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ABSTRACT

Approximate Message Passing (AMP) is an iterative reconstruction

algorithm that performs signal denoising within a compressive sens-

ing framework. We propose the use of heavy tailed distribution

based image denoising, specifically using a Cauchy prior based Max-

imum A-Posteriori (MAP) estimate within a wavelet based AMP

compressive sensing structure. The use of this MAP denoising al-

gorithm provides extremely fast convergence for image based com-

pressive sensing. The proposed method converges approximately

twice as fast as the compared AMP methods whilst providing supe-

rior final MSE results over a range of measurement rates.

1. INTRODUCTION

Compressed sensing is a recent breakthrough in signal processing

whereby a sparse signal can be effectively captured within the com-

pressed domain by making a reduced number of measurements com-

pared to the Nyquist limit [1, 2]. Conventional compression algo-

rithms fully sample a signal and transform this signal into a more

sparse domain before compression. Conversely, compressive sens-

ing aims to directly sample within such a domain therefore reducing

the number of input measurements and the need to store and process

a fully sampled signal before compression.

The wavelet transform of a natural image is typically sparse. It

thus provides a suitable space within which to perform compressive

sampling. Sampling the image in the transform eliminates the need

for full sampling and transformation, significantly reducing compu-

tational and memory requirements. The reconstruction of the image

in such a framework is conventionally achieved using Linear Pro-

gramming (LP) [3] but has been recently more efficiently achieved

using AMP based methods [3–5]. A key element of image based

AMP reconstruction is the use of denoising methods. A summary of

the most effective image denoising methods (within the structure of

AMP) is given by Metzler [6].

1.1. Contributions

This work extends the two dimensional wavelet AMP system pro-

posed by Som and Schniter [5] and Tan et al. [4] through the in-

tegration of a novel denoising algorithm. This denoising method

utilises a heavy tailed Cauchy prior within a MAP denoising struc-

ture leading to faster convergence and improved quantitative results.

This is enabled through the solution of the analytic differential equa-

tions within the MAP and AMP frameworks (equations (17) and
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(19)). Additionally, an improved AMP structure is proposed us-

ing more effective wavelet transforms (sym4 filters replace Haar

filters as previously used in [4]) in conjunction with analytic solu-

tions to the derivatives of the previously implemented Soft Thresh-

olding (ST) and Amplitude-Scale-Invariant Bayes Estimator (ABE)

methods (summarised in table 1).

A review of related work and the general background of AMP

and compressive sensing / sampling is first presented in section 2.

Subsequently, section 3 describes the Cauchy-MAP image denoising

method and how it is applied to an AMP framework. Results and a

discussion are presented in section 4 followed by a conclusion in

section 5.

2. APPROXIMATE MESSAGE PASSING

The Approximate Message Passing (AMP) reconstruction algorithm

defined by Donoho et al. [3] is a matrix based iterative reconstruction

algorithm for single dimensional signals inspired by belief propaga-

tion techniques common in graphical networks.

AMP has been extended by Tan et al. [4] and Som and Schniter

[5] for image reconstruction within a compressive image sampling

framework. These authors have used various image denoising al-

gorithms to implement the AMP iterative structure. The D-AMP

method has been recently developed in order to integrate non-

thresholding image denoising algorithms [6]. However, these de-

noising algorithms (such as BM3D [7]) do not have an analytical

expression, the AMP structure is approximated.

2.1. Compressive Sensing Framework for Images

Assuming an image with dimensions W × H , the image is first

formed into a column vector of length N (= W × H). Assuming

a noiseless compressive sensing model, the observed measurements

(comprising a vector y of length M : y ∈ R
M ) are defined as the

multiplication of the measurement matrix (Φ ∈ R
M×N ) with the

image column vector x:

y = Φx. (1)

The measurement vector y is observed and the original image signal

x is reconstructed using one of a choice of reconstruction algorithms.

Approximate Message Passing is one such reconstruction algorithm.

2.2. Algorithmic Framework

A surprising result of compressive sensing is that, although the mea-

surement matrix Φ can defined in many different forms, it it is often



most effective with random entries. Specifically, within the scheme

of Donoho et al. [3] the matrix entries of Φ are independent and i.i.d.

