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ABSTRACT

We present a formal model of opinion diffusion and formation

which combines notions from social network analysis together with

concepts and techniques from judgment aggregation and merging.

The model allows us to study the propagation of individual opin-

ions, represented in the form of yes/no answers to a set of multiple

binary issues, in a multiagent system linked by an influence net-

work. The process is iterative with discrete time. We are interested

in characterizing properties of the network structure which guaran-

tee convergence of the iterative process for every initial configura-

tion of the agents’ opinions, and in developing tractable algorithms

for computing the set of opinions at convergence.
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1. INTRODUCTION
Studies of social influence in social sciences and in social psy-

chology have emphasized the role of interpersonal processes in how

people construe and form their perceptions, judgments, and impres-

sions (e.g., [1, 11, 34]). According to this literature, social influ-

ence consists in forming an opinion on the basis of the opinions

expressed by the other individuals in the society. Social influence

is one of the basic mechanisms driving the diffusion of opinions in

human societies: certain agents influence other agents in the soci-

ety to acquire a certain view who, in turn, influence other agents in

the society to acquire the same view, and so on.

The present paper intends to provide a formal model of opinion

diffusion and formation in social networks which combines con-

cepts from the theory of social networks [22] together with con-

cepts and techniques from judgment aggregation [32] and merging

[27]. With the term ‘opinion’ we refer to the public expression of

a view by an agent about some issue(s). In this sense, the term

opinion does not refer to an agent’s mental attitude but rather to the

expression of a mental attitude of the agent.

Our model of opinion diffusion and formation can be summa-

rized as follows. We start from a given population of agents. Each

agent in the population is identified with a number of opinions on

a given set of binary issues. The issues about which agents have to

form their judgments may be dependent: an agent’s opinion about

a given issue may depend on the agent’s opinion about other issues.

Dependence between issues is expressed via an integrity constraint

which is nothing but a formula of propositional logic in our context.

Consider for instance the following example, inspired from the

literature on computational social choice [4]. Four agents, Bob,

Ann, Jesse and Mary, need to take a decision on whether to build a

swimming pool (S) or a tennis court (T ) in the common area of the

residence where they live. In other words, they have to form opin-

ions about whether S and/or T have to be case. Issues S and T are

dependent insofar as the common area of the residence is so small

that a swimming pool and a tennis court cannot be built at the same

time. Specifically, the following integrity constraint is assumed:

¬(T ∧ S). Let us suppose that, at the beginning of the interaction

process (time t0), both Ann and Bob have a positive opinion about

S and a negative opinion about T . That is, both Ann and Bob

express their preference for the construction of a swimming pool

rather than for a tennis court. On the contrary, both Mary and Jesse

have a negative opinion about S and a positive opinion about T .

That is, both Mary and Jesse express their preferences for a tennis

court rather than a swimming pool.

Moreover, each agent i identifies a set of neighbours that con-

tains all agents in the population who can influence i’s opinions or,

conversely, all agents in the population who are trusted by agent

i. This induces an influence (viz. trust) network and an edge from

agent j to agent i indicates that j can influence i’s opinions (viz.

i trusts agent j). For example, suppose that Ann trusts both Mary

and Jesse while she does not trust Bob: only Mary and Jesse can

influence her opinions. At the opposite Bob does not trust anybody

apart from Ann.

At each stage in the interaction process, the agents in the popula-

tion aggregate the current opinions of their neighbours to form their

new opinions. Different aggregation criteria can be used such as

unanimity (e.g., change your current opinion if all your neighbours

have a different opinion) or majority (e.g., change your current

opinion if the majority of your neighbours have a different opin-

ion). For example, if the aggregation criterion used by the agents

in the population is either unanimity or majority then, at time t1,

Ann will start to have a negative opinion about S as she is influ-

enced by Jesse and Mary’s opinions at time t0 about this issue. At

time t2 Ann will maintain her opinion, while Bob will change his



opinion and start to have a negative opinion about S by taking into

account Ann’s negative opinion about S at time t1.

Through a formal formal model of opinion diffusion and forma-

tion, our aim is to: (i) study the properties of the network structure

which guarantee convergence of the iterative process for every ini-

tial configuration of individual views, (ii) exhibit the set of opinions

at convergence, and (iii) provide algorithms for computing this re-

sult. Examples of properties of the network structure are acyclicity

of the underlying graph or whether the cycles in the underlying

graph are disjoint or not.

