to a special 3D submanifold
of the C-space.

α

θ1

θ2

(x, y)

ξ

Fig. 8 R3 and its configuration variables. Rectangles symbolize prismatic joints and circle
represent revolute joints. The infinitely long sliding platform is pictured in red.

3 Geometric Motion Planning Approach

The systems introduced in the previous section are underactuated systems. We can
geometrically visualize this underactuation as a foliated stratification structure in
the C-space.

3.1 Locomotion robot

First let us consider the robot R1. Its configuration space R× T
2 is stratified into

two different strata, see Fig. 9. The first stratum S0 (zero contact) corresponds to

Fig. 8 R3 and its configuration variables. Rectangles symbolize prismatic joints and circle
represent revolute joints. The infinitely long sliding platform is pictured in red.
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3 Geometric Motion Planning Approach

The systems introduced in the previous section are underactuated systems. We can
geometrically visualize this underactuation as a foliated stratification structure in
the C-space.

3.1 Locomotion robot

First let us consider the robot R1. Its configuration space R×T2 is stratified into
two different strata, see Fig. 9. The first stratum S0 (zero contact) corresponds to
the situation in which the end-effector is not in contact with the ground. It is a
submanifold of C made of all the corresponding configurations

S0 = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 > −2 θ1} (5)

The second stratum S1 (one contact) is the submanifold corresponding to all
configurations that bring the end-effector in contact with the ground. It is a 2-
dimensional submanifold of C

S1 = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1} (6)

On this submanifold we use the coordinates chart (ξ, θ1)

S1 :


ξ = ξ
θ1 = θ1

θ2 = −2 θ1

(7)

Each of these two strata is foliated into a continuum of leafs. A leaf is a sub-
manifold of the stratum in which the robot is fully actuated. A single leaf of S0

corresponds to a fixed position of the base ξ, meaning ξ = constant. We call this
foliation the ξ-foliation, and for a given ξ ∈ R we denote the corresponding leaf
Q0,ξ

Q0,ξ = {(ξ, θ1, θ2) | (θ1, θ2) ∈ (0, π)× [−π, π] and θ2 > −2 θ1} (8)

On Q0,ξ, R1 can move its two links freely in their workspace but does not slide. A
single leaf of S1 corresponds to fixed position x of the end-effector on the ground,
i.e. x = constant. We call this foliation the x-foliation. For a given x ∈ R we
denote the corresponding leaf Q1,x

Q1,x = {(ξ, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1 and ξ+ 2 l cos(θ1) = x} (9)

or, using the parameter θ1 as coordinate chart,

Q1,x :


ξ = x− 2 l cos(θ1)
θ1 = θ1

θ2 = −2 θ1

(10)

On such a leaf the robot takes fixed support on the ground and the applied torques
result in the sliding of the base.

The purpose of geometric motion planning is to plan a continuous path in
the C-space from an initial point to a destination point avoiding the Cobs region.
However in our foliated structure the actuators can only make the robot move
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(a) S0 represents the
interior of the blue re-
gion

(b) ξ-foliation of S0

(c) The stratum S1 (d) x-foliation of S1

Fig. 9 The strata S0, S1 and their foliations for the robot R1.

smoothly along an isolated leaf of the C-space, so the only valid paths should be
made of a finite succession of elementary paths along single leafs. This makes the
classical techniques of exploring the C-space [33,15,35] not directly applicable to
our motion planning problem. However, authors in [41] provide a way to overcome
this foliation structure and reduce the problem to a classical motion planning
problem in a non-foliated C-space.

In [41], a manipulation path through the C-space is defined as a sequence of
transit paths and transfer paths. A transit path is a path in which the object
lies at rest on the ground not being manipulated while the manipulator moves
freely in its workspace. A transfer path is a path in which the manipulator is
grasping the object at a fixed grasp location and the object is “stuck” to the
manipulator end-effector. These two kinds of paths are paths along two different
strata of the configuration space, respectively the object-stable stratum and the
object-grasped stratum. The uncountable infinite stable positions of the object
resting on the ground define a foliation of the object-stable stratum, and the
uncountable infinite positions of grasps of the end-effector on the object define a
foliation on the object-grasped stratum. As shown above, our robot R1 fits directly
inside this problem formulation. Following the manipulation planning terminology,
we call a path through a leaf of S0 a transit path and a path through a leaf of S1

a transfer path. See Fig. 10.

The planning approach developed in [41] is the following: uncover the different
connected components of S1 ∩ cl(S0) as if there was no foliation structure1 (this is
done by building a roadmap and connecting the nodes with linear edges thus vio-

1 In the remaining of this paper, we denote by S1 ∩ cl(S0) the stratum S1 endowed with
both the foliation of S0 and the foliation of S1 extended to its topoligical closure, denoted
cl(S1).
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(a) Transfer
path in S1

(b) Transit
path in S0

(c) Tran-
sit path in
S1 ∩ ∂S0
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(d) Valid path in the operational space

Fig. 10 Types of paths for the robot R1.

lating the foliation structure), then try to connect these different components using
only transit or transfer paths. In a post-processing step, The reduction property
allows us to transform any collision-free path of S1 ∩ cl(S0) into a finite sequence
of transfer and transit paths. This reduction property has first been proved in [1].
The following works (e.g. [41,40]) based on this property usually assume that the
extension of the property is straightforward in their particular problem. However,
we believe that the property takes a very specific form in each particular prob-
lem and thus needs to be proven on a case-by-case basis, inspired by the general
principles of the initial proof. We follow this approach in this section. Moreover,
only a constructive proof is candidate to be used as an actual motion planning
algorithm. For similar reduction-property-based planning approaches, see [25].

Fig. 11 and Fig. 12 represent the foliation structure on S0 ∩ S1. The represen-
tation of the obstacle region in Fig. 11 uses the technique presented in section 2.
Fig. 12 illustrates the application of the reduction property in a simple case.

Problem 1 Given (qinitial, qfinal) ∈ C2
free find N ∈ N, a sequence (ki)i=1···N ∈

{0, 1}N , a sequence (ζi)i=1···N ∈ RN , and a sequence of continuous paths pi :
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(a) A circular obstacle in the operational
space.

(b) The obstacle region in the foliated S0∩
S1 in represented in red. The blue foliation
is the ξ-foliation, the green foliation is the
x-foliation.

Fig. 11 Example of an obstacle and its mapping in the foliated spaces.

(a) Original path (black vertical path on
the left)

(b) Valid path

Fig. 12 Illustration of the reduction property. In the first figure the black vertical linear path
in the left of the figure violates the foliation. In the second figure the path is deformed in order
to comply with the foliation.

[0, 1]→ Qki,ζi∩Cfree, such that p0(0) = qinitial, pN (1) = qfinal, and ∀i ∈ {0, . . . , N−
1} pi(1) = pi+1(0).

Proposition 1 If there exists for R1 a collision-free path in unfoliated S1∩cl(S0)
from qinitial to qfinal then there exists a finite sequence of transfer and transit paths
that links qinitial and qfinal.

Proof The two foliations of S1 ∩ cl(S0) can be respectively represented by the two
families of functions (fα)α∈R and (gβ)β∈R (where α and β are formally bound
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variables), defined for any real value α ∈ R and any real value β ∈ R as:

fα : (0, π) → R
θ1 7→ ξ = fα(θ1) = α

(11)

which represents the horizontal foliation (the ξ-foliation) and where α represents
the fixed position of the base, and

gβ : (0, π) → R
θ1 7→ ξ = gβ(θ1) = −2 cos(θ1) + β

(12)

which represents the curved inclined foliation (the x-foliation) and where β repre-
sents the fixed position of the contact tip.

For more convenience in the notations we replace the (θ1, ξ) coordinate chart
notation on S0 ∩ S1 by the more usual plane coordinates (x, y). We also denote
C = (0, π)× R as our ambient metric space, and the obstacle region O which is a
non-empty compact (ie. closed and bounded) subset of C. The complementary set
of O that we denote Oc = C \O is an open subset of C. The distance between two
subsets A and B of C is defined as:

d(A,B) = inf
a∈A,b∈B

d(a, b) (13)

The two foliations on C are now represented by the two families of functions:
fα(x) = α, α ∈ R and gβ(x) = g(x) + β, β ∈ R where g : (0, π) → R is a
continuous strictly increasing function.