N (0, 1/M) distributed.

Given an initial guess of x0 = 0, the first order AMP algo-

rithm iterates to convergence using the following alternating expres-

sions [3]:

x
t+1 = ηt

(

Φ
T
z
t + x

t
)

, (2)

z
t = y −Φx

t +
1

δ
z
t−1〈η′

t−1

(

Φ
T
z
t−1 + x

t−1
)

〉, (3)

where the under-sampling fraction (measurement rate) is δ = M/N
and ΦT is transpose the measurement matrix Φ. Furthermore, the

functions η (·) and η′ (·) are the threshold function and its first

derivative respectively (known as the Onsager term [4]).

2.3. Wavelet Based AMP

A discrete wavelet transform provides a sparse representation do-

main for natural images. In order to make the compressive sensing

framework effective for such images, the compressive sensing AMP

framework encapsulated by (2) and (3) can be integrated with the

wavelet transform. The signal thresholding function η (·) transforms

into a wavelet based image denoising function [4]. Denoting the

wavelet transform and its inverse as W and W−1, the wavelet coef-

ficients θx are related to the (vectorised) image x as θx = Wx and

x = W−1θx.

In this scenario the iterative forms (2) and (3) become:

θt+1
x = ηt

(

(
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z
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)

, (4)

z
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ΦW−1) θtx

+
1

δ
z
t−1〈η′

t−1

(

(

ΦW−1)T
z
t−1 + θt−1

x

)

〉,

z
t = y −Φx

t

+
1

δ
z
t−1〈η′

t−1

(

(

ΦW−1)T
z
t−1 + θt−1

x

)

〉. (5)

As we have chosen an orthonormal wavelet transform WWT =
WTW = I , the input into the denoising function η (·) (4) simplifies

to

(

ΦW−1)T
z
t + θtx = WΦT

z
t +Wx

t = Wq
t = θtq, (6)

where qt is the noisy measured image vector defined as:

q
t = Φ

T
z
t + x

t. (7)

3. MAP BASED IMAGE DENOISING USING A HEAVY

TAILED CAUCHY PRIOR FOR AMP

It has been identified that wavelet coefficients are accurately mod-

elled by heavy tailed representations such as α-stable distribu-

tions [8]. However, for the general case, α-stable distributions have

no closed form expressions for analytic manipulation and therefore

have no effective use within subsequently defined MAP denoising

algorithms [9, 10]. However, the Cauchy distribution (a special case

of the α-stable family) not only has a heavy tailed form but has a

compact analytical PDF expression of the form:

P (w) = γ
(w2+γ2)

, (8)

where w is the value of a wavelet coefficient and γ is the parameter

controlling the spread of the distribution known as the dispersion.

Firstly, the original image is assumed to be contaminated with

additive Gaussian noise. This leads to an equivalent additive noise

model for the wavelet coefficients in the transform domain [10]:

v = w + n, (9)

where v is the measured wavelet coefficient, w is the clean coef-

ficient and n is the Gaussian distributed error signal (n and w are

assumed to be statistically independent).

In order to denoise the observed coefficients, a MAP estimator

of the clean coefficient value w given the observed coefficient value

v can be defined as

ŵ(v) = arg max
w

Pw|v(w|v). (10)

An expression for the a-posteriori distribution Pw|v(w|v) can be

given using the Bayes’ theorem:

Pw|v(w|v) =
Pv|w(v|w)Pw(w)

Pv(v)
. (11)

Assuming a normal noise distribution (Pn(v − w) = Pv|w(v|w)),
disregarding the constant evidence term Pv(v) and taking the natural

logarithm, (11) can be expressed as:

ŵ(v) = arg max
w

[

−
(v − w)2

2σ2
+ log (Pw(w))

]

,

= arg max
w

[

−
(v − w)2

2σ2
+ log

(

γ

(w2 + γ2)

)]

.(12)

The solution to (12) can be found by taking the first derivative of the

argmax argument (with respect to w) and setting to zero:

v − w

σ2
−

2w

w2 + γ2
= 0. (13)

This leads to the cubic:

ŵ3 − vŵ2 + (γ2 + 2σ2)ŵ − γ2v = 0. (14)

The solution to (14) is found (using Cardano’s method) to be:

ŵ = η (v) =
v

3
+ s+ t, (15)

where s and t are defined as:

s = 3
√

q
2
+ dd, t = 3

√

q
2
− dd, (16)

dd =
√

p3/27 + q2/4,

p = γ2 + 2σ2 − v2/3,

q = vγ2 + 2v3/27− (γ2 + 2σ2)v/3.