The paper is organized as follows. Section 2 discusses related

work. Section 3 presents the basic definitions of our model of opin-

ion diffusion in networks. Section 4 presents general results about

convergence of opinions in specific classes of networks. These re-

sults are independent from the aggregation procedure used by the

agents to form new opinions on the basis of those of their neigh-

bours in the network. Sections 5 and 6 focus on on two variants

of our model in which agents are assumed to use specific aggrega-

tion procedures, namely the unanimity rule and the majority rule.

Section 7 concludes by discussing perspectives for future research.

2. RELATED WORK
Our work stems from two research agendas: the development

of formal models of influencing power, mainly developed in the

game-theoretic literature, and the study of opinion diffusion and

formation based on influence mechanisms, mainly developed in the

literature on social sciences and social network analysis.

Influencing power.
Formal models of influencing power developed in social sciences

are focused on measuring how much an agent in a social network

can influence the opinions of the other agents in the network. A

formal model of influencing power was introduced in the social sci-

ences more than fifty years ago by Isbell [21] and, more recently,

starting from the work of Hoede and de Bakker [19], a series of

papers developed a first formal model of influencing power in sit-

uations of binary decisions [14, 15]. In this model, a set of indi-

viduals make a yes/no decision on a single issue, and an influence

function determines the dynamics from a profile of individual opin-

ions x ∈ {0, 1}n to the next state. The key concept is the followers

function, which specifies for each coalition of individuals the set of

individuals that follow their (unanimous) decision.

Opinion diffusion.
There have been several attempts in the literature to build models

of opinion diffusion in social networks that are based on influence

mechanisms. The aim of these models is to study the evolution

of the opinion distribution and, in particular, the conditions under

which the opinions of the agents in a society tend to converge to

consensus in the long run. Two families of models have been stud-

ied, namely discrete models and continuous models.

Discrete models assume that agents can only have binary (two-

state) opinions such as yes-no, for-against. Some of these models

are concerned with the problem of studying the conditions under

which the opinion of a minority of agents tends to maintain itself

(e.g., [30, 23]). Granovetter [17] and Schelling [36] were among

the first to propose discrete models of opinion diffusion in the area

of social sciences. These are called thresholds models, as they as-

sume that each agent in the population is identified with a given

numerical value which characterizes the number or proportion of

neighbours who must have a certain opinion before the agent adopts

it. A generalisation of thresholds models, called the linear thresh-

old model, has been extensively used in recent years in studying

diffusion models (see, e.g., [25, 24]). In the linear threshold model

each edge in the social network has a non-negative weight attached

which characterizes the strength of the influence relation. Another

example of model of opinion diffusion in networks is the so called

voter model. In this model the propagation of opinions follows

a random process in which at each step an individual on the net-

work chooses the opinion of a random neighbour [5, 20]. The la-

bel propagation algorithm used in the related setting of community

detection and formation, is a similar model where every individ-

ual follows the most approved opinion in her neighbourhood [35].

This latter setting coincides with the framework studied in this pa-

per with the plurality rule with random tie-breaking as individual

aggregation function.

Continuous models assume that agents may have continuous

opinions about a given issue, indeed a numerical value. For ex-

ample, in DeGroot’s model [6] (also known as the Lehrer-Wagner

model [31]) agents update their opinions depending on the weight

they attach to the others’ opinions, where this weight can be viewed

as a rough approximation of a notion of trust. In particular, in De-

Groot’s model it is assumed that every agent i attaches to the opin-

ion of another agent j a given weight ki,j such that the higher the

value of ki,j , the higher the influence of j’s opinion on i’s opinion.

In Chatterjee and Seneta’s model [3] it is assumed that the weight

an agent attaches to her own opinions can vary over time, while in

DeGroot’s model this weight as well as the weights an agent at-

taches to the others’ opinions are kept constant over time. In the

bounded confidence (BC) model [28, 18, 8], the agents have con-

tinuous opinions and the agents actually influence each other only

if the distance between their opinions is below a threshold. The BC

model can be seen as a non-linear version of previous continuous

opinion models [12, 13]. A variant of the BC model is the Rela-

tive Agreement Model (RA) [7] in which, during interactions, the

agents are assumed to influence both each other’s uncertainties and

each other’s opinions. Related models (e.g., [2]) consider vectors

of binary traits rather than continuous opinions as a better approxi-

mation of the diffusion of culture in a social network.

