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A new family of exponential-based
high order DGTD methods for modelling

3D transient multiscale electromagnetic problems
Hao Wang, Li Xu, Member, IEEE, Bin Li, Member, IEEE, Stéphane Descombes, and Stéphane Lantéri

Abstract—The accurate and efficient simulation of 3D transient
multiscale electromagnetic problems is extremely challenging for
conventional numerical methods. Assuming a splitting of the un-
derlying tetrahedral mesh in coarse and fine parts and using the
Lawson procedure, we derive a family of exponential-based time
integration methods for the time-domain Maxwell’s equations
discretized by a high order discontinuous Galerkin (DG) scheme
formulated on locally refined unstructured meshes. These meth-
ods remove the stiffness on the time explicit integration of the
semi-discrete operator associated to the fine part of the mesh, and
allow for the use of high order time explicit scheme for the coarse
part operator. They combine excellent stability properties with
the ability to obtain very accurate solutions even for very large
time step sizes. Here, the explicit time integration of the Lawson-
transformed semi-discrete system relies on a Low-Storage Runge-
Kutta (LSRK) scheme, leading to a combined Lawson-LSRK
scheme. In addition, efficient techniques are also presented to
further improve the efficiency of this exponential-based time
integration. For the efficient calculation of matrix exponential,
we employ the Krylov subspace method. Numerical experiments
are presented to assess the stability, verify the accuracy and
numerical convergence of the Lawson-LSRK scheme. They also
demonstrate that the DGTD methods based on the proposed
time integration scheme can be much faster than those based
on classical fully explicit time stepping schemes, with the same
accuracy and moderate memory usage increase on locally refined
unstructured meshes, and are thus very promising for modelling
three-dimensional multiscale electromagnetic problems.

Index Terms—Multiscale problems, time-domain Maxwell’s
equations, Discontinuous Galerkin Time-Domain method, locally
refined unstructured meshes, Lawson procedure, exponential
time integration, Krylov subspace method.

I. INTRODUCTION

REALISTIC electromagnetic wave propagation problems
are often multiscale. They represent a major research

emphasis for computational electromagnetics [1]-[2]-[3]. Con-
sider the problem of the scattering of plane wave by an aircraft
as an example: the aircraft frame is very large, which is tens
of meters in the long and wing spans, and comprises various
small geometric structures such as stabilizers, trailing edges
of wings as well as antennas. The numerical simulation of
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such multiscale problems is extremely challenging for conven-
tional numerical methods. The Finite Difference Time-Domain
(FDTD) methods [4]-[5] are very often used in this context
because of their simplicity and computational efficiency, but
they are based on an orthogonal Cartesian grid. Therefore, a
large number of grid points is required to capture the geometric
details, and leads to an amount of unnecessary unknowns in
the electrically coarse region. Moreover, for complex practical
problems with oblique or curved boundaries or interfaces,
FDTD methods suffer from the inaccurate representation of
the solution (so called, staircase approximation). Even if the
subgridding technique [6] can alleviate this drawback, the sim-
plicity of the standard FDTD method is lost. Another widely
used kinds of methods, the Finite Element (FE) methods [7]-
[8], can handle unstructured grids, complex geometries, and
heterogeneous media, regardless of the order of approxima-
tion. However, FE methods require solving a linear system
of equations. For multiscale problems, the system matrix is
usually very large, and the solution of this system can be very
expensive, especially in a time-domain setting where this has
to be performed at each time step. Discontinuous Galerkin
Time-Domain (DGTD) methods [9]-[10]-[11] are now popular
for the solution of electromagnetic problems. DGTD methods
accommodate elements of various types and shapes, irregular
non-matching grids, and even locally varying polynomial
order, and hence offer great flexibility for modeling com-
plex problems. Moreover, DGTD methods lead to a block-
diagonal mass matrix, thus when a spatial DG discretization
is combined with explicit time integration, the resulting time
marching scheme will be truly explicit and inherently parallel.
Additionally, DGTD methods allow domain decomposition,
either element-wise or not, they can easily handle the problems
too large to be solved for FETD methods by splitting them into
a number of smaller problems. In this work, we consider such
a DGTD method as a starting point.

For transient multiscale electromagnetic problems with
complex geometries or heterogeneous media, adaptive mesh
refinement is an attractive technique for the efficient numerical
solution of time-domain Maxwell’s equations. Local mesh
refinement, however, also imposes a severe stability constraint
on explicit time integration since the maximal time step size
is determined by the smallest elements in the mesh. A first
natural way to limit the impact of this problem is to use explicit
local time stepping (LTS) approaches like that proposed in
[12]-[13]-[14]-[15]. Explicit LTS methods adopt smaller time
step sizes inside the refined part of mesh, while remaining fully
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explicitness in the entire computational domain. Additionally,
these methods can be used recursively and easily parallelized.
On the other hand, since they are conditionally stable, small
time step sizes are still necessary for the refined part of the
mesh. A second way is to adopt unconditional implicit time
integration [16]-[17]. However, this approach is very expensive
and even infeasible, especially for 3D problems, since a large
global matrix system needs to be solved at each time step.
To overcome this expensive resource consumption, various
implicit-explicit (IMEX) schemes (or so-called locally implicit
schemes) have been proposed by Piperno [12] or Descombes,
Lanteri and Moya [18] (based on the work of Verwer [19]),
where a time implicit scheme is used only for the refined
part of the mesh, and a time explicit scheme is used for the
remaining part. Note that highly disparate mesh element sizes
in the refined part of the mesh can lead to ill-conditioned prob-
lems since time implicit scheme is used there. Additionally,
Hochbruck and Sturm [20] have provided a rigorous analysis
for the second order IMEX scheme proposed by Verwer [19]
based on a variational formulation and energy techniques.
Using a variational formulation of the evolution equation, the
analysis shows that it is necessary to implicitly treat not only
the fine elements but also their direct neighbors to obtain a
scheme with a CFL condition independent of the fine part.
IMEX schemes combine enhanced stability properties with
ability to produce a very accurate solution even for relatively
large time step sizes but are limited so far to second order
accuracy in time. With the increasing accuracy requirement
of modelling multiscale electromagnetic problems, which is
possibly beyond the capabilities of those methods, drives the
quest for more accurate methods.