In our demonstration we first consider the case of an initial vertical path. Let
pv : [0, 1] → Oc be a normal parametrization of our vertical path (arc-length
parametrization) from the bottom extremity, ie. pv(t) = (x0, y0 + t · l) where l is
the length of the path. Let Tr(pv) = {pv(t) | t ∈ [0, 1]}. Since Tr(pv) and O are
two non-empty compact subsets of C, their distance is finite: d(Tr(pv),O) < +∞.
Since they are closed sets with empty intersection Tr(pv) ∩ O = ∅ their distance

is strictly positive d(Tr(pv),O) > 0. Let ε = d(Tr(pv),O)
2 .

We now give a recursive construction of a finite sequence of collision-free transit
paths and transfer paths that links (x0, y0) to (x0, y0 + l).

From the foliation definition, we know that ∃β0 ∈ R | gβ0
(x0) = y0. Let B0

be the closed ball of center (x0, y0) and of radius ε. From the construction of ε
we have B0 ⊂ Oc. Let y = a(x) be the equation of the closed upper right quarter
circle boundary of B0. We have a(x0) = gβ0

(x0) + ε > gβ0
(x0) and gβ0

(x0 + ε) >
gβ0

(x0) = a(x0 + ε). The intermediate value theorem applied to the continuous
strictly increasing function gβ0

−a (a being continuous strictly decreasing function)
gives us a unique point (x′0, y1) of intersection between the graphs of gβ0

and a
such that (x′0, y1) ∈ (x0, x0 + ε)× (y0, y0 + ε). Because of B0 being strictly convex,
the horizontal line segment between the points (x′0, y1) and (x0, y1) is inside B0.
Let α0 = y1. Finally we have constructed a sequence of two paths

Transfer0 : [x0, x
′
0] → Oc
x 7→ (x, gβ0

(x))
(14)

and
Transit0 : [−x′0,−x0] → Oc

x 7→ (−x, fα0(−x))
(15)
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that link (x0, y0) to (x0, y1). Let d = y1 − y0. d > 0 from the above definition of
y1. Let N = b ldc. Repeating the previous procedure from the point (x0, y1), we
recursively define a sequence of points along Tr(pv), (x0, yn)0≤n≤N where yn =
y0 + nd and the corresponding sequences of paths (Transfern,Transitn)0≤n≤N−1

that link (x0, yn) to (x0, yn+1). To end the recursion, Let yN+1 = y0 + l and
x′N = g−1

βN
(yN+1). The last transit and transfer paths of the sequence are defined

as:
TransferN : [xN , x

′
N ] → Oc
x 7→ (x, gβN (x))

(16)

and
TransitN : [−x′N ,−xN ] → Oc

x 7→ (−x, fαN (−x))
(17)

Finally, the sequence (Transfern,Transitn)0≤n≤N link the initial and final point
of our vertical path pv, which ends the first part of the demonstration.

Let us now consider a given non-necessarily vertical path from (x0, y0) to
(xf , yf ), p : [0, 1]→ Oc. We suppose that p is a normal (arc-length) parametriza-
tion, otherwise we can re-parametrize under the condition that p is regular, mean-
ing that ∀t ∈ [0, 1], ṗ(t) 6= (0, 0). Let l be the length of the path.

We first show that we can find a finite sequence of collision-free vertical and
horizontal paths that link (x0, y0) to (xf , yf ). Once again we define ε = d(Tr(p),O)

2 .

Let N = min
{
n ∈ N | ln < ε

}
. We define the sequence of points along Tr(p),

(xn, yn)0≤n≤N such that (xn, yn) = p( nN ), for 0 ≤ n ≤ N . Now for each 0 ≤ n ≤
N − 1, we define the following sequence of horizontal and vertical paths:

Horizontaln : [xn, xn+1] → Oc
x 7→ (x, yn)

(18)

and
Verticaln : [yn, yn+1] → Oc

y 7→ (xn+1, y)
(19)

(the notations of the intervals above depends on the relative ordering of xn and
xn+1, and of yn and yn+1). Note that [(xn, yn), (xn+1, yn+1)] is the hypotenuse
of the triangle (xn, yn), (xn+1, yn), (xn+1, yn+1), so the length of the two paths
above are less than the length of the chord [(xn, yn), (xn+1, yn+1)], which is less
than the arc-length from (xn, yn) to (xn+1, yn+1), which is by construction equal
to l

N < ε. This means that the two sequences of paths Horizontaln and Verticaln
are effectively included in Oc, ie. are collision-free.

All in all, we constructed a finite sequence of collision-free vertical and hori-
zontal paths from qinitial to qfinal. Each horizontal path is already a transit path.
Each vertical path can be decomposed using the first part of this demonstration
in a finite sequence of transfer and transit paths. This means that we constructed
a finite sequence of transfer and transit paths that link qinitial and qfinal.

3.2 Manipulation robot

All the development provided in the previous section for R1 is strictly valid for
R2 modulo some slight changes of referential and notations. The system being a
manipulation system, the terminology in [41] applies now directly to R2.
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To adapt the development of the previous section from R1 to R2 we first need
to replace all the occurrences of ξ by α. For example, we call α-foliation instead
of ξ-foliation for S0. For a fixed α ∈ R, a leaf Q0,α of this foliation corresponds to
a fixed location of the sliding platform while the manipulator moves freely in its
workspace.

For the stratum S1 the foliation should correspond to the different possible
locations of the contact point which be fixed in the inertial frame of the sliding
platform. So we introduce a new variable β = α− x (see Fig. 13a) which becomes
the new co-parameter of S1 foliation, that we call the β-foliation (instead of the
x-foliation for R1). See Fig. 14. For β ∈ R, a leaf Q1,β is written as

Q1,β = {(α, θ1, θ2) ∈ R× (0, π)× [−π, π] | θ2 = −2 θ1 and 2 l cos(θ1) +β = α}
(20)

or, using the parameter θ1 as coordinate chart,

Q1,β :


α = β + 2 l cos(θ1)
θ1 = θ1

θ2 = −2 θ1

(21)

Title Suppressed Due to Excessive Length 15
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Fig. 13 The β variable.

(a) The stratum S1 of
R2

(b) β-foliation of S1

Fig. 14 The stratum S1 and its foliation for the system R2.

Proposition 2 If there exists for R2 a collision-free path in unfoliated S0 ∩ S1

from qinitial to qfinal then there exists a finite sequence of transfer and transit paths

that links qinitial and qfinal.

Proof For R2, the two foliations of S0 ∩S1 can be respectively represented by the
two families of functions:

fµ : (0, π) → R

θ1 7→ α = fµ(θ1) = constant = µ, µ ∈ R
(22)

which represents the horizontal foliation (the α-foliation), and

gν : (0, π) → R

θ1 7→ α = gν(θ1) = 2 cos(θ1) + ν, ν ∈ R
(23)

which represents the curved inclined foliation (the β-foliation).
The argument used in the proof of proposition 1 was that the function g is

a strictly increasing function which allowed us to apply the intermediate value
theorem. Actually, we only need strict monotony to reach the same conclusion. In
our present case the corresponding function g is strictly decreasing, so the proof
of proposition 1 is valid for proposition 2.

3.3 L & M robot

We now consider the robot R3. Similarly to R2 we define the variable β = α − x
as pictured in Fig. 13b.

(a) R2
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Fig. 14 The stratum S1 and its foliation for the system R2.

Proposition 2 If there exists for R2 a collision-free path in unfoliated S0 ∩ S1

from qinitial to qfinal then there exists a finite sequence of transfer and transit paths

that links qinitial and qfinal.