The present paper.
The present paper combines the preceding two lines of research

on influencing power and opinion diffusion in social networks. As

in existing models of influencing power, our work aims at under-

standing the basic influence mechanisms which are responsible for

the dynamics of opinions in a social network. As in existing mod-

els of opinion diffusion, we are interested in the convergence of the

iterated opinion propagation process. However, we do not focus

on the characterization of situations converging at consensus. We

also consider situations in which the opinions of the agents in the

network converge without being necessarily aligned.

Hereafter, we commit to the discrete model perspective on opin-

ions, as we want to consider their qualitative dimension. However,

out setting generalizes existing models of opinion diffusion under

two important aspects. First, we do not limit opinions to two values

but rather to a list of binary values; opinion are expressed on a set

of possibly correlated issues. We represent the interplay between

issues by means of a constraint expressed in propositional logic

grounding our perspective on opinion diffusion on concepts and

techniques issued from judgment aggregation and merging. Sec-

ond, the proposed model does not commit to any specific aggrega-

tion criterion by means of which an agent aggregates the opinions

of her neighbours in the network. This is the main innovation and

key difference with the existing models of opinion diffusion dis-

cussed above.



3. BASIC DEFINITIONS
In this section we present our model for the propagation of indi-

viduals’ opinions on an influence network. We represent individual

opinions as yes/no answers to a set of possibly correlated questions,

a setting that has been shown to be general enough to model a va-

riety of individual expressions such as preferences, judgments and

approval sets [16]. We model the influence network as a directed

graph, and we define an iterative propagation process with discrete

time, with individuals updating their opinions from those of their

neighbours by making use of an aggregation procedure.

3.1 Individual opinions and influence net-
work

Let I = {p1, . . . , pm} be a finite set of questions or issues.

Each individual in a finite set N = {1, . . . , n} expresses an opin-

ion Bi ∈ {0, 1}I in the form of a yes/no evaluation over each

issue in I. We often call Bi a ballot, borrowing the terminology

from voting theory. Observe that in defining opinions we do not

tolerate uncertainty. Hence Bi should not be considered as agent

i’s belief but rather as the public expression of i’s view about the

issues in I. Examples of opinions are expressions of value judg-

ments (i.e., whether a state of affairs should be considered good or

bad), expressions of preferences (i.e., whether object a is preferred

to object b) or desires (i.e., whether a state of affairs is desirable

or not) and, finally, expressions of choices (i.e., whether an action

should be performed or not).

Let LPS be the language of propositional logic over atoms

{p1, . . . , pm}. An integrity constraint IC is any formula in LPS,

and it is used to define a set of feasible individual opinions consist-

ing of its satisfying assignments X = Mod(IC) ⊆ {0, 1}I . For

instance, if we are interested in modelling opinions as expressions

of individual preferences over a set of items A = {a, b, c . . . }, then

we may use a set of issues IA = {pab | a, b ∈ A}, and an integrity

constraint that enforces the required properties of a preference re-

lation. For instance, reflexivity can be represented by the formula∧
a∈A paa, forcing each individual to accept issue paa; transitivity

corresponds to the conjunction of formulas pab ∧ pbc → pac for

all distinct a, b, c ∈ A. We assume that each individual opinion is

feasible, i.e., Bi ∈ X for all i ∈ N . Thus, we consider IC as a

common rationality assumption shared by all individuals.

A generalisation of the present model would allow for different

agents in the population to have different integrity constraints. That

is, according to this generalisation, every agent i ∈ N has her

own integrity constraint ICi ∈ LPS and agent i’s set of feasible

opinions is defined as Xi = Mod(ICi) ⊆ {0, 1}I . Feasibility of

ballots is obtained by imposing that Bi ∈ Xi for all i ∈ N . To

keep the model simpler, here we prefer to assume that the integrity

constraint is the same for all agents. It is worth noting that most

results presented in the paper easily extend to this general case.