Recently, Demirel et al. [21] have proposed efficient high
order multiple time-stepping (MTS) methods for ordinary
differential equations with stiff terms (either Algebraic stiff-
ness or Grid-induced stiffness, which mandate a small time
step). Like an IMEX method, this approach allows to em-
ploy different time stepping strategies for the inner (stiff)
and the outer (non-stiff) integration. The derived predictor-
corrector MTS (PCMTS) scheme for the outer integration
allows significantly larger time step sizes when compared to
previously known explicit MTS schemes and yields significant
performance enhancement. For the inner integration, both the
implicit and the explicit schemes can be adopted. Note that the
time step sizes in the inner integration still have to be small
enough if an explicit time stepping scheme is used. Based on
the exponential time integration which starts from the so-called
variation-of-constants formula, Botchev [22] has proposed ex-
ponential Krylov subspace time integration methods for time-
domain Maxwells equations discretized by FDTD scheme.
This method combines excellent (unconditional) stability prop-
erties and enables the ability to produce a very accurate solu-
tion even for relatively large time step sizes. In addition, the
adopted efficient techniques such as the Krylov shift-and-invert
method and residual-based stopping criteria further improved
its efficiency. However, actions of matrix functions of a large
sparse global matrix on a vector are required every time step if
the source term is non-zero or non-constant. Moreover, the first
order exponentially fitted Euler scheme [23] and the second

order exponential Krylov (EK2) scheme [17] are adopted and
thus the obtained accuracy is limited to second order. Based
on the Adams-Bashforth multi-step schemes [24], Grote and
Mitkova [25] derived the Adams-Bashforth based LTS scheme
of arbitrarily high order of accuracy, while remaining fully
explicitness, for damped wave equations. This method splits
the unknown vector into two parts associated with the locally
refined region or not, and treats them differently during the
time iteration. In this way, arbitrarily small time step sizes
are allowed where small elements in the spatial mesh are
located. In addition, numerical experiments are presented to
demonstrate the stability properties and the usefulness of this
method in 1D and 2D.

The Lawson method [26] has been successfully applied
for solving non-linear problems [27]-[28], by splitting the
problems into linear part and non-linear part and solving the
linear part with high accuracy. Through a transformation, this
method removes the explicit dependence in the differential
equation on the operator of linear part. This has inspired
us to develop a new family of exponential-based high order
DGTD methods to so solve multiscale electromagnetic wave
problems accurately and efficiently. In section II, we present
the initial boundary value problem considered in this work. We
then introduce the DG discretization in space in section III.
In section IV, we propose a time integration strategy that
combines excellent stability properties with efficient and ac-
curate time explicit schemes, to overcome the severe stability
restrictions caused by the local mesh refinement of multiscale
electromagnetic problems. We first formulate the semi-discrete
DG-based equations in the form of a global system of ordinary
differential equations. Assuming a splitting of the underlying
tetrahedral mesh in coarse and fine parts and using the Lawson
procedure, we then derive a family of exponential-based time
integration methods that remove the stiffness on the time
explicit integration of the semi-discrete operator associated
to the fine part of the mesh, and allow for the use of high
order time explicit scheme for the coarse part operator. The
developed exponential time integration can be time advancing
by a variety of explicit time stepping schemes; we adopt
here a Low-Storage Runge-Kutta (LSRK) scheme [29]. Thus
the so-called combined Lawson-LSRK time integration is
constructed. In addition, efficient techniques are also presented
to further improve the efficiency of this exponential-based time
integration in Section V, such as the transformation of the
combined Lawson-LSRK scheme and the model reduction for
exponential time integration which significantly reduce the
dimension of the matrix required to calculate exponential.
Finally, to investigate the stability, accuracy, convergence
order, and demonstrate the computational performance of
the proposed exponential-based time integration strategy, we
present in Section VI several numerical experiments for 3D
transient multiscale electromagnetic problems .

II. INITIAL AND BOUNDARY VALUE PROBLEM

In this paper, apart from some exceptions that will be made
clear in the text, we adopt the following notations: v denotes
a scalar quantity, V , v or V a vector, and A a matrix. We
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consider the system of 3D time-domain Maxwell’s equations
on a bounded polyhedral domain Ω ⊂ R3{

ε∂tE − curlH = −J , in Ω× [0, T ],

µ∂tH+ curl E = 0, in Ω× [0, T ],
(1)

where the symbol ∂t denotes a time derivate, J the current
density, T a final time, E(x, t) and H(x, t) are the electric and
magnetic fields. The dielectric permittivity ε and the magnetic
permeability µ are varying in space, time-invariant and both
positive functions. The boundary of Ω is defined as ∂Ω =
Γm ∪ Γa with Γm ∩ Γa = ∅. The boundary conditions are
chosen as

n× E = 0, on Γm × [0, T ],

n× E +

√
µ

ε
n× (n×H) = ginc, on Γa × [0, T ],

(2)

where n denotes the unit outward normal to ∂Ω and

ginc = n× E inc +

√
µ

ε
n× (n×Hinc). (3)

Here (E inc,Hinc) denotes a given incident field. The first
boundary condition is often referred as a metallic boundary
condition and is applied on a perfectly conducting surface.
The second relation is an absorbing boundary condition (ABC)
and takes here the form of the first-order Silver-Müller con-
dition. It is applied on a surface corresponding to an artificial
truncation of a theoretically unbounded propagation domain.
Finally, the system is supplemented with initial conditions:
E0(x) = E(x, 0) and H0(x) = H(x, 0).

III. THE DG DISCRETIZATION IN SPACE

We consider a partition Th of Ω ⊂ R3 into a set of
tetrahedra. Each non-empty intersection of two elements K+

and K− is called an interface. We denote by FIh the union
of all interior interfaces of Th, by FBh the union of all
boundary interfaces of Th, and Fh = FIh ∪ FBh . Note that
∂Th represents all the interfaces ∂K for all K ∈ Th. As a
result, an interior interface shared by two elements appears
twice in ∂Th, unlike in Fh where this interface is evaluated
once. For an interface F ∈ FIh , F = K+ ∩ K−, let v± be
the traces of v on F from the interior of K±. We define the
tangential trace and projection operators γ(v) = n×v|∂K and
π(v) = n× (v × n)|∂K , where n defines the outward normal
vector to the face ∂K. On this interior face, we further define
the following mean values {·} and jumps J·K as {v}F =

1

2
[π(v+) + π(v−)],

JvKF = γ(v+) + γ(v−).