Using some simple manipulations, the first derivative of the denois-

ing function defined in (15) is given by:

ŵ′ = η′ (v) = 1/3 + s′ + t′. (17)



Where s′ and t′ are found as follows:

s′ = q′/2+dd′

3(q/2+dd)(2/3)
, t′ = q′/2−dd′

3(q/2−dd)(2/3)
,

dd′ = p′p2/9+q′q/2
2dd

, (18)

p′ = −2v/3,

q′ = −2σ2/3 + 2γ2/3 + 2v2/9.

The noise variance σ2 is estimated as the variance of the elements

of vector z defined in (4) and (5) [4]. The dispersion parameter γ
is estimated as given in Achim [11]. This denoising algorithm is

utilised within (4) through the denoising of the individual vector el-

ements of θtq denoted as θtq,i at position i in the vector and θt+1
x,i

similarly defined (see (7)). The subsequent denoising algorithms are

described given the measured wavelet coefficient v = θtq,i and the

clean wavelet coefficient estimate for the next iterations as ŵ = θt+1
x,i

i.e. v is denoised to form ŵ for all elements in the vectors.

3.1. Comparative Methods

Two comparative methods were implemented to benchmark the per-

formance of the proposed system: Soft Thresholding (ST) and the

Amplitude-Scale-Invariant Bayes Estimator (ABE).

3.1.1. Soft Wavelet Thresholding: ST

Soft wavelet Thresholding (ST) is a simple thresholding function

proposed by Donoho and Johnstone [12] that takes a threshold T
and modifies each wavelet coefficient according to

ŵ = η(v) = sign(v)(|v| − T ) · 1(|v|>T ) (19)

where 1(·) denotes the indicator function. The threshold T is calcu-

lated as the M th largest magnitude value of θtq at each iteration [3].

3.1.2. Amplitude-Scale-Invariant Bayes Estimator: ABE

An additional denoising function for wavelet coefficient shrinkage is

the so called Amplitude-Scale-Invariant Bayes Estimator proposed

by Figueiredo and Nowak [13]. In the framework of the AMP re-

construction algorithm, the new estimate θt+1
x based on the previous

estimate θtx is given by:

ŵ = η (v) =

(

v2 − 3σ2
)

+

v
, (20)

where σ2 is the noise variance of the present iteration t and (·)+ is a

function such that (u)+ = 0 if u ≤ 0 and (u)+ = u if u > 0.

Table 1 summarises the denoising and Onsager terms of the

ABE, ST and Cauchy-MAP methods (η (·) and η′ (·)).

4. RESULTS

Figure 1 shows the normalised Mean Squared Error (NMSE) results

for the proposed method and the two comparative methods (ST and

ABE). This figure shows the averaged results across all 591 test

images. The dataset of 591 images is obtained from “pixel-wise

labelled image database v2” at http://research.microsoft.com/en-

us/projects/objectclassrecognition. This dataset was also used for

AMP reconstruction experiments by Tan et al. [4] and Som and

Schniter [5] and similarly used a top left patch (in this case of

128× 128 pixels).

Figure 2 visualises the results of the three considered denoising

algorithms within the wavelet based AMP framework. This figure

shows an original image together with the first four reconstruction

iterations for the three denoising methods. This figure reflects the

extremely fast convergence of the proposed method (also reflected

in the NMSE results shown in figure 1).

Table 2 shows quantitative final results after 30 iterations (aver-

aged over all 591 images). This table highlights the improvement

in NMSE associated with the proposed method compared to ST and

ABE. Also, although the speed of the proposed method is slightly

slower than the ST and ABE methods this is significantly offset by

the faster convergence of the Cauchy-MAP based approach.