Individuals are connected by an influence network represented in

the form of a directed graph E ⊆ N × N , with the interpretation

that (i, j) ∈ E if and only if agent j is influenced by agent i. We

also refer to E as the influence graph and to individuals in N as

the nodes of the graph. Note that the influence network is directed,

hence (j, i) ∈ E represents the fact that j influences i.

3.2 The iterative process
Define the influence set Inf (i) = {j ∈ N | (j, i) ∈ E} of

agent i to be the set of influencers of i. We model opinion diffusion

as a discrete time process: at time t ∈ N, t 6= 0 each individual

updates her opinion by aggregating the opinion of all agents in her

influence set at time t − 1. This process is guided by an aggre-

gation procedure Fi for each individual i, that computes how an

agent changes her opinions starting from those of her influencers.

Given an integrity constraint IC that defines a set of feasible opin-

ions X , a (collectively rational) aggregation procedure is a class of

functions F : Xn → X for each n ∈ N. Notable examples are the

majority rule, that accepts an issue if and only if there is a majority

of individuals accepting it (see Section 6 for a formal definition), or

distance-based procedures that merge the opinion of the influencers

using a suitable minimisation process.

Let therefore Bt
i ∈ X be the opinion of agent i at time t, and

B
t = (Bt

1, . . . , B
t
n) the associated profile. The iterative process is

defined as follows:

B
t
i =

{
Bt−1

i if Inf (i) = ∅

Fi(B
t−1
Inf (i)) otherwise

where B
t−1
Inf (i) is profile B

t−1 restricted to the set Inf (i) of in-

fluencers of agent i. We call this process propositional opinion

diffusion (POD). If Fi = F for all i ∈ N , i.e., all individuals use

the same aggregation procedure, we call the process uniform-POD.

EXAMPLE 1. Let us go back to a variant of the example dis-

cussed in the introduction. Ann, Bob and Jesse need to take a de-

cision on two mutually exclusive actions S and T , corresponding

to building a swimming pool or a tennis court in the common area

of the residence where they live. The set of possible opinions is

thus represented as the set of models of the propositional formula

IC = ¬(S ∧ T ), i.e., X = Mod(IC) = {01, 10, 00}, representing

the three possibilities of performing only the first action, only the

second action, or neither actions. Let us consider a more complex

influence network connecting the three individuals in question. Bob

is influenced by both Ann and Jesse, and also takes into consider-

ation his current opinion (he is a compromising agent). Jesse is

influenced by Ann, and does not take into consideration her cur-

rent opinion (she is a conformist agent). Finally, Ann is influenced

by herself only (she is stubborn). The influence network is depicted

in Figure 1.

Bob Ann

Jesse

Figure 1: A simple influence network.

Let us start from a profile of initial opinions B0 = (01, 00, 10),
corresponding respectively to Ann, Bob, and Jesse’s opinion. As-

sume moreover that each agent update their opinions using the ma-

jority rule, i.e., they change their opinion if and only if all influ-

encers agree. At the first step, Bob does not change his mind since

Ann and Jesse disagree, Ann is only influenced by herself, hence

her opinion remain stable, and Jesse moves to 01 since she is in-

fluenced by Ann. Hence, B1 = (01, 00, 01). At the second step

Ann and Jesse do not update their opinions, but Bob changes to 01

since a majority of its influencers agree on 01 – all influencers in

this particular case. Thus, the opinion diffusion process converges

to a consensus state B
∗ = (01, 01, 01), corresponding to building

a tennis court and not building a swimming pool.

In this paper we are interested in characterising classes of net-

works on which convergence of POD is guaranteed. To do so, we

first formally define the notion of convergence:



DEFINITION 1. Given a class of graphs E ⊆ 2E
2

, we say that

POD converges on E if for all graphs E ∈ E and for all profiles of

initial opinions B0 ∈ XN there is a convergence time t̄ ∈ N such

that Bt = B
t̄ for all t ≥ t̄.

Our notion of convergence is centered on the notion of graph

property, e.g., acyclic or tree-shaped graphs, rather than on the set

of initial individual opinions, on which we do not assume to have

any prior knowledge.