For the boundary faces, these expressions are modified as{
{v}F = π(v+),

JvKF = γ(v+),

since we assume v is single-valued on the boundaries. In
the following, we introduce the discontinuous finite element
spaces and some basic operations on these spaces for later
use. Let PpK (K) denotes the space of polynomial functions of

degree at most pK on the element K ∈ Th. The discontinuous
finite element space is introduced as

Vh =
{

v ∈
[
L2(Ω)

]3 | vK ∈ [PpK (K)]
3
,∀K ∈ Th

}
, (4)

where L2(Ω) is the space of square integrable functions on
the domain Ω. The functions in Vh are continuous inside
each element and discontinuous across the interfaces between
elements. By following the interior penalty approach described
in [11], the DGTD formulation using a central flux can be
derived as follows: find (H, E) ∈ Vh × Vh, so that for
∀Φ ∈ Vh∫

Ω

(curl E + µ∂tH) ·ΦdΩ −∫
Ω

(curlH− µ∂tE) ·ΦdΩ +∫
Fh

{Φ}TF JHKF ds−
∫
Fh

{Φ}TF JEKF ds = 0.

(5)

This is a conservative formulation, but with a suboptimal
O(hp) rate of convergence as derived in [9]. Considering
the Silver-Müller boundary condition (the second equation in
(2)) on boundary Γa. For each face on this boundary, the
trace of a fictitious neighboring element is required for the
computation of the numerical flux. We treat the Silver-Müller
boundary conditions in a weak sense by defining the following
appropriate values of the electric and magnetic fields in the
fictitious element, such that for ∀aik ∈ Γa


Ek =−

√
µi
εi

n×Hi + E inc
i +

√
µi
εi

n×Hinc
i

Hk =

√
εi
µi

n× Ei +Hinc
i −

√
εi
µi

n× E inc
i .

(6)

Inside each finite element Ki, the local electric and magnetic
fields (Eh|Ki ,Hh|Ki) = (Ei,Hi) are expanded as combina-
tions of linearly independent vector basis functions Φil ∈ Vh

presented in [7]-[30]-[31] as follows


Ei(x, t) = Eh(x, t)|τi =

di∑
l

Eil(t)Φil(x),

Hi(x, t) = Hh(x, t)|τi =

di∑
l

Hil(t)Φil(x)

(7)

where di denotes the local number of degrees of freedom
associated to the basis function degree pi in Ki, x denotes
the position vector, and Eil, Hil reflect the coefficient of the
vector basis Φil. After imposing the Silver-Müller boundary
condition on boundary Γa and considering the volume source
term J , we separate the basis function Φ in (5). Then the
following local semi-discrete systems for element Ki in matrix
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form can be obtained

Mε
i∂tEi = KiHi −

∑
k∈V i

i

SikHi −
∑
k∈V i

i

S+
ikHk

−
∑
k∈V a

i

SikHi +
∑
k∈V a

i

SEikEi + f inc,Ei

− jEi ,

Mµ
i ∂tHi =−KiEi +

∑
k∈V i

i

SikEi +
∑
k∈V i

i

S+
ikEk

+
∑
k∈V a

i

SikEi +
∑
k∈V a

i

SHikHi + f inc,Hi ,

(8)

with
(Mε

i )jl =

∫
Ki

ΦT
ij · εiΦildv,

(Mµ
i )jl =

∫
Ki

ΦT
ij · µiΦildv,

(Ki)jl =

∫
Ki

ΦT
ij · ∇ ×Φildv,

(Sik)jl =
1

2

∫
aik

π(ΦT
ij) · γ(Φil)ds,

(S+
ik)jlb =

1

2

∫
aik

π(ΦT
ij) · γ(Φkl)ds,

(SEik)jl =
1

2

√
εi
µi

∫
aik

π(ΦT
ij) · π(Φil)ds,

(SHik)jl =
1

2

√
µi
εi

∫
aik

π(ΦT
ij) · π(Φil)ds,

f inc,Ei =
∑
k∈V a

i

∫
aik

[π(ΦT
ij) · γ(Hinc

i )

− 1

2

√
εi
µi
π(ΦT

ij) · π(Einc
i )]ds,

f inc,Hi =−
∑
k∈V a

i

∫
aik

[π(ΦT
ij) · γ(Einc

i )

+
1

2

√
µi
εi
π(ΦT

ij) · π(Hinc
i )]ds,

jEi =

∫
Ki

ΦT
ij · Jidv,

where V ii denotes the set of indices of the elements which
have a common interface with element Ki, V ai denotes the
set of indices of fictitious neighboring elements introduced
for imposing Silver-Müller ABC on element i, aik denotes
the common face between element Ki and Kk, nik is the
unitary normal vector of the interface aik oriented from Ki

to Kk. Moreover, M∗i (* stands for ε or µ) is the symmetric
positive definite mass matrix, Ki is the stiffness matrix, Sik is
the local (in the sense of element Ki) square interface matrix
and S+

ik is the square (or rectangular if different interpolation
orders are adopted in Ki and Kk) interface matrix merging
basis functions of Ki and Kk, SEik and SHik is the local square
matrix on the Silver-Müller boundary faces, f inc,Ei and f inc,Hi

are the local face integration associated with the given incident
field, and jEi is the local volume integration associated with
current density.

IV. EXPONENTIAL TIME INTEGRATION FOR DGTD

To overcome the restriction on the time step when using
a fully explicit time integration scheme in combination with
a high order spatial discretization method formulated on a
possibly locally refined mesh, we propose a new family of
exponential-based integration methods based on the Lawson
procedure. Exponential time integrators are usually applied to
semi-linear systems of ordinary differential equations (ODEs).
Thus, to construct the form of exponential time integrator that
we will consider, we first derive a global version of the semi-
discrete system of ODEs (8). By gathering the electric and
magnetic unknowns of each element in column vectors of

size d =
Nt∑
i=1

di, denoted by E and H, respectively, the local

semi-discrete systems (8) for each element of the mesh can be
transformed into the following global semi-discrete systems{

Mε∂tE = KH + SEE + f inc,E − jE ,

Mµ∂tH = −KE + SHH + f inc,H ,
(9)

where M∗ is a d× d block diagonal matrix with ith diagonal
block be M∗i ; K is a d× d block sparse matrix with diagonal
blocks be Ki −

∑
k∈Vi

Sik and the remaining nonzero blocks

be −S+
ik; SE and SH are d× d block diagonal matrices with

ith diagonal block be SEi and SHi respectively; f inc,E , f inc,H ,
and jE are column vectors with ith element be f inc,Ei , f inc,Hi ,
and jEi respectively.

In practice, we pre-compute and store the inverse mass
matrices of each element, then reuse them in time advancing
for efficiency. Thus, the global semi-discrete systems can be
rewritten as

∂tE = M−εKH + M−εSEE

+ M−ε(f inc,E − jE),

∂tH = −M−µKE + M−µSHH

+ M−µf inc,H .