Although state of the art denoising algorithms have been im-

plemented within an AMP framework (such as BM3D [7] within

D-AMP [6]), the first derivative Onsager term used in these cases

is only an approximation (rather than an exact analytical function

as developed in our work). Additionally, it is shown within the D-

AMP structure that wavelet thresholding (such as the Cauchy-MAP)

is two orders of magnitude faster converging than the state of the

art methods such as BM3D. Furthermore, our proposed method is

specifically adapted to heavy tailed distributions and therefore is be

applicable to signals having this characteristic (such as ultrasound

images etc.). This will be investigated in future work.
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Fig. 1. Normalised Mean Squared Error (NMSE) vs iteration

number. Results averaged over 591 input image patches (top left

128× 128 from each image). Measurement ratio (δ) is 0.1831. The

measurements were noiseless.

4.1. Discussion

The input for each reconstruction experiment was the top left hand

128 × 128 patch from each of the images in the dataset. The in-

put signal x was a vectorised version of this image patch of length

16384.

The wavelet transform W was implemented to 7 levels using

the sym4 filters with critical sampling at each stage and symmetric

extension (to preserve transform orthogonality and ensure W−1 =
WT , essential for efficient computation of the iterations given in

(4),(5) and (6)). The sym4 filters were chosen as they are approxi-

mately symmetric and have a filter length which gives the best result



Table 1. Summary of η (·) and η′ (·) functions for use in AMP reconstruction where v is the ith element of θtq to be denoised i.e. v = θtq,i

Algorithm η (·) η′ (·)

Cauchy-MAP v/3 + s+ t (15) 1/3 + s′ + t′ (17)

ABE
(v2−3σ2)

+

v
(20) 1(v2>3σ2) ·

(

1 + 3
(

σ
v

)2
)

ST sign(v)(|v| − T ) · 1(|v|>T ) (19) 1(|v|>T )

Original Image Cauchy-MAP

ST

ABE

Reconstructed Images xt

Iteration Number (t) 1 2 3 4

Fig. 2. Iterations of ABE, ATE and Cauchy Denoising Methods within AMP reconstruction framework

Table 2. Runtime and NMSE results averaged over 591 input image

patches (top left 128× 128 from each image) the measurement ratio

(δ) is 0.1831. The measurements were noiseless.

Algorithm NMSE(dB) Runtime (secs)

Cauchy-MAP -16.27 5.33

ABE -15.15 4.77

ST -14.25 4.57

(in terms of NMSE). They also offer a good compromise between

compact support and frequency localisation. This wavelet also gave

considerably better qualitative (less blocking artefacts) and quanti-

tative results (in terms of NMSE) compared to the Haar wavelets

implemented by Tan et al. [4] and Som and Schniter [5]. The mea-

surement ratio (δ = M/N ) was 0.1831 for all the experiments. This

gave comparable NMSE results to previous work. The algorithms

were implemented and run on a Macbook Pro (2015) with a 2.7GHz

Intel Core i5 processor with 8GB of RAM within a Matlab R2014a

environment. The image patch size was small due to the large space

requirements of the M × N and N × N matrices (Φ and W) re-

spectively. This was in common with previous work [4,5] and future

work will address scalability issues from a theoretical and imple-

mentation standpoint.

Future investigations will also focus on characterising the per-

formance of the Cauchy based denoising method over a greater range

of measurement ratios and extending this to a better performing bi-

variate method [8] comparable to the AMP-Wiener method imple-

mented by Tan et al. [4].

5. CONCLUSION

The Approximate Message Passing (AMP) method is an efficient

and effective compressive sensing signal reconstruction algorithm.

We have used AMP in a two dimensional image based framework

integrated with an orthogonal wavelet transform. The key transfor-

mation within the AMP framework is a denoising function. A novel

application of a heavy tailed Cauchy prior MAP denoising applica-

tion is introduced. This denoising function and its derivative are used

with the AMP framework in order to achieve extremely fast conver-

gence compared to previously implemented methods (over twice as

fast for a typical image).
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