3.3 Aggregation procedures
There is a vast number of aggregation procedures that have been

introduced in the literature on social choice theory and on judgment

aggregation in particular. Classic examples are the unanimous rule

seen in Example 1, the majority rule which will be studied in Sec-

tion 6, and distance-based rules, which select the closest opinion to

that of the influencers making use of a suitable notion of distance.

In this paper the role of an aggregation procedure is that of mod-

eling the opinion update process brought about by the influence

structure. Therefore, we discard situations of negative influence,

in which individuals change their opinion to the opposite opinion

of their influencers. Similar situations can be avoided by assuming

some axiomatic properties on the aggregation procedure. A first

property is the following:

Ballot-Monotonicity: for all profiles B = (B1, . . . , Bn), if

F (B) = B∗ then for any 1 ≤ i ≤ n we have that

F (B−i, B
∗) = B∗.

Where B−i consists of profile B without ballot Bi. Ballot-

monotonicity implies that the result of aggregation in a given pro-

file should not change if one of the agents gives additional support

to the winning opinion. This is a very weak form of monotonicity

and is satisfied by most known aggregation procedures. Observe

that, when there is only one single agent, any ballot-monotonic ag-

gregation rule boils down to a simple copying of the influencer’s

opinion, i.e., F (B) = B for any B ∈ X when n = 1.

Another property that we shall consider is that of unanimity:

Unanimity: for all profiles B = (B1, . . . , Bn), if Bi = B for

all 1 ≤ i ≤ n then F (B) = B.

A unanimous aggregation procedure copies the opinion of the col-

lectivity if there is no disagreement.

In both definitions the quantification over profiles was left delib-

erately open, and has to be intended to be restricted to the domain

of the aggregation procedure F . This ambiguity should not cre-

ate problems in the technical results that follow, where aggregation

procedures are defined on all admissible ballots and for as many

input ballots as there are influencers in the network.

Aggregation procedures may or may not satisfy a given set of

axiomatic properties. For example, both the unanimity rule used

in Example 1 and the majority rule sketched in the introduction

satisfy both ballot-monotonicity and unanimity. Research in social

choice theory has often focused on characterising unfeasible sets

of axiomatic properties [32]. In the sequel we will explicitely men-

tion when any such property is being assumed on the aggregation

procedures defining the opinion diffusion process.

4. THE GENERAL MODEL
In this section we prove convergence of POD on different classes

of graphs and we provide an algorithm for computing the opinions

at convergence for the class of directed acyclic networks with loops.

We will not focus on particular aggregation procedures to be used

by individuals, but we will rather constrain their choice with the

use of axiomatic properties.

4.1 Convergence results
Let us first introduce some useful notation. A directed acyclic

graph (DAG) is a directed graph that does not contain cycles. A

DAG with loops is a DAG where we allow only for cycles of size

one, i.e., edges of the type (i, i). Loops are very important in

an opinion diffusion process, since they indicate whether an agent

takes her current opinion into consideration when updating. Let

a source of a graph E be a node such that Inf (i) ⊆ {i}, and let

diam(E) be the diameter of a graph E, i.e., the length of the longest

path between a source and any of the nodes.

THEOREM 2. If Fi satisfies ballot-monotonicity for all i ∈ N ,

then POD converges on the class of DAG with loops after at most

diam(E) + 1 number of steps.

PROOF. Let i ∈ N be a node and d(i) be the maximal distance

from i to a source node, i.e., the length of the longest simple path

from i to any of the sources. As the influence graph E is acyclic,

d(i) is finite and is bounded by the diameter of E. We now prove

by induction on d(i) that POD converges for a node i after exactly

d(i) steps.

Let d(i) = 0, i.e., i is a source. If Inf (i) = ∅, then the POD

procedure simply copies i’s opinion, hence Bt
i = B0

i for all t ≥ 1.

If Inf (i) = {i}, then, as observed in Section 3, by a consequence

of ballot-monotonicity we obtain that B1
i = Fi(B

0
i ) = B0

i . The

same holds for all t ≥ 1.