(10)

By gathering electric and magnetic unknowns into a single
vector, we first rewrite the global semi-discrete systems (10)
in form of ODEs as follows

∂tU = ABU + Afinc(t)− Aj(t), (11)

where

U =

(
E
H

)
,

A =

(
M−ε 0

0 M−µ
)
, B =

(
SE K
−K SH

)
,

finc(t) =

(
fEinc(t)
fHinc(t)

)
, j(t) =

(
jE(t)

0

)
.

Let C = AB, we have

∂tU = CU + Afinc(t)− Aj(t). (12)
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A. Lawson exponential time integration for DGTD

We proceed as with the application of the Lawson procedure
[26] to non-linear problems [27]-[28], which splits the prob-
lems into linear part and non-linear part and solve the linear
part with high precision. We treat the unknowns corresponding
to the locally refined part of the mesh as the linear part
and calculate it with high accuracy, and treat the remaining
unknowns as the non-linear part. Then we derive the Lawson
exponential time integration for DGTD method formulated
on a locally refined unstructured mesh. We first decompose
the mesh Th into two parts: Th,f is the subset containing the
smallest elements of Th (according to an appropriate geometric
criterion) and Th,c is the remaining subset and Th,c = Th\Th,f .
We further assume that the number of elements in the subset
Th,f is far less than that of Th,c. We then split the unknown
vector according to the decomposition of the mesh

U = PU + (I− P)U,

where P is a diagonal matrix with diagonal entries equal to
zero or one, to identify the unknowns associated with the
locally refined part; I is the identity matrix. Thus, according
to (12) we have

∂tU = CPU + C(I− P)U + Afinc(t)− Aj(t).

Setting
Cf = CP and Cc = C(I− P),

we have

∂tU = CfU + CcU + Afinc(t)− Aj(t). (13)

Now we introduce a new vector

V(t) = e−tCf U(t).

After replacing the original state vector U(t) by this new
vector in (13), the left-hand side becomes

∂t(e
tCf V) = CfetCf V + etCf∂tV, (14)

and the right-hand side becomes

CfetCf V + CcetCf V + Afinc(t)− Aj(t). (15)

Comparing the above two new terms, we have

∂tV =e−tCfCcetCf V + e−tCf [Afinc(t)− Aj(t)] (16)

Note that the transformed system (16) can be time integrated
using an explicit Runge-Kutta scheme or another high order
accurate explicit time integration technique. The result is then
back transformed to provide an approximation in the variable
U. The purpose of transforming the differential equation in the
above-described way is to remove the explicit dependence in
the differential equation on the operator Cf , except inside the
exponential. Notice that, in (16), the spectrum of e−tCfCcetCf

is the same as that of Cc, since the product of e−tCf and etCf

is an identity matrix and thus e−tCfCcetCf is a similarity
transformation of Cc. In other words, the characteristic of
the locally refined part has no impact on the stability of the
system (16), which is only dominated by the coarse part.
Thus the stability of the Lawson exponential time integration

method for the locally refined part of the mesh is excellent
or even unconditional. Therefore, the particular exponential
time integration method considered here not only removes the
stiffness due to the refined part of the mesh on the allowable
time step size, but also reverses the global explicitness when
time integrated using an explicit time integration technique.
Moreover, the global explicitness of the obtained method and
the data locality of DG formulation make it easily parallelized.
These properties of Lawson method enable the possibility
to design a solution strategy which is much more efficient
than the one obtained by applying an explicit time integration
scheme to the original system.

B. Combined Lawson-LSRK time scheme

As mentioned in the previous subsection, the Lawson expo-
nential time integration method can be further time integrated
using various explicit time integration techniques. To obtain
an efficient high order method, we focus on the widely used
Low-Storage Runge-Kutta (LSRK) scheme [29] in this paper.
Runge-Kutta schemes are a class of multi-stage algorithms
that rely on multiple evaluations of the RHS of (16) to evolve
the system in time. Unlike leap-frog schemes, they do not
combine different time levels to eliminate terms in Taylor
expansions of the unknown function, which leads to dispersive
and dissipative schemes. Suppose that one formally integrates
the system

∂tV = f(t,V(t)),

between time stations t and t+ ∆t

V(t+ ∆t)

=V(t) +

∫ t+∆t

t

f(τ,V(τ))dτ

'V(t) + ∆t

s∑
j=1

bjf(t+ cj∆t,V(t+ cj∆t)).

(17)

LSRK is a widely used efficient Runge-Kutta scheme, in
which the required memory is limited compared with classical
Runge-Kutta schemes. It can be expressed as in Algorithm 1.
In this algorithm, φ1 and φ2 are the two unknown vectors
required to be stored during time advancing; ak, bk and
ck are the coefficients of the LSRK scheme; s defines the
number of stages of the LSRK scheme. To time advance the

Algorithm 1 Low-storage Runge-Kutta (LSRK) scheme.

1: φ0
1 = Vn

2: for k = 1 : s do
3: φk2 = akφ

k−1
2 + ∆tf(t+ ck∆t, φk−1

1 )

4: φk1 = φk−1
1 + bkφ

k
2

5: end for
6: Vn+1 = φs1

ODEs (16) of Lawson exponential time integration with the
efficient LSRK scheme, the right-hand side of (16) is used to
replace f(t+ck∆t, φk−1

1 ) in Algorithm 1. Then we obtain the
algorithm of the combined Lawson-LSRK scheme, which is
described in Algorithm 2.
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Algorithm 2 Combined Lawson-LSRK scheme.

1: φ0
1 = Vn

2: for k = 1 : s do

3:

φk2 =akφ
k−1
2 + ∆te−(tn+ck∆t)CfCce(tn+ck∆t)Cfφk−1

1

+ e−(tn+ck∆t)CfAfinc(tn + ck∆t)

− e−(tn+ck∆t)CfAj(tn + ck∆t)

4: φk1 = φk−1
1 + bkφ

k
2

5: end for
6: Vn+1 = φs1

V. COMPUTER IMPLEMENTATION ASPECTS

In this section, we present some techniques for an efficient
implementation of the proposed exponential time integration
method.

A. Transformation of the combined Lawson-LSRK scheme

Obviously, Algorithm 2 is not in a form suitable for a
practical implementation due to the presence of matrices
e±(tn+ck∆t)Cf . One has to evaluate the matrix exponential
with coefficients tn + ck∆t vary from stage (or time step)
to stage (or time step), which is very expensive. Moreover, to
obtain the original unknown vector Un+1, one should compute
another action of matrix exponential Un+1 = etn+1Cf Vn+1.
We note that V(t) = e−tCf U(t), thus matrix-vector products
of the form etnCf Vn are approximations to the solution of
the original problem U(tn). To improve the efficiency of the
combined Lawson-LSRK scheme, we introduce new variable
vectors 

Un =etnCf Vn,

φ∗2 =e(tn+ck∆t)Cfφ2,

φ∗1 =e(tn+ck∆t)Cfφ1.