Proof For R2, the two foliations of S0 ∩S1 can be respectively represented by the
two families of functions:

fµ : (0, π) → R

θ1 7→ α = fµ(θ1) = constant = µ, µ ∈ R
(22)

which represents the horizontal foliation (the α-foliation), and

gν : (0, π) → R

θ1 7→ α = gν(θ1) = 2 cos(θ1) + ν, ν ∈ R
(23)

which represents the curved inclined foliation (the β-foliation).
The argument used in the proof of proposition 1 was that the function g is

a strictly increasing function which allowed us to apply the intermediate value
theorem. Actually, we only need strict monotony to reach the same conclusion. In
our present case the corresponding function g is strictly decreasing, so the proof
of proposition 1 is valid for proposition 2.

3.3 L & M robot

We now consider the robot R3. Similarly to R2 we define the variable β = α − x
as pictured in Fig. 13b.

(b) R3

Fig. 13 The β variable.

(a) The stratum S1 of
R2

(b) β-foliation of S1

Fig. 14 The stratum S1 and its foliation for the system R2.

Proposition 2 If there exists for R2 a collision-free path in unfoliated S1∩cl(S0)
from qinitial to qfinal then there exists a finite sequence of transfer and transit paths
that links qinitial and qfinal.
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Proof For R2, the two foliations of S1 ∩ cl(S0) can be respectively represented by
the two families of functions:

fµ : (0, π) → R
θ1 7→ α = fµ(θ1) = constant = µ, µ ∈ R (22)

which represents the horizontal foliation (the α-foliation), and

gν : (0, π) → R
θ1 7→ α = gν(θ1) = 2 cos(θ1) + ν, ν ∈ R (23)

which represents the curved inclined foliation (the β-foliation).
The argument used in the proof of proposition 1 was that the function g is

a strictly increasing function which allowed us to apply the intermediate value
theorem. Actually, we only need strict monotony to reach the same conclusion. In
our present case the corresponding function g is strictly decreasing, so the proof
of proposition 1 is valid for proposition 2.

3.3 L & M robot

We now consider the robot R3. Similarly to R2 we define the variable β = α − x
as pictured in Fig. 13b.

The configuration space of the robot is 4-dimensional R2 × T2 parametrized
by (ξ, θ1, θ2, α). We still have only two actuators at the revolute joints, therefore
the degree of underactuation is 4 − 2 = 2. However, we also still have only one
possible contact force to resolve the underactuation and reduce its degree by one.
One possible way of resolving the last remaining degree of underactuation is to
add a discrete switching control variable ud ∈ {0, 1} which allow us to either block
the manipulator’s base and release the sliding platform (case ud = 0) or release
the manipulator’s base and block the sliding platform (case ud = 1).

Using the terminology of hybrid control theory, we consider the following dis-
crete “states” of the robot:

– The free mode. The manipulator’s base and the sliding platform are fixed,
i.e. ξ = constant and α = constant. This defines a first state in which the
manipulator’s links (θ1, θ2) move freely in their workspace.

– The manipulation mode. The manipulator’s base is fixed and the end-effector
is in contact with the sliding platform at fixed position in the platform’s frame,
i.e. ξ = constant and β = constant. This defines a second state in which the
manipulator pushes or pulls the platform.

– The locomotion mode. The sliding platform is fixed and the end-effector is in
contact with the sliding platform at fixed position in the platform’s frame,
i.e. α = constant and β = constant. This defines a last state in which the
manipulator pushes or pulls itself.

We still have two strata: S0 = C and S1 : θ2 = −2θ1. However, S1 is now
a three dimensional submanifold on which we use the coordinate chart (ξ, α, θ1).
The two states –locomotion and manipulation– are both defined in the stratum
S1 and represent two cross foliations of the same stratum at the same time.

We thus get three foliations, one on S0 and two on S1, that we can visualize
in S0 ∩ S1 as represented in Fig. 15:
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– On S0 we define the (α, ξ)-foliation and the leafs Q0,α,ξ in green (vertical lines)
on Fig. 15. A path along one of these leaves called a free path.

– On S1 we define the (β, ξ)-foliation and the leafs Q1,β,ξ in blue (thick dots) on
Fig. 15. A path along one of these leaves called a manipulation path.

– On S1 we define the (α, β)-foliation and the leafs Q2,α,β in red (thin dots) on
Fig. 15. A path along one of these leaves called a locomotion path.

Fig. 15 The foliations of the three strata for the system R3. In blue (thick dots) the (β, ξ)-
foliation, in red (thin dots) the (α, β)-foliation, in green (vertical solid lines) the (α, ξ)-foliation.

Proposition 3 If there exists for R3 a collision-free path in unfoliated S1∩cl(S0)
from qinitial to qfinal then there exists a collision-free finite sequence of free, ma-
nipulation, and locomotion paths that links qinitial and qfinal.

Proof Let us consider the 3D Cartesian space R2×(0, π) provided with the system
of coordinates (α, ξ, θ1) in which we consider a compact subset O and the families
of functions

fα,β : (0, π) → R3

θ1 7→


α
β − 2 cos(θ1)
θ1

α, β ∈ R (24)

which represents the red (thin dots) foliation,

gβ,ξ : (0, π) → R3

θ1 7→


β + 2 cos(θ1)
ξ
θ1

β, ξ ∈ R (25)



18 Karim Bouyarmane, Abderrahmane Kheddar

which represents the blue (thick dots) foliation,

hα,ξ : (0, π) → R3

θ1 7→


α
ξ
θ1

α, ξ ∈ R (26)

which represents the green (vertical lines) foliation.
First, we prove that any collision-free path parallel to the α axis can be decom-

posed into a finite sequence of collision-free paths along the foliations. Let that
α-parallel path be defined by θ1 = θ10 and ξ = ξ0. The foliations (gβ,ξ0)β and
(hα,ξ0)α represent two foliations in the affine plan ξ = ξ0, one strictly decreasing
and one constant, for which we can directly apply Proposition 2. Thus, in that
affine plan ξ = ξ0, we can decompose the α-parallel path into a finite sequence of
blue and green paths.

Similarly we prove that any collision-free path parallel to the ξ axis can be
decomposed into a finite sequence of collision-free paths along the foliations. Let
that ξ-parallel path be defined by θ1 = θ10 and α = α0. The foliations (fα0,β)β and
(hα0,ξ)ξ represent two foliations in the affine plan α = α0, one strictly increasing
and one constant, for which we can directly apply Proposition 1. Thus in that
affine plan α = α0 we can decompose the ξ-parallel path into a finite sequence of
red and green paths.

Any collision-free path parallel to the θ1 axis is already a green path in the
foliation.

Now extending the same method that we used in the proof of Proposition 1,
we can prove that any collision-free path in S0 ∩S1 can be decomposed in a finite
sequence of collision-free paths parallel to the axes α, ξ and θ1.

One important remark has to be made at this point. The motion that we get
by this planning is a succession of isolated locomotion and manipulation motions,
with either α = constant or ξ = constant. However, we can plan a motion in
which both α and ξ are varying simultaneously, which would be equivalent to a
locomotion-while-manipulating conceptual motion. This can be done simply by
replacing one of the two foliations on S1 with a new foliation. Let us call it the
(λ1, λ2)-foliation, λ1+λ2 = 1, for which we write a condition λ1α+λ2ξ = constant
replacing one of the conditions α = constant or ξ = constant. The (λ1, λ2)-foliation
replacing one of the previous two on S1 makes it still possible to explore all the
foliated space using the reduction property. Moreover, adding the (λ1, λ2)-foliation
to the set of the previous three adds redundancy in the system and gives multiple
solutions for the motion planning problem. Thus, it is also possible to synthesize
a locomotion-while-manipulating motion.

Let us call a path through the (λ1, λ2)-foliation a locomotion-while-manipulation
path. The previous remark translates into the following corollary:

Corollary 1 If there exists for R3 a collision-free path in unfoliated S1 ∩ cl(S0)
from qinitial to qfinal then there exists

– a collision-free finite sequence of free, manipulation, and locomotion-while-
manipulation paths that links qinitial and qfinal.

– a collision-free finite sequence of free, locomotion, and locomotion-while-manipulation
paths that links qinitial and qfinal.
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– a collision-free finite sequence of free, locomotion, manipulation, and locomotion-
while-manipulation paths that links qinitial and qfinal.