Assume now that all nodes j such that d(j) = k have converged

to a stable opinion at step k + 1. Let i be an individual such that

d(i) = k+1. Observe first that, since the graph is acyclic, Inf (i)\
{i} contains only nodes that are at distance at most k from a source,

hence by inductive hypothesis we can assume they have reached a

stable opinion B∗
j . If i 6∈ Inf (i) then Bt

i = Fi(B
∗
Inf (i)) for all

t ≥ k + 2, since all opinions of i’s influencers are stable from

step k + 1 onwards, hence showing convergence of Bt
i from t =

k+2. If instead i ∈ Inf (i), then Bk+2
i = Fi(B

∗
Inf (i)\{i}, B

k+1
i ),

and Bk+3
i = Fi(B

∗
Inf (i)\{i}, B

k+2
i ) = Bk+2

i , the last equality

obtained by ballot-monotonicity. Hence Bt
i = Bk+2

i for all t ≥
k+ 2, obtaining the desired bound on the number of steps to reach

convergence.

The assumption of ballot-monotonicity in Theorem 2, albeit very

weak, is necessary. As a counterexample, consider an anti-majority

rule on a single issue, which dictates to each individual to take the

opposite opinion to that of the majority of her influencers. In this

case, any source with Inf (i) = {i} will constantly change opinion

from 0 to 1, undermining the convergence on the whole network.

The assumption of acyclicity is also crucial to obtain conver-

gence, as shown by the following theorem. Let a circle be a graph

composed of a single cycle, and let us work under uniformity as-

sumption, i.e., Fi = F for all i ∈ N .

THEOREM 3. If F is not ballot-monotonic, then uniform-POD

does not converge on the class of all graphs.

PROOF SKETCH. We show that, if F is not ballot-monotonic,

then we can construct an influence network that is a circle Cm =
{(1, 2), (2, 3), . . . , (m − 1, 1)} of length m, and an initial vector

of opinions B0 on which POD does not converge. Recall that the

action of F on a circle describes how to update one’s own opinion

from the opinion of a single influencer, i.e., how to obtain Bt
j from

Bt−1
j−1. The aggregator has therefore the form F : X → X . Since

X is finite and F is not ballot-monotonic, which in this case is

equivalent to say that there exists a B such that F (B) 6= B, we can

construct a cycle of opinions B1 . . . Bk such that F (Bi) = Bi+1



for all i ≤ k − 1 and F (Bk) = B1. Now take any cycle Cm of

length m 6= k, and profile of initial opinions B0 = (B1, . . . , B1).
POD does not converge as the cycle of individual opinions will

continue rotating in the circle of individuals.

Another class of networks on which we can show convergence

for uniform-POD is that of complete graphs, i.e., graphs E = N ×
N where every individual is connected to each other.

THEOREM 4. If F is unanimous, then uniform-POD converges

on the class of complete graphs.

PROOF. In a complete graph we have that Inf (i) = N for all

i ∈ N . Hence, B1
i = F (B0) for all i ∈ N , making the opinion

profile at step one unanimous, i.e., B1 = (F (B0), . . . , F (B0)).
Therefore, by assumption of unanimity of F , we obtain that Bt

i =
F (B1) = F (B0) for all t > 1.

Theorems 3 and 4 show an interesting dicothomy in the conver-

gence of uniform-POD: on the one hand, if individuals form a sin-

gle cycle we lose the convergence result of Theorem 2, while on the

other hand convergence is guaranteed if individuals form all possi-

ble influence links composing a complete graph. In Section 6 we

are able to obtain a convergence result between these two extremes,

albeit by focusing on the majority rule as the common aggregation

procedure.

4.2 Computing opinion diffusion in a DAG
The proof of Theorem 2 suggests a polynomial algorithm for

computing the result of POD at convergence, provided that the

opinion update process defined by the individual aggregation pro-

cedures can also be performed in polynomial time. Our algo-

rithm, together with the observation that checking acyclicity of a

graph can be done in polynomial time, shows that POD on directed

acyclic graphs with loops is a tractable problem.

Input: A DAG with loops E over N = {1, . . . , n}, an initial

opinion vector B0 = (B0
1 , . . . , B

0
n)

Output: Final opinion vector B∗ = (B∗
1 , . . . , B

∗
n)

for i ∈ N do

curr_opinion_i = B0
i ;

end

stable = {sources of E};

while stable6= N do

for i 6∈ stable do

curr_opinion_i=POD _update_i;

stable=stable ∪ next(stable);

end

end

return (curr_opinion_1, · · · , curr_opinion_n);

Algorithm 1: POD computation on DAG with loops.