(18)

To implement this transformation, we multiply both sides
of the equations from Algorithm 2 by the exponential term
e(tn+ck∆t)Cf . Thus, for each stage we have

φ
(k)∗
2 = e(tn+ck∆t)Cfφ

(k)
2

= ake
(ck−ck−1)∆tCfφ

(k−1)∗
2

+ ∆tCce(ck−ck−1)∆tCfφ
(k−1)∗
1 ,

φ
(k)∗
1 = e(tn+ck∆t)Cfφ

(k)
1

= e(ck−ck−1)∆tCfφ
(k−1)∗
1 + bkφ

(k)∗
2 .

(19)

Let
φ

(k−1)∗∗
1 = e(ck−ck−1)∆tCfφ

(k−1)∗
1 .

Then the algorithm of the combined Lawson-LSRK scheme
can be transformed to Algorithm 3. Algorithm 3 is more
appropriate for the practical implementation than Algorithm 2
since the coefficients of the matrix exponentials do not change
while time advancing, which allows for a more efficient
evaluation of matrix exponentials. In addition, we do not have
to compute matrix exponentials associated with the incident
and volume source terms. Moreover, we can pre-compute s+1
matrix exponentials directly and store them before the time
iteration if the matrix Cf is very small.

Algorithm 3 Transformed Lawson-LSRK scheme.

1: φ
(0)∗
1 = Un

2: for k = 1 : s do

3:
φ

(k)∗
2 =ake

(ck−ck−1)∆tCfφ
(k−1)∗
2 + ∆tCcφ(k−1)∗∗

1

+ Afinc(tn + ck∆t)− Aj(tn + ck∆t)

4: φ
(k)∗
1 = φ

(k−1)∗∗
1 + bkφ

(k)∗
2

5: end for
6: Un+1 = e(1−cs)∆tCfφ

(s)∗
1

B. Model reduction for exponential time integration

From Algorithm 3, matrix exponentials in form of e−αCf

(where α is a constant) must be computed. However, Cf
is a global block sparse matrix with dimension 2d × 2d.
The computation of these matrix exponentials can thus be an
expensive task. Moreover, the overhead of computing matrix
exponentials will increase exponentially with the increase of
the dimension of the matrix. For practical problems, the global
matrices often have large dimensions. Therefore, for the com-
putation of those matrix exponentials, the scaling and squaring
method based on Padé approximation [32], an efficient method
for computing the exponential of a small dense matrix, is
not feasible. Alternatively, efficient Krylov subspace methods
can be used, but they still require many operations. In our
setting, the number of very small elements in the mesh is
assumed to be much less than that of large elements. If one
can only compute the exponential of a small matrix linked
to the degrees of freedom in the smallest mesh elements, the
overall computational work will decrease significantly. Since
the unknowns associated to the elements in the coarse part
of the mesh are zero in Cf and the number of very small
mesh elements is assumed to be much less than that of large
elements, Cf is a large and very sparse matrix. Assuming the
matrix C can be constructed as a 2-by-2 block matrix

C =

(
Cff Cfc
Ccf Ccc

)
, (20)

where Cff (respectively Ccc) consists of the degrees of
freedom associated to the elements inside the fine (respectively
coarse) part. The remaining blocks, Cfc and Ccf , correspond
to the coupling faces between the coarse and fine parts. Thus,
the corresponding diagonal projection matrix P for splitting
the unknown vector must has the following form

P =

(
Iff 0
0 0

)
.

Then we have

Cf = CP =

(
Cff 0
Ccf 0

)
. (21)

We recall the ϕ-functions [33]ϕk(−tA) =

∫ t

0

e−(t−τ)A τk−1

(k − 1)!
dτ k ≥ 1,

ϕ0(−tA) =e−tA
(22)
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which satisfy the recurrence relation
ϕk+1(−tA) =

ϕk(−tA)− 1

k!
−tA

ϕk(0) =
1

k!
.

(23)

It can be easily proved that

Cnf =

(
Cff 0
Ccf 0

)n
=

(
Cnff 0

CcfCn−1
ff 0

)
, n > 1. (24)

Let ϕ0(x) =
∞∑
n=0

1

n!
xn be the Taylor expansion of ϕ0(x), we

have

e−αCf =ϕ0(−αCf )

=

∞∑
n=0

1

n!
(−αCf )n = I +

∞∑
n=1

1

n!
(−αCf )n

=

(
Iff 0
0 Icc

)
+

∞∑
n=1

1

n!
(−α)n

(
Cnff 0

CcfSn−1
ff 0

)

=


Iff +

∞∑
n=1

1

n!
(−α)nCnff 0

∞∑
n=1

1

n!
(−α)nCcfCn−1

ff Icc

 ,

(25)
where

Iff +

∞∑
n=1

1

n!
(−α)nCnff = ϕ0(−αCff )

and
∞∑
n=1

1

n!
(−α)nCcfCn−1

ff

=Ccf

[
C−1
ff − C−1

ff +

∞∑
n=1

1

n!
(−α)nCnffC

−1
ff

]

=Ccf

[
Iff − Iff +

∞∑
n=1

1

n!
(−α)nCnff

]
C−1
ff

=Ccf [ϕ(−αCff )− Iff ]C−1
ff

=− αCcfϕ1(−αCff ).

Then, we have

e−αCf = ϕ0(−αCf ) =

(
ϕ(−αCff ) 0

−αCcfϕ1(−αCff ) Icc

)
.

(26)
Therefore, rather than evaluating the exponential e−αCf of a
large sparse matrix directly, one can compute the exponential
e−αCff instead. Since the number of elements in the subset
Th,f is assumed to be much less than that of Th,c, the order
of the matrix required to compute exponential reduces sig-
nificantly. Thus, the computational overheads will be reduced
significantly.

To construct the block matrix form (20), we have to reorder
the rows and columns of the matrix C. This reordering can be
expressed as a permutation matrix Q and

Ĉ = QCQT .

To obtain the form of the transformed system (16) of Lawson
exponential time integration, we first use Q to reorder the
unknown vector U and the rows of C as follows

∂t(QU) = QCU.

Since Q is a permutation matrix, we have that

QQT = QTQ = I,

therefore
∂t(QU) = QCQTQU = ĈQU. (27)

Let W(t) = QU(t), we have

∂t(W) = ĈW, (28)

which has the same form as (16). Therefore, we can easily
obtain a more efficient algorithm by following the procedures
and algorithms described in subsections IV-A and IV-B.