4 Kinematic Control-Theoretic Approach

In the previous section we have seen the underactuation of the robots as foliations
in the C-space along which we need to cruise in order to reach our goal. In this
section, we rather see this underactuation as a non-spanning distribution of control
vector fields, our robots being considered as driftless stratified kinematic control
systems. We strongly advise the reader to refer to the two main references [21]
and [22] since all what follows builds on their result. The references [32,14] can also
prove useful for the reader unfamiliar with mathematical tools for nonholonomic
motion planning (especially, the notions of Lie Brackets, distributions associated
with control fields, Philip Hall basis of a Lie Algebra, formal exponential).

4.1 Locomotion robot

First let us consider the robot R1.
The aim here is to generate a trajectory (time and space) (as opposed to path,

i.e. only space, produced in the previous approach) using nonholonomic control
techniques but without explicitly taking the obstacles into account. However, the
philosophy remains the same: planning a sequence of transfer and transit trajec-
tories in S1 ∩ cl(S0).

For this, we first need to modelR1 as a kinematic control system. Our kinematic
control inputs are u1 = θ̇1 and u2 = θ̇2. No control input directly controls ξ.

The system is stratified in the sense defined in [21]. If we denote by Φ ∈ C∞(C)
the function that maps every configuration q ∈ C to the height of the end effector
h = Φ(q) = y(q), then we can redefine S0 = C as the top stratum and S1 =
Φ−1({0}) as the bottom stratum. We have the trivial inclusion chain S1 ⊂ S0 .

Two different equations of motion are acting on the two strata:

– On S0, the base is fixed and we can write

d

dt

 ξ
θ1

θ2

 =

 0
1
0

u1 +

 0
0
1

u2 (27)

– On S1, the end effector is fixed as we consider a non-sliding contact, and thus
the equation of motion is written

d

dt

 ξ
θ1

θ2

 =

 2l sin(θ1)
1
−2

u1 (28)

We can rewrite those two equations using the formalism of driftless control
theory [36]. Let x = (ξ, θ1, θ2)T denote the state of our kinematic system (Note:
for the remaining of this section x denotes the state of the system as usual in control
theory and not the x-coordinate of the end-effector). Let g0,1(x) = ∂

∂θ1
, g0,2(x) =
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∂
∂θ2

be the two control fields acting on S0 and g1,1(x) = 2l sin(θ1) ∂∂ξ + ∂
∂θ1
− 2 ∂

∂θ2
.

Then our stratified driftless system is modelled by the two equations:

ẋ = g0,1(x)u1 + g0,2(x)u2 , x ∈ S0

ẋ = g1,1(x)u1 , x ∈ S1
(29)

Let us study the controllability of our system.

Proposition 4 The underactuated kinematic control system R1 is small time lo-
cally controllable in int(Cfree)

Proof We consider x0 ∈ S1 an element from the bottom stratum. Let

∆S0
|x0 = span{g0,1(x0), g0,2(x0)}

∆S1
|x0 = span{g1,1(x0)} (30)

be the distributions associated with the control fields of each stratum and ∆̄S0
|x0

and ∆̄S1
|x0 be their involutive closure under Lie Bracketting. Since [g0,1, g0,2] = 0

we have
∆̄S0
|x0 = span{g0,1(x0), g0,2(x0)}

∆̄S1
|x0 = span{g1,1(x0)} (31)

Therefore, for each x0 ∈ S1 such that θ1 6= kπ

∆̄S0
|x0 + ∆̄S1

|x0 = span{g0,1(x0), g0,2(x0), g1,1(x0)} = Tx0C (32)

and thus following the controllability theorem of [21] the system is small time
locally controllable from x0.

Now let us address the issue of gait controllability. We consider the cyclic gait

G = (S1,S0,S1) (33)

in which the robot alternatively lifts its end-effector off the ground and then put
it back on the ground.

Proposition 5 R1 is gait-controllable with the gait G.

Proof We construct the gait distribution as follows:

D1 = ∆̄S1
|x0

D2 = D1 + ∆̄S0
|x0 = Tx0C

D3 = (D2 ∩ Tx0S1) + ∆̄S1
|x0

(34)

We can parametrize S1 by the equations

S1 :


ξ = ξ
θ1 = θ1

θ2 = −2θ1

(35)

which allows us to write

Tx0S1 = span

{
∂

∂ξ
,
∂

∂θ1
− 2

∂

∂θ2

}
(36)

We can see that g1,1(x0) ∈ Tx0S1 and thus D3 = Tx0S1 meaning that dim(D3) =
dim(Tx0S1), which proves, following [21]’s result, the gait controllability of G.
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We want now to plan a motion from an initial state qinitial = (ξi, θ1i ,−2θ1i)
T ∈

S1 to a goal state qfinal = (ξf , θ1f ,−2θ1f )T ∈ S1. To do so, we first construct a
stratified extended system on S1 by constructing a vector field from ∆S0

that is
tangent to S1. The vector field we consider here is g1,2 = g0,1−2g0,2 = ∂

∂θ1
−2 ∂

∂θ2
,

so that our system becomes, on the bottom stratum S1:

ẋ = g1,1(x)u1 + g1,2(x)u2 (37)

We then extend the system by adding a vector field from the Lie Algebra of the
two control fields we now have on S1 to better condition the system. We get the
following stratified system on S1:

ẋ = b1v1 + b2v2 + b3v3 (38)

where
b1 = g1,1

b2 = g1,2 ∈ ∆S0
∩ TS1

b3 = [b1, b2] = 2l cos(θ1) ∂∂ξ

(39)

We then solve this system for the fictitious inputs v1, v2, v3 given a straight line
trajectory linking qinitial and qfinal:

γ(t) = (γξ(t), γθ1(t),−2γθ1(t))T (40)

where
γξ(t) = ξi +∆ξ.t
γθ1(t) = θ1i +∆θ1.t
∆ξ = ξf − ξi
∆θ1 = θ1f − θ1i

(41)

meaning that we solve

γ̇(t) = b1(γ(t))v1 + b2(γ(t))v2 + b3(γ(t))v3 (42)

which requires pseudo inverting a matrix ∆ξ
∆θ1

−2∆θ1

 =

 2l sin(γθ1(t)) 0 2l cos(γθ1(t))
1 1 0
−2 −2 0

 v1

v2

v3

 (43)

One solution for this system is v1(t)
v2(t)
v3(t)

 =

 0
∆θ1
∆ξ

2l cos(γθ1 (t))

 (44)

given these inputs we solve the formal ordinary differential equation in a backward
Philip Hall 2 basis of the Lie Algebra generated by b1, b2, b3 (which happens to be
(b1, b2, b3))

Ṡ(t) = S(t)(b1v1 + b2v2 + b3v3) (45)

2 http://planning.cs.uiuc.edu/node834.html
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for which we search for a solution of the form

S(t) = eh3(t)b3eh2(t)b2eh1(t)b1 (46)

by expanding the formal exponentials to second order (e.g. eh1(t)b1 = I+h1(t)b1 +
h2

1

2 (t)b21 + · · · , where the terms of the form bki are partial derivative operators (and
not vector fields), and by equating the resulting coefficients of the bi’s in (45), we
get the set of equations for the hi functions:

ḣ1(t) = v1

ḣ2(t) = v2

ḣ3(t) = h1(t)v2 + v3

(47)

with the initial conditions hi(0) = 0 for i = 1, 2, 3.
Integrating those equations gives us the “durations” for following each flow of

the control field:
h1(1) = 0
h2(1) = ∆θ1

h3(1) = ∆ξ
2l∆θ1

ln
∣∣∣ 1
cos(θ1f ) + tan(θ1f )

∣∣∣ (48)

if ∆θ1 6= 0, or
h1(1) = 0
h2(1) = 0

h3(1) = ∆ξ
2l

(49)

if ∆θ1 = 0.
Let’s consider the case ∆θ1 6= 0.
If we denote φbit as the flow associated with the field bi, the solution should

thus be: follow φb1t for t = 0s, then follow φb2t for t = ∆θ1s, then follow φb3t for
t = ∆ξ

2l∆θ1
ln | 1

cos(θ1f ) + tan(θ1f )|s. However, the flow associated with b3 = [b1, b2]

starting from x0 could be rewritten, for t > 0:

φ
[b1,b2]
t (x0) = φ−b2√

t
◦ φ−b1√

t
◦ φb2√

t
◦ φb1√

t
(x0) +O(t) (50)

Finally, let us denote αui the command consisting in letting ui = 1 for α seconds
if α ≥ 0 and ui = −1 for −α seconds if α < 0, and denote two successive controls
by the overloaded concatenation operator ◦ as in [22]. We denote control laws as
functions s mapping time to the controls s : t 7→ (u1(t), u2(t)). More formally, the
notation s = α1u1 ◦ α2u2 will denote the control law

s : t 7→


(
u1(t), u2(t)

)
=
(

sgn(α1), 0
)
, 0 ≤ t < |α1|(

u1(t), u2(t)
)

=
(

0, sgn(α2)
)
, |α1| ≤ t < |α1|+ |α2|

(51)

where sgn denotes the sign function.
Hence, using these notations for our motion planning problem, we get our final

sequence of commands (supposing for example that ∆ξ ≥ 0):

s = 0u1 ◦∆θ1u2 ◦

√
∆ξ

2l∆θ1
ln

∣∣∣∣ 1

cos(θ1f )
+ tan(θ1f )

∣∣∣∣(u1 ◦ u2 ◦ −u1 ◦ −u2) (52)
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applied to the flows

φb1t (x0) =

 2( ξ02 + cos(θ10)− cos(t+ θ10))
t+ θ10

−2(t+ θ10)

 (53)

and

φb2t (x0) =

 ξ0
t+ θ10

−2(t+ θ10)

 (54)

In the case ∆θ1 = 0 the solution is simply

s =

√
∆ξ

2l
(u1 ◦ u2 ◦ −u1 ◦ −u2) (55)

The solution is pictured in Fig. 16 in which the red curve represents the final
output for an initial trajectory that is the black vertical line from 0 to 10.

Note that we do not reach the goal exactly, but with a bounded error [32,22].
The bound on the error allows us to reiterate this algorithm from the reached state
as a new initial state until we reach the goal with a desired precision.

Fig. 16 Solution in the (ξ, θ1) plan. The horizontal axis is the ξ axis and the vertical axis is
the The initial trajectory is the θ1 axis. the thick black vertical segment drawn on ξ axis. The
resulting solution is the red trajectory. In blue the g1,2 control field, with its integral curves
in yellow. In purple the g1,1 control field, with its integral curves in green.



24 Karim Bouyarmane, Abderrahmane Kheddar

4.2 Manipulation robot

For R2 we have similar properties to R1. We just need to replace the variable
ξ by the variable α. So let us consider the coordinate chart (α, θ1, θ2) in our
configuration space manifold.

The equations of motion that are acting on the two strata are as follows:

– On S0, the platform is fixed and we can write

d

dt

 α
θ1

θ2

 =

 0
1
0

u1 +

 0
0
1

u2 (56)

– On S1, the end-effector is fixed in the platform’s inertial frame as we consider
a non-sliding contact, and thus the equation of motion is written

d

dt

 α
θ1

θ2

 =

−2l sin(θ1)
1
−2

u1 (57)

The stratified driftless system is modelled by the two equations:

ẋ = g0,1(x)u1 + g0,2(x)u2 , x ∈ S0

ẋ = g1,1(x)u1 , x ∈ S1
(58)

where
g0,1(x) = ∂

∂θ1

g0,2(x) = ∂
∂θ2

g1,1(x) = −2l sin(θ1) ∂∂ξ + ∂
∂θ1
− 2 ∂

∂θ2

(59)

Proposition 6 The underactuated kinematic control system R2 is small time lo-
cally controllable in int(Cfree)

Proof The proof follows the same pattern as the proof of Proposition 4.

Let’s consider the gait G = (S1,S0,S1)

Proposition 7 R2 is gait-controllable with the gait G.

Proof The proof follows the same pattern as the proof of Proposition 5.

We want now to plan a motion from a given qinitial = (αi, θ1i ,−2θ1i)
T to a

given qfinal = (αf , θ1f ,−2θ1f ) in Cfree.
Using the exact same method as for R1, for ∆θ1 6= 0 and supposing for example

that ∆α ≥ 0, we get the solution:

s = 0u1 ◦∆θ1u2 ◦

√
∆α

2l∆θ1
ln

∣∣∣∣ 1

cos(θ1f )
+ tan(θ1f )

∣∣∣∣(u2 ◦ u1 ◦ −u2 ◦ −u1) (60)

applied to the flows

φb1t (x0) =

 2(α0

2 + cos(t+ θ10)− cos(θ10))
t+ θ10

−2(t+ θ10)

 (61)
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and

φb2t (x0) =

 ξ0
t+ θ10

−2(t+ θ10)

 (62)

For ∆θ1 = 0 we get:

s =

√
∆α

2l
(u2 ◦ u1 ◦ −u2 ◦ −u1) (63)

4.3 L & M robot

The robot R3, with the switching modes control strategy introduced in Section 3,
can also be modelled as a stratified system.

Let us first see why R3 cannot be directly modelled as a driftless stratified
system if we do not consider this switching strategy. In this case, when the rubber
end-effector is in contact at a fixed location in the platform’s frame β = constant,
then the system evolves in the submanifold defined by the implicit equation:

ξ + 2l cos(θ1) + β = α (64)

Taking the derivative with respect to time t leads:

ξ̇ − 2l sin(θ1)θ̇1 = α̇ (65)

i.e. 1 0 0 −1
0 1 0 0
0 0 1 0



ξ̇

θ̇1

θ̇2

α̇

 =

2l sin(θ1)
1
−2

 θ1 (66)

Writing θ̇1 = u1 we get a system of the form

Aẋ =
∑
i

gi(x)ui (67)

where A =

1 0 0 −1
0 1 0 0
0 0 1 0

 is a non invertible (non square) matrix and thus the

system cannot be written in the desired form

ẋ =
∑
i

gi(x)ui (68)

Now back to the switching control strategy. The equations of motions acting
on the two strata are:

– on S0:

d

dt


ξ
θ1

θ2

α

 =


0
1
0
0

u1 +


0
0
1
0

u2 (69)
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– on S1, in manipulation state:

d

dt


ξ
θ1

θ2

α

 =


0
1
−2

−2l sin(θ1)

u1 (70)

– on S1, in locomotion state:

d

dt


ξ
θ1

θ2

α

 =


2l sin(θ1)

1
−2
0

u1 (71)

As we can see, two different equations of motion are acting on the bottom
stratum S1. They correspond to two control vector fields defined on S1. Since
the solution produced by the method of [22] consists in following the vector fields
sequentially and never a linear combination of the vector fields, we can use it for
R3 to produce the control sequence with the state-switching control nested in the
solution.

We want to steer the system from a given qinitial = (ξi, θ1i ,−2θ1i , αi)
T to a

given qfinal = (ξf , θ1f ,−2θ1f , αf )T . We first derive equation the stratified driftless
system on the bottom stratum:

ẋ = g1(x)u1 + g2(x)u2 + g3(x)u3 (72)

with

g1(x) =


0
1
−2
0

 , g2(x) =


2l sin(θ1)

1
−2
0


g3(x) =


0
1
−2

−2l sin(θ1)


(73)

We then extend the system by adding vector fields from Lie(g1, g2, g3):

ẋ = b1v1 + b2v2 + b3v3 + b4v4 + b5v5 (74)

where
b1 = g1

b2 = g2

b3 = g3

b4 = [g1, g2] =


2l cos(θ1)

0
0
0


b5 = [g1, g3] =


0
0
0

−2l cos(θ1)


(75)
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Note: we stop at second order and we do not need to add [g2, g3] = b5 − b4. We
then we solve this system for the fictitious inputs v1, v2, v3, v4, v5 given a straight
line trajectory linking qinitial and qfinal:

γ(t) = (γξ(t), γθ1(t),−2γθ1(t), γα(t))T (76)

where
γξ(t) = ξi +∆ξ.t
γα(t) = αi +∆α.t
γθ1(t) = θ1i +∆θ1.t
∆ξ = ξf − ξi
∆α = αf − αi
∆θ1 = θ1f − θ1i

(77)

We solve

γ̇(t) = b1(γ(t))v1 + b2(γ(t))v2 + b3(γ(t))v3 + b4(γ(t))v4 + b5(γ(t))v5 (78)

which requires pseudo inverting the matrix
∆ξ
∆θ1

−2∆θ1

∆α

 =


0 2l sin(γθ1) 0 2l cos(γθ1) 0
1 1 1 0 0
−2 −2 −2 0 0
0 0 −2l sin(γθ1) 0 −2l cos(γθ1)



v1

v2

v3

v4

v5

 (79)

One solution for this system
v1(t)
v2(t)
v3(t)
v4(t)
v5(t)

 =


∆θ1

0
0
∆ξ

2l cos(γθ1 (t))

− ∆α
2l cos(γθ1 (t))

 (80)

given these inputs we solve the formal ordinary differential equation in a backward
Philip Hall basis of the Lie Algebra generated by b1, b2, b3, b4, b5 which is also
(b1, b2, b3, b4, b5)

Ṡ(t) = S(t)(b1v1 + b2v2 + b3v3 + b4v4 + b5v5) (81)

for which we search for a solution of the form

S(t) = eh5(t)b5eh4(t)b4eh3(t)b3eh2(t)b2eh1(t)b1 (82)

by developing the formal exponentials to second order, we get the set of equations
for the hi functions: 

ḣ1 = v1

ḣ2 = v2

ḣ3 = v3

−ḣ2h1 + ḣ3h2 + ḣ4 = v4

−ḣ3h1 − ḣ3h2 + ḣ5 = v5

(83)

with the initial conditions hi(0) = 0 for i = 1, 2, 3, 4, 5.
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Integrating those equations gives us the “durations” for following each flow of
the control field:

h1(1) = ∆θ1

h2(1) = 0
h3(1) = 0

h4(1) = ∆ξ
2l∆θ1

ln
∣∣∣ 1
cos(θ1f ) + tan(θ1f )

∣∣∣
h5(1) = − ∆α

2l∆θ1
ln
∣∣∣ 1
cos(θ1f ) + tan(θ1f )

∣∣∣
(84)

if ∆θ1 6= 0, or

h1(1) = 0
h2(1) = 0
h3(1) = 0

h4(1) = ∆ξ
2l

h5(1) = ∆α
2l

(85)

if ∆θ1 = 0.
Finally, for ∆θ1 6= 0 and supposing for example that ∆ξ ≥ 0 and ∆α ≥ 0, we

get the solution:

s = ∆θ1u1 ◦ 0u2 ◦ 0u3

◦

√
∆ξ

2l∆θ1
ln | 1

cos(θ1f )
+ tan(θ1f )|(u1 ◦ u2 ◦ −u1 ◦ −u2)

◦

√
∆α

2l∆θ1
ln | 1

cos(θ1f )
+ tan(θ1f )|(u3 ◦ u1 ◦ −u3 ◦ −u1)

(86)

applied to the flows

φb1t (x0) =


ξ0

t+ θ10

−2(t+ θ10)
α0


φb2t (x0) =


2( ξ02 − cos(t+ θ10) + cos(θ10))

t+ θ10

−2(t+ θ10)
α0


φb3t (x0) =


ξ0

t+ θ10

−2(t+ θ10)
2(α0

2 + cos(t+ θ10)− cos(θ10))



(87)

For ∆θ1 = 0 we get:

s =

√
∆ξ

2l
(u1 ◦ u2 ◦ −u1 ◦ −u2) ◦

√
∆α

2l
(u3 ◦ u1 ◦ −u3 ◦ −u1) (88)

The solution is pictured in Figs. 17 and 18.



Non-Decoupled Locomotion and Manipulation Planning 29

Fig. 17 Trajectory planning for R3 in the (ξ, θ1, α) space. The bottom left horizontal axis
is the ξ axis, the bottom right horizontal axis is the θ1 axis, the vertical axis is the α axis.
The initial trajectory, which violates the foliation, is the black (point/big-dashed) diagonal
segment on the left-back face of the cube, the resulting trajectory is the red(line)–blue(point-
dashed)–green(dashed) trajectory that follows the foliations. The startpoint of the motion
is the intersection of the green segment and black diagonal segment in the bottom left, the
endpoint is the intersection of the green segment and black black segment in the top right.
The green segments are motions along the (α, ξ)-foliation, the blue segments along the (β, ξ)-
foliation, and finally the red segments along the (α, β)-foliation (the colors used for the three
foliations are the same as in Fig. 15).

5 Dynamic Trajectory Planning Approach

In the previous sections, we were primarily concerned by geometric path planning,
even though Section 4 tackled the problem from a kinematic trajectory planning
perspective. In this section, the objective is to generate torque-driven dynamically
valid trajectories in the state space TC (the tangent bundle of the smooth manifold
C).

5.1 Locomotion robot

First let us study the case of the robot R1. We would like to generate dynamically
valid trajectories (open-loop control laws) for both the transfer and the transit
paths.

Problem 2 Given (qinitial, q̇initial), (qfinal, q̇final) ∈ TCfree and a geometric path
p : [0, 1] → Cfree such that p(0) = qinitial and p(1) = qfinal, find tf ∈ R and a
re-parametrization of Tr(p) γ : [0, tf ] → Cfree such that γ realizes the dynam-
ics equations of motion of R1 along the path, under a Coulomb friction model
hypothesis.
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Fig. 18 Solution of the trajectory planning for the R3 system. The sliding of the black rect-
angle and the red rectangle along the horizontal axis illustrate respectively the locomotion and
the manipulation components of the motion. The first column displays snapshots of the motion
taken at times of change of control fields (points where the curve in Fig. 17 changes color).
The second column represents the transition motions between two successive snapshots.
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τ2

τ1

(a) Free mode, stratum S0

τ2

τ1

fc

(b) Contact mode, stratum S1

Fig. 19 Forces and torques in the two modes

we will consider these links dynamics effects as perturbations and neglect them,
which means that on the free mode ξ̈ = 0.

Let us now focus on the contact mode, which is our main concern in this study;
fc is the Lagrange multiplier associated with the Lagrangian model of the system
under the Pfaffian constraint J(q)q̇ = 0. Solving the dynamic and the Pfaffian
constraint equations for fc and q̈ leads

fc = −(JM−1JT )−1(JM−1(τ − Cq̇ −N) + J̇ q̇) (88)

where τ = (0, τ1, τ2)
T .

To avoid sliding, fc has to lie within the Coulomb friction cone F :

fc ∈ F (89)

and

F = {(fx, fy) ∈ R
2 | fy ≥ 0 and |fx| ≤ µfy} (90)

Now, we derive an open-loop control law t 7→ (τ1(t), τ2(t)) which steers the
system from an initial contact state (qi, q̇i) to a final state (qf , q̇f ) maintaining a
non-sliding contact with the ground. To do so we will adapt some of the ideas that
were introduced in [30].

To make the derivations easier we will neglect the masses of the links and
consider only the mass of the sliding base m0. The dynamics equations become:







m0ξ̈ = fx
fx.(sin(θ1) + l sin(θ1 + θ2))− fy .(cos(θ1) + cos(θ1 + θ2)) = τ1/l
fx. sin(θ1 + θ2)− fy . cos(θ1 + θ2) = τ2/l
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In a given contact mode, the system evolves in a one-dimensional submanifold
of the configuration space, a leaf of the stratum S1, that we will parametrize with
ξ. For example, if the contact is fixed at the abscissa 0 then ξ = −2l cos(θ1) and
θ2 = −2θ1. Solving equation (91) for fx and fy gives us

{

fx = τ1−2τ2√
4l2−ξ2

fy = τ1

ξ

(92)

and the friction cone condition fc ∈ F , together with the maximum torques con-
ditions |τ1| ≤ τmax and |τ2| ≤ τmax yields the following torque cone condition

Aξ

(

τ1
τ2

)

≤ bξ (93)
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The efforts applied on R1 in each of the two strata representing the two contact
modes are portrayed in Fig. 19.

Using the Lagrangian approach, the dynamics of the system can be written as

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇)− J(q)T fc =

 0
τ1
τ2

 (89)

which is in S1 (contact mode) when fc 6= 0 and in S0 (free mode) when fc = 0;
M , C, N , J denote respectively the inertia matrix, the Coriolis and centrifugal
effects, the external efforts (gravity, joint friction) vector, and the Jacobian matrix
of the robot.

In the free mode, we can notice that ξ̈ 6= 0 provided that the inertial effects
of moving the links cause a dynamic reaction on the base. In the following we
consider these links dynamics effects as perturbations and neglect them, which
means that on the free mode ξ̈ = 03.

Let us now focus on the contact mode, which is our main concern in this study;
fc is the Lagrange multiplier associated with the Lagrangian model of the system
under the Pfaffian constraint J(q)q̇ = 0. Solving the dynamic and the Pfaffian
constraint equations for fc and q̈ leads

fc = −(JM−1JT )−1(JM−1(τ − Cq̇ −N) + J̇ q̇) (90)

where τ = (0, τ1, τ2)T .
To avoid sliding, fc has to lie within the Coulomb friction cone F :

fc ∈ F (91)

and

F = {(fx, fy) ∈ R2 | fy ≥ 0 and |fx| ≤ µfy} (92)

Now, we derive an open-loop control law t 7→ (τ1(t), τ2(t)) which steers the
system from an initial contact state (qi, q̇i) to a final state (qf , q̇f ) maintaining a
non-sliding contact with the ground. To do so we adapt some of the ideas that
were introduced in [42].

3 This is an ideal pure mathematical assumption that amounts to considering a relative
inertia of the base link much bigger than that of the the two links. However, considering such
an assumption on a real physical system implementing the model R3 may have severe effects on
the system dynamics. In that case a separate control loop (a stabilizer module) can be provided
for ensuring that ξ = constant in the free mode without affecting the physical consistency and
stability of the system.
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To make the derivations easier we neglect the masses of the links and consider
only the mass of the sliding base m0

4. The dynamics equations become:m0ξ̈ = fx
fx.(sin(θ1) + l sin(θ1 + θ2))− fy.(cos(θ1) + cos(θ1 + θ2)) = τ1/l
fx. sin(θ1 + θ2)− fy. cos(θ1 + θ2) = τ2/l

(93)

In a given contact mode, the system evolves in a one-dimensional submanifold
of the configuration space, a leaf of the stratum S1, that we parametrize with ξ.
For example, if the contact is fixed at the abscissa 0 then ξ = −2l cos(θ1) and
θ2 = −2θ1. Solving equation (93) for fx and fy gives us{

fx = τ1−2τ2√
4l2−ξ2

fy = τ1
ξ

(94)

and the friction cone condition fc ∈ F , together with the maximum torques con-
ditions |τ1| ≤ τmax and |τ2| ≤ τmax yields the following torque cone condition

Aξ

(
τ1
τ2

)
≤ bξ (95)

where

Aξ =



1√
4l2−ξ2

− µ
ξ −

2√
4l2−ξ2

− 1√
4l2−ξ2

− µ
ξ

2√
4l2−ξ2

−1 0
1 0
0 −1
0 1


(96)

and

bξ =

{
(0, 0, 0, τmax, τmax, τmax)T , ξ > 0

(0, 0, τmax, 0, τmax, τmax)T , ξ < 0
(97)

Finally, the open-loop dynamic trajectory planning reduces to

ξ̈ = f(ξ, τ1, τ2) =
τ1 − 2 τ2

m0

√
4l2 − ξ2

under the constraint Aξ

(
τ1
τ2

)
≤ bξ

(98)

or, putting Cξ the line matrix Cξ = 1

m0

√
4l2−ξ2

(
1 −2

)
,

ξ̈ = Cξ

(
τ1
τ2

)
under the constraint Aξ

(
τ1
τ2

)
≤ bξ (99)

projecting in the dynamics and the constraints onto the space of task freedom as

the term is defined in [42], using the change of control input u = Cξ

(
τ1
τ2

)
, we

get the simple double integrator ξ̈ = u where the torque cone condition translates

4 Same remark as footnote 3 above.
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into bounds on acceleration umin(ξ) ≤ u ≤ umax(ξ). The time-optimal solution
for this problem is known as the “bang-bang” control law [7], which consists in
applying maximal acceleration forward from the initial state, maximal deceleration
(i.e. minimal acceleration) backward from the final state, and switching between
those two commands at the intersection point of the two trajectories obtained, see
Fig. 20.

5.2 Manipulation robot

Similarly to R1, we now consider the robot R2 in the contact stratum S1. Let m0

denote the mass of the sliding platform.
Let fc = (fx, fy) ∈ R2 be the contact force applied by the sliding platform on

the end-effector of the manipulator.
Instead of writing Newton’s second law of motion applied to the platform and

concatenating it with the Lagrangian dynamics of the manipulator coupled with
the non-sliding contact point kinematic condition, we exhibit the equivalence with
R1 by directly writing the constrained Lagrangian problem for the whole system
defined by its generalized coordinates q = (α, θ1, θ2)T . We get a similar equation to
(89) where fc must be seen as the Lagrangian multiplier associated with J(q)q̇ = 0,
that we derived by differentiating the holonomic contact constraint

h(q) = α− 2 cos(θ1) + constant = 0 (100)

Thus, the following derivations follow the exact same scheme as for R1, and
we can control the variable α using the bang-bang control law.

5.3 L & M robot

The dynamics and control of R3 with the switching states control strategy con-
sidered in Section 3 simply reduce to the dynamics and control of R1 and R2

separately in each of the states of the system, respectively the locomotion and
manipulation mode.

Instead, here we derive the dynamics of R3 in contact mode (stratum S1)
without the switching control input strategy. This can be seen as the dynamics of
motion realized by taking a contact support on a mobile piece of the environment
by the robot R1, performing manipulation and locomotion at the same time.

Once again, instead of writing separately the dynamics of the subsystems made
of the locomotor/manipulator and coupling them with the non-sliding contact
point kinematic constraint, we directly consider the whole system q = (ξ, θ1, θ2, α)T

and write its Lagrangian equation of motion under the Pfaffian constraint which
derives from the holonomic constraint

h(q) =

(
ξ + l cos(θ1) + l cos(θ1 + θ2)− α+ constant

l sin(θ1) + l sin(θ1 + θ2) = 0

)
= 0 (101)

So we get the following equation

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇)− J(q)T fc =


0
τ1
τ2
0

 (102)
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(a) Projection of torque cone in the ξ̈ space (b) Maximum acceleration and decelera-
tion

(c) Control field associated with umin (d) Control field associated with umax

(e) Numerical integration and final solu-
tion

Fig. 20 Bang-bang control law synthesis
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Table 1 Parameter values for the simulations

Parameter value unit

l 1 m
m0 2 kg
m1 0 kg
m2 0 kg
τmax 1 N.m
µ 1/2 -
mξ 8 kg
mα 4 kg

Let us now generate a control law for R3 in contact mode under Coulomb
friction hypothesis. For the sake of clarity and without loss of generality we suppose
that the end effector is fixed at the location β = 0. Neglecting the masses of the
link gives us the following dynamics equation:

mξ 0 · · · 0

0 0
. . .

...
...

. . . 0 0
0 · · · 0 mα



ξ̈

θ̈1

θ̈2

α̈

+


1 0
0 α− ξ√

1− (α−ξ2 )2 α−ξ
2

−1 0


(
fx
fy

)
=


0
τ1
τ2
0

 (103)

If we introduce the new variable δ = ξ − α which expresses the displacement
of the locomotor in the platform’s inertial frame, we can rewrite the equation as

mξ−mα

2 δ̈ + fx = 0
−δfy = τ1√

1− δ2

4 fx −
δ
2fy = τ2

(104)

which are the same equations as the ones we got respectively for ξ and α in R1

and R2, with a virtual mass m0 =
mξ−mα

2 . We can thus control the variable δ
with the same control law as in Section 5.1 which is not any more valid for ξ and
α separately, that is, the bang-bang control law for the double integrator δ̈ = u
with the solution t 7→ u(t) depicted in Fig. 20.

Table 1 provides the numerical values of the parameters used in the simulations
throughout the paper.

6 Discussion

6.1 Perspectives for high-dimensional systems

Our work paves the way towards addressing high-dimensional systems, from both
a conceptual and a methodological point-of-view.

Indeed, this study gives a precise definition and formulation to the desired
paradigm of non-decoupled locomotion-and-manipulation planning and control,
and what we mean exactly by that terminology. It concretely illustrates what kind
of results we would be expecting from the implementation of such a paradigm.
The expected form of results (locomotion-while-manipulation) readily extends to
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higher-dimensional systems. Hence we know what kind of motion to aim for when
considering the extension to the latter systems.

More specifically, we can see that the achieved results are conceptually distinct
from the existing ones coordinating locomotion and manipulation, where the robot
uses locomotion to move to a spot that enables manipulation [28,29,17,39,46]. In-
stead, we proposed a novel locomotion-and-manipulation paradigm that consists in
1) specifying a task to the locomotion-and-manipulation system in the form of only
the final position/configuration of the robot and/or the manipulated object, and
2) letting the planner and the controller figure out autonomously by themselves
how to decompose the motion in as many pure locomotion, pure manipulation,
or locomotion-while-manipulation elementary motion fragments as necessary to
realize the task, solving implicitly the underactuation of the system. The decom-
position happens at whichever instants deemed necessary in the overall motion. It
does not restrict to a locomotion block followed by a manipulation block or vice-
versa. We successfully illustrated the paradigm and we exhibited what class of
resulting locomotion-while-manipulation motion emerges from it, e.g. the motion
illustrated in Fig. 18.

Armed with that particular paradigm instantiation, that we proved was ana-
lytically tractable in minimal systems, it becomes possible to directly specify the
same requirements and formulation (the same paradigm) for higher dimensional
systems such as humanoids. For those however, we need, in a first approach, to
use alternative solutions that are not exact solutions or closed-form solutions as
presented in this work. We rather resort to more heuristics-based ones, due to the
general non-tractability of the analytical methods in high-dimensional spaces.

Hence, following the same logic that we detailed in this paper, but using al-
ternative particular methods of resolution based on heuristics, we were able to
design a non-decoupled planning algorithm that answers the same paradigm for
locomotion, manipulation, or locomotion-while-manipulation of high-dimensional
humanoid systems in [10] (building on a high-dimensional posture generator writ-
ten as non-linear optimization problem [8,9,37] and a general dynamics algorithm
for high-dimensional systems [11]). The algorithm is applicable to even higher-
dimensional systems by considering systems made of two or more humanoid robots
collaborating to manipulate objects or mechanisms. We followed that planner with
a dynamics controller that is able to realize high-level locomotion, manipulation,
or locomotion-while-manipulation tasks in a dynamically consistent way in [43].
This is a first step towards fully extending the methods presented in this paper
to the high-dimensional systems. Other strategies for dimensionality reduction of
the high-dimensional systems of this framework have been explored in [12,13].

As an example, Fig. 21 illustrates a resulting motion of the paradigm intro-
duced in this paper for a humanoid robot, as instantiated in the works [10,43]
higher-dimensional systems. The objective in Fig. 21 is specified as a final po-
sition for the humanoid robot (2 meters forward) and a final orientation of the
manipulated box (purple face facing upwards). Each frame of the motion has to
be physically consistent (equation of dynamics satisfied for both the robot and
the box, forces applied by the robot on the box opposite to the forces applied by
the box on the robot, contact forces inside the friction cones, etc.). The motion
planner figures out by itself how to manipulate the box while walking, fitting in
the paradigm we defined in the analytical case.
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Furthermore, results from the present works can be used to assess theoretical
consistency of the latter high-dimensional heuristics. As a concrete example for
this, take the generalization of Corollary 1, which can be reached in future work
for example by a recursive reasoning to go from a configuration space of dimension
n to a configuration space of dimension n − 1. The generalization can be used
to theoretically prove the completeness of the high-dimensional heuristics-based
algorithm of [10], i.e. to formally prove that the algorithm find a solution whenever
one exists when using randomized (RRT, PRM) planners that do not account for
the stratification/foliation of the configuration space. This is another example of
a step towards the extension of the present work to the high-dimensional systems
as future work.

6.2 Limitations

The R3 robot uses the same means of locomotion and manipulation, which re-
sults in autonomously decomposing the motion in elementary motion fragments
that consist in either pure locomotion fragment, pure manipulation fragment, or
pure contact repositioning fragment. However, by the remark of Section 3, and
by Corollary 1, either the pure locomotion fragments or pure manipulation frag-
ments can be replaced with locomotion-while-manipulation elementary fragments
by setting an arbitrary value of (λ1, λ2) = (λ1, 1−λ1) and using the corresponding
(λ1, λ2)-foliation of the bottom stratum, instead of either the α-foliation or the
ξ-foliation. This remark extends also to the control part of Section 4.3 in which one
of the vector fields g2 or g3 can be replaced with a linear combination λ1 g2 +λ2 g3

which would result in elementary motion fragments in which both the base of the
manipulator and the manipulated object translate simultaneously.

Yet, One of the assumption (and limitation) of the approach presented in
section 4 is that the solutions consist in following the vector fields sequentially and
never a linear combination of these vector fields. Hence, for systems in which the
locomotion and manipulation mechanical components are decoupled, this would
result in non-optimal motions. In that case, a parallelization of the kinematic model
of the system could be implemented to optimally use the mechanical ressources
of the system. For example, one possible approach is to decompose the system in
elementary minimal locomotion, manipulation, or locomotion-and-manipulation
systems in a complementary way and to implement the presented framework in
parallel on each of these subsystems. Such an automatic decomposition of the
kinematic model, parallelization, and framework adaptation can be the subject of
a future study.

7 Conclusion

The motion planning and control problems for the systems R1 (locomotion-only),
R2 (manipulation-only), and R3 (simultaneous locomotion and manipulation) are
solvable with the same tools. We proved the reduction property for all three sys-
tems. This property reduces the path planning problem in a foliated configuration
space to a classical path planning problem in a non-foliated space. The formulation
of the motion planning problem as a BVP was written for the three systems, and
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non-holonomic trajectory planning techniques were used for solving this problem.
Dynamics derivations also appeared to be equivalent for the three robots. The
Lagrangian approach acting on one global system with generalized coordinates
instead of different subsystems as traditionally considered turned out to be a pow-
erful unification tool for making these derivations.

We thus successfully applied a set of three motion planning methods for the
three systems R1, R2, and R3. By doing so, we showed that our initial paradigm,
the simultaneous non-decoupled locomotion and manipulation planning, holds us-
ing any of these methods.

Though being theory-oriented, our study was primarily motivated by the prac-
tical humanoid robot motion planning issues, given that a humanoid robot is a plat-
form with both locomotion and manipulation capabilities. The targeted objective
was to integrate and fuse works done on humanoid locomotion planning [18,23] and
dexterous manipulation planning [48,40,45], or any other type of whole-body ma-
nipulation planning [47,20], within one non-decoupled planning framework. In this
work, we precisely defined the desired paradigm of locomotion-while-manipulation
and we laid down the theoretical foundations that would justify the same paradigm
in higher-dimensional locomotion-while-manipulation systems such as humanoids.
We achieved that in [10,43], using an alternative instantiation of the paradigm
more adapted to high-dimensional spaces, and more based on heuristics. The next
step of the work will be to generalize some of the fundamental results of this paper
(e.g. Corollary 1) to prove the completeness of the algorithms in e.g. [10].
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Fig. 21 The objective is for the HRP-2 robot to advance 2 m forward while simultaneously
performing half rotation of the 5 kg box, bringing the purple face up. Friction coefficients
between the hands and the box are set to µ = 1. The robot autonomously re-grasps and
rotates the box while walking.