With the help of Algorithm 1, we are now in a position to show

that the opinions at convergence of POD can be computed in poly-

nomial time as long as the aggregation procedure is also polyno-

mial. Recall that an aggregation procedure is polynomial to com-

pute if the result of F (B) can be computed in polynomial time on

all profiles.

COROLLARY 5. If E is acyclic and F is ballot-monotonic and

polynomial to compute then the opinion profile B
∗ at convergence

of POD can be computed in polynomial time.

PROOF. By the proof of Theorem 2 we know that POD con-

verges in a number of steps equal to the maximal distance be-

tween a source and any node (i.e., the diameter of the graph) plus

one additional step. Algorithm 1 can hence be used for comput-

ing the result of POD . The algorithm uses a subprocedure called

“POD_update_i” for computing the updated opinion of an individ-

ual using aggregation procedure Fi, a subprocedure which by as-

sumption can be performed in polynomial time. The subprocedure

“next” simply computes the nodes at distance one from a given set

of nodes (not considering loops), and guarantees termination of the

while loop in a number of steps equal the diameter of the graph,

plus an additional step for loops.

Algorithm 1 propagates individual opinions from the sources of

the network to the furthest nodes, making use of subprocedure

POD_update_i at most k × |N | times, where k is the diameter

of E (the worst case being an influence graph that is a transitive,

complete and reflexive ordering of the individuals). It is easy to see

that if E is a DAG, hence E does not contain loops, the number of

calls to POD_update_i is bounded by |N |, i.e., each Fi needs to be

computed only once.

Most interesting aggregation procedures known from the liter-

ature are unfortunately super-polynomial to compute [26, 10, 29].

Algorithm 1 anyway shows that the number of times that the aggre-

gation function needs to be computed is bounded by the diameter

of the influence graph and by the number of individuals forming

an instance of POD. Hence, convergence is tractable under specific

conditions on the graph and the aggregation procedures.

5. THE UNANIMOUS CASE
In this section, we show a simple convergence result that iden-

tifies sufficient conditions for convergence of unanimous opinion

diffusion over possibly cyclic networks.

Consider the case of individuals that change their opinions only

if influencers all share the same opinion, as was the case in the in-

troductory example. Call U-POD the propositional diffusion model

where each Fi is the unanimity rule. More precisely:

B
t
i =






Bt−1
i if Inf (i) = ∅

B if Bj = B for all j ∈ Inf (i)

Bt−1
i otherwise

Even if unanimous update may seem restrictive, it is anyway an

interesting and tractable example of opinion diffusion. In the fol-

lowing, we consider that all agents exclude themselves from their

influence sets, hence restricting to graph without loops. Two cycles

are called vertex-disjoint if they have no internal vertex in common.

THEOREM 6. Let E be an influence network without loops such

that all cycles contained in E are vertex-disjoint and, for each cycle

in E, there exists i ∈ N belonging to the cycle such that |Inf (i)| >
2. Then U-POD converges on E after at most |N | steps.

PROOF. Let us first show convergence for the case of a net-

work containing a single cycle and satisfying the property in the

statement. Let therefore C = {m1,m2, . . . ,mk} be the nodes in

the single cycle, such that (mj ,mj+1) ∈ E for all j ≤ k and

(mk,m1) ∈ E, and let mi be a node on the cycle with at least one

influencer that is external to the cycle, i.e., |Inf (mi)| ≥ 2 (recall

that E has no loops). Let us make the assumption that all external

influencers of nodes in the circle have reached a stable opinion (cf.

Theorem 2). We distinguish two cases. First, if the influencers of

mi that are external to the cycle have non-unanimous opinions then



mi will never change its opinion, since we are using the unanimity

rule. If instead all its external influencers agree on a given opinion

B, and B0
mi

6= B, then mi can update its opinion only in case

mi−1 also agrees with B at a certain point in time. Observe how-

ever that once Bt
mi

= B then Bt′

mi
= B for all t′ > t, that is, once

mi updates to the unanimous opinion of its external influencers

then it is not anymore possible to change it. We have shown that

the existence of an individual with at least one external influencer

on the cycle is sufficient to guarantee the convergence of her own

individual opinion. This fact implies the convergence of all other

individual opinions on the cycle