C. Efficient computation of matrix exponential

There are several ways to compute the matrix exponential
e−tA (or the related matrix functions ϕ(−tA)) for a given
square matrix A that can be classified into two kinds. The
first kind of methods comprise methods based on Taylor de-
velopments [34], Padé approximates [32], scaling and squaring
methods [35] with Padé or Taylor approximations, and so
on. These methods are designed for computing the matrix
exponential e−tA of a small dense matrix A directly. Among
these methods, scaling and squaring methods are generally
competitive, which are efficient for small dense matrices.
However, for the computation of large matrix exponential,
these methods are inefficient or even infeasible. The second
kind of methods include Krylov subspace methods [23]-[36]-
[22] and Chebyshev polynomials based methods [37]. They
allow to compute the product e−tAv for a given vector v and
various values of t. These methods are very effective for large
sparse problem. The Chebyshev polynomials based methods
are mostly used for computing the matrix exponentials of
symmetric or skew-symmetric matrices. Computing matrix ex-
ponentials with these methods for general matrices is possible
but not trivial [38]. Krylov subspace based methods seem to
combine versatility and efficiency, and are more effective for
general problems [32].

Note that in Algorithm 3, the coefficients ck of the LSRK
scheme are known. If the matrix Cf is very small and the
first kind of methods are adopted, we can pre-compute s+ 1
matrix exponentials and store them before starting the time-
stepping loop instead of computing them at each time step.
This decreases the computational overheads significantly at
the expense of an increase in the memory requirement.

For generalization and efficiency, we adopt the more ef-
ficient Krylov subspace type methods. In these methods the
matrix-vector product eAv is approximated as following

eAv ≈ [v̂,Av̂, · · · ,Am−1v̂]eHme1 = VmeHme1, (29)

where A is a n×n matrix, v̂ is a Krylov subspace basis vector
with dimension n, which is usually obtained by normalizing
the given vector v to v̂ = v/‖v‖, m is the dimension of
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Krylov subspace which is typically smaller than the dimension
n of A, Hm is a m × m upper Hessenberg matrix, e1 is
the first column of Im. Accurate enough approximations are
often obtained with relatively small m, and computable error
bounds exist for the approximation. Thus, the large sparse eA

problem is replaced with a small dense eHm problem which
can be computed by the scaling and squaring methods based
on Padé approximations efficiently. The cost of computing
the expression VmeHme1 is usually much smaller than the
cost needed to compute eAv [27]. In this paper, the routines
EXPV and PHIV in Expokit [39], a software package that
provides matrix exponential routines for very large sparse
matrices based on Krylov subspace approximations, are used
to compute etAv and ϕ1(tA)v, respectively.

VI. NUMERICAL EXPERIMENTS

In this section, several numerical experiments are presented
to illustrate the stability, investigate the accuracy and excepted
order of convergence, and demonstrate the computational per-
formance of the proposed exponential-based Lawson-LSRK
time integration method. Firstly, we consider the problem
of the propagation of a plane wave in vacuum for which a
simple analytical solution is available. We then present the
problem of the radiation of a localized source in a PEC
composite structure. Note that the fourth order five stages Low-
Storage Runge-Kutta (LSRK(5,4)) scheme is adopted in the
following numerical experiments. The numerical experiments
are performed on a workstation equipped with an Intel Xeon
CPU running at 3.70 GHz with 32 GB of RAM memory, the
codes are implemented serially.

A. Plane wave propagation in vacuum

We consider a cube of edge 1 m (Ω = [0, 1]3) filled
with vacuum. We apply the Silver-Müller ABC condition
on each side of the cube, which is illuminated by a plane
wave Einc = E0 cos{w0[t − k(x − x0)/c0]} with frequency
300 MHz, where E0 = (1, 0, 0), k = (0, 0, 1), x0 = (0, 0, 0);
w0 indicates angular frequency, and c0 indicates the speed
of light in vacuum. In order to introduce a grid-induced
stiffness, several meshes with local refinement in the center
of the cube are used to assess the accuracy and perform a
numerical convergence study of the combined Lawson-LSRK
scheme. The characteristics of these meshes are given in
Table I, where Nv indicates the number of vertices, Nt the
number of tetrahedra, and hmax (relatively hmin) the maximal
(relatively minimal) edge length in the meshes. Figure 1 gives
a 3D view of the mesh M4, where the mesh elements in the
fine part are marked by red. In this subsection, the Expokit
routines are used with a maximal dimension m of the Krylov
subspace set to 4, while the threshold tol for monitoring
the accuracy of the matrix exponential calculation is set to
be 0.5 (relative tolerance). As a general rule, keeping m
small allows to minimize the computational work and memory
usage. However, the convergence of the Krylov method may
deteriorate when decreasing m too much, and a large number
iterations may be required to achieve the required accuracy.

TABLE I: Plane wave propagation in vacuum: characteristics
of locally refined meshes.

M1 M2 M3 M4

Nv 635 1 887 4 203 7 759

Nt 2 968 9 336 21 496 40 616

hmax 2.89E-01 1.96E-01 1.40E-01 1.13E-01

hmin 2.60E-03 1.25E-03 9.20E-04 8.68E-04

hmax/hmin 110.9 156.7 152.0 130.4

Fig. 1: Plane wave propagation in vacuum: partial view of
mesh M4.
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Fig. 2: Plane wave propagation in vacuum: time evolution of
the global L2 norm of the error and the time evolution of the
energy obtained by the DGTD methods based on the combined
Lawson-LSRK scheme.

We first investigate the stability of the combined Lawson-
LSRK scheme. Figure 2 shows the time evolution of the
global L2-norm of the error and the energy for the DGTD
method based on the combined Lawson-LSRK scheme using
mesh M1. The simulation time is set to 60 periods of the
incident plane wave. It is seen that the global L2-norm of the
error decreases rapidly and stabilizes to a limit value, which
illustrates the stability of the proposed Lawson-LSRK scheme.
To investigate the convergence order of the combined Lawson-
LSRK scheme, we then measure the global L2-norm of the
error for the sequence of four successively locally refined
tetrahedral meshes given in Table I. The error is plotted as a
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Fig. 3: Plane wave propagation in vacuum: numerical conver-
gence order obtained by the DGTD-Pk methods based on the
combined Lawson-LSRK scheme.

function of 1/h, in logarithmic scale. The DGTD-Pk methods
with k = 1, 2 or 3 are considered (note that in this paper, P3

indicates the incomplete order curl-conforming vector basis
presented in [7], while for the other lower interpolation orders,
the complete order curl-conforming vector basis presented in
[30] is used). The measured convergence orders in Figure 3 are
compatible with the expected theoretical behavior. The order
of convergence for the DGTD-P1 and DGTD-P2 methods are
1.03 and 2.02, respectively. As for the DGTD-P3 method, the
order of convergence is 2.36, which is slightly weaker than
the theoretical order 2.5. These results also confirm that the
subdivision into coarse and fine elements is not detrimental
to the convergence order of the combined Lawson-LSRK
scheme. Figure 4 shows that the time evolution of the global
L2-norm of the error obtained with the DGTD-Pk methods
based on the combined Lawson-LSRK scheme and the fully
explicit LSRK scheme converge to the same accuracy. Note
that the DGTD-Pk methods based on the fully explicit LSRK
scheme take more physical time to converge than the methods
based on the combined Lawson-LSRK scheme. We observe
that this phenomenon is more apparent when the interpolation
order increases. Moreover, by comparing the two sub-figures
in Figure 4, we also observe that this phenomenon becomes
more apparent with the refinement of the mesh. In addition,
from Figure 5, we observe that the time evolution of the
electric fields at selected locations in the coarse part and
fine part of the mesh match the exact solution very well.
This confirms that the proposed Lawson-LSRK scheme is
accurate for locally refined meshes. Now we investigate the
computational performance of the combined Lawson-LSRK
scheme in comparison with that of the fully explicit LSRK
scheme. The physical simulation time is set to T = 1 m
which corresponds to one period of the incident plane wave.
The locally refined mesh M4 is used. The characteristics
of the matrices for DGTD-Pk methods are summarized in
Table II, where Dim and Nz indicate the matrix order and the
number of nonzero terms respectively. The obtained results are
summarized in Table III. We note that the proposed Lawson-
LRSK scheme allows to reduce noticeably the required number
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Fig. 4: Plane wave propagation in vacuum: time evolution of
the global L2-norm of the error obtained with the DGTD-Pk
methods based on the combined Lawson-LSRK scheme versus
the fully explicit LSRK scheme using (a) mesh M1 and (b)
mesh M4.
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Fig. 5: Plane wave propagation in vacuum: time evolu-
tion of the electric fields at the points with coordinates
(0.35,0.35,0.35), in the coarse part, (0.5,0.5,0.5) in the fine
part, obtained with the DGTD-P2 method based on the com-
bined Lawson-LSRK scheme using mesh M4.

of time iterations to reach the final physical time due of
the increase of the allowable time step size. As a result,
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TABLE II: Plane wave propagation in vacuum: characteristics
of matrices for the DGTD-Pk methods.

Pk Dim DimCff
NzCff

P1 974 784 12 288 437 760

P2 2 436 960 30 720 2 905 979

P3 3 655 440 46 080 4 795 192

despite the overhead of computing matrix exponentials, the
new scheme outperforms the fully explicit LSRK scheme in
terms of CPU time. Herein, the time step size of the DGTD-
Pk methods based on the combined Lawson-LSRK scheme
is chosen to be 32 times larger than that of the fully explicit
LSRK scheme. We can observe that the DGTD-Pk methods
based on the combined Lawson-LSRK scheme is much faster
than the methods based on the classical fully explicit LSRK
scheme, which yields 24.3, 20.5, and 20.3 speedups for the
DGTD-P1 to DGTD-P3 methods respectively. Note that we
obtain a significant CPU gain only with the price of slight
memory usage increase, which is around 2.5% here. Figure 6
indicates that the DGTD-Pk methods based on the combined
Lawson-LSRK scheme outperform the methods based on the
fully explicit LSRK scheme for efficiency, where the former
is able to converge to a given accuracy much faster than
the later. For DGTD-Pk methods based on the fully explicit
LSRK scheme, the number of arithmetic operations is almost
constant during time advancing and thus the CPU time for each
time step is the same. However, the situation is different for
the Lawson-LSRK scheme since a Krylov method is adopted
to compute the action of matrix exponential etAv, in which
the vector v changes with the time advancing. Therefore,
the number of Krylov iterations is not constant and thus the
CPU time for each time step changes with time advancing.
The number of Krylov iterations for the DGTD-Pk methods
based on the combined Lawson-LSRK scheme is plotted in
Figure 7. We observe that the number of Krylov iteration of
each time step for DGTD-P2 and DGTD-P3 methods fluctuate
at the beginning of time advancing and tend to be stable with
the time advancing. The average number of Krylov iterations
at each time step for the DGTD-Pk methods based on the
combined Lawson-LSRK scheme are respectively 10.7, 11.2,
and 11.6 for k = 1, 2, 3. For the DGTD-P2 and DGTD-P3

methods, the number of Krylov iterations are always larger
than the final stable number. That is to say, the CPU time for
each time step is more likely larger at the beginning of the time
advancing. Moreover, as mentioned previously, the DGTD-
Pk method based on the combined Lawson-LSRK scheme
requires less physical time to converge to a periodic regime
than when using a fully explicit LSRK scheme, especially
for the more refined meshes or for higher values of the
interpolation order k. Thus, in these conditions, the advantage
in terms of efficiency of the combined Lawson-LSRK scheme
against the fully explicit LSRK scheme will be more apparent.

Table IV summarizes performance figures of the DGTD-P1

method based on the two time schemes. Here the time step
size of the combined Lawson-LSRK scheme is 32 times larger
than that of the fully explicit LSRK scheme. We observe that

TABLE III: Plane wave propagation in vacuum: performance
figures of the DGTD-Pk methods based on the combined
Lawson-LSRK scheme versus the fully explicit LSRK scheme
using mesh M4.

Pk

∆tLawson
∆tLSRK

CPU (mn) Peak Mem (MB)

LSRK Lawson Gain LSRK Lawson

P1 32 73 3 24.3 511 522

P2 32 205 10 20.5 1 804 1 850

P3 32 507 25 20.3 3 466 3 547
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Fig. 6: Plane wave propagation in vacuum: maximal L2-norm
of the error of electric fields in function of CPU time obtained
for DGTD-Pk methods based on the combined Lawson-LSRK
scheme versus the fully explicit LSRK scheme.
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Fig. 7: Plane wave propagation in vacuum: number of Krylov
iterations for DGTD-Pk methods based on the combined
Lawson-LSRK scheme.

the speedup between the two time schemes increases when
reducing the percentage of mesh elements in the fine part
(Rf is the proportion of refined elements in the entire mesh).
It is shown in Figure 8 that the speedup of the DGTD-P3

method based on the combined Lawson-LSRK scheme versus
the fully explicit LSRK scheme increases steadily with the
radio of the time step sizes of the former to that of the later
for a given mesh. We also notice that the growth rate of the
speedup gradually reduces with an increasing Rf . The reason
is that the dimension of the matrix Cff becomes larger and
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TABLE IV: Plane wave propagation in vacuum: performance
figures of the DGTD-P1 method based on the combined
Lawson-LSRK scheme versus the fully explicit LSRK scheme
using meshes with different refinement ratio.

Mesh Rf (%)
CPU (sec) Peak Mem (MB)

LSRK Lawson Gain LSRK Lawson

M1 18.1 104 9 11.6 51 59

M3 2.6 2 510 100 25.1 269 286

M4 1.3 4 389 156 28.1 511 522
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Fig. 8: Plane wave propagation in vacuum: percentage of
refined elements and speedup of the DGTD-P3 method based
on the combined Lawson-LSRK scheme versus the fully
explicit LSRK scheme as a function of the time step size ratio
of the former to the later using mesh M3.

thus the overhead for exponential calculation increases.

B. Composite structure with a localized radiation source

We now consider a composite structure made of a PEC
sphere and a small PEC cylinder, where the sphere is of
radius 1 m and the cylinder of radius 0.02 m and height
0.1 m as shown in Figure 9. A localized radiation source
is placed in the gap between these two structures, where
the size of the gap is 0.1 m. The computational domain
is truncated by a Silver-Müller ABC. The localized source
Jz(x, t) = sin(ωt)e−(x−xs)2 , with frequency f = 300 MHz
is oriented along the z-axis, and localized at the midpoint
xs = (−1.05, 0, 0) of the gap. To capture the localized source
accurately, the elements around the source point are locally
refined and marked in red in Figure 9 (b). The characteristics
of this mesh are given in Table V. In this case, the settings of
the Krylov subspace method are m = 4 and tol = 10−1.

Note that there is no analytical solution for this case. The
numerical solutions obtained with the DGTD-Pk (k = 1, 2, 3)
methods based on the combined Lawson-LSRK scheme are
compared with those resulting from the methods based on
the fully explicit LSRK scheme to verify the accuracy of
the proposed time scheme. The time evolution of the electric
components at a given point obtained by the DGTD-P1

method based on the combined Lawson-LSRK scheme and
the fully explicit LSRK scheme is plotted in Figure 10. We

(a)

(b)

Fig. 9: Composite structure with a localized radiation source:
View of the composite structure mesh.

TABLE V: Composite structure with a localized radiation
source: characteristics of the composite structure mesh.

Nv Nt hmax hmin hmax/hmin

16 805 76 755 3.96E-01 6.73E-04 188

observe that the solution obtained by the methods based on
those two time schemes agree very well. Figure 11 gives
the electric distribution, in logarithmic scale, of three cross
sections obtained by the DGTD-P3 method based on the
combined Lawson-LSRK scheme at a given time in the last
period of simulation. To further investigate the efficiency of
the DGTD-Pk methods based on the combined Lawson-LSRK
scheme, performance figures are again compared with those
obtained by the methods based on the fully explicit LSRK
scheme. The physical simulation time is set to T = 1 m.
Results are summarized in Table VI. The characteristics of
the corresponding matrices are given in Table VII. It is shown
that the DGTD-P1 method based on the fully explicit LSRK
scheme requires 170 minutes to complete the simulation of
1 period. In contrast, the method based on the combined
Lawson-LSRK scheme only needs 4 minutes, which is 42.5
times faster than that method based on the LSRK scheme.
Likewise, the DGTD-P2 and DGTD-P3 methods based on the
combined Lawson-LSRK scheme yields 24.2 and 23.8 CPU
speedups, respectively. Although the efficiency of the DGTD-
Pk methods improved significantly when using the proposed
time scheme, the peak memory usage is moderately increased,
6.15%, 5.5% and 5% for the P1 to P3 methods respectively.
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Fig. 10: Composite structure with a localized radiation source:
time evolution of the electric field at a given point obtained by
the DGTD-P1 method based on the combined Lawson-LSRK
scheme versus fully explicit LSRK scheme.

VII. CONCLUSION

In this paper, a new family of exponential time integration
methods for solving 3D time-domain Maxwell’s equations
discretized by a high order DG scheme formulated on lo-
cally refined unstructured meshes, has been proposed. These
methods have excellent or even unconditional stability for the
locally refined part of the mesh, which gives rise to much
larger time step size than that of existing explicit time stepping

(a)

(b)

(c)

Fig. 11: Composite structure with a localized radiation source:
contour lines of the amplitude of the electric field in the planes
(a)XOY (b)XOZ (c)YOZ obtained by the DGTD-P3 method
based on the combined Lawson-LSRK scheme.

schemes. This greatly decreases the time iterations for a given
physical simulation time. Moreover, time integration can rely
on a variety of explicit time stepping schemes and hence
lead to efficient and accurate global explicit time integration
methods. Additionally, the global explicitness of the obtained
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TABLE VI: Composite structure with a localized radiation
source: performance figures of the DGTD-Pk methods based
on the combined Lawson-LSRK scheme versus the fully
explicit LSRK scheme.

Pk
∆tLawson

∆tLSRK

CPU (mn) Peak Mem (MB)

LSRK Lawson Gain LSRK Lawson

P1 64 170 4 42.5 927 984

P2 54 460 19 24.2 3 322 3 505

P3 64 1 072 45 23.8 6 419 6 743

TABLE VII: Composite structure with a localized radiation
source: characteristics of matrices for DGTD-Pk methods.

Pk Dim DimCff
NzCff

P1 1 819 988 35 578 1 153 108

P2 4 563 270 90 462 6 450 202

P3 6 857 088 137 097 13 303 005

method and the data locality of DG formulation makes it easily
parallelized. For instance, a low-storage Runge-Kutta scheme
is employed here, and a combined Lawson-LSRK scheme
is constructed. Additionally, several efficient techniques are
presented to further improve the proposed exponential time
integration methods. The accuracy and numerical convergence
of the proposed exponential time integration methods have
been verified through numerical experiments. These numerical
experiments demonstrate that the DGTD-Pk methods based on
the combined Lawson-LSRK scheme outperforms the fully ex-
plicit DGTD-Pk methods with the same accuracy and negligi-
ble memory usage increase. Therefore, the DGTD-Pk methods
based on the proposed high order exponential time integration
methods are very promising for the numerical simulation of
3D transient multiscale electromagnetic problems.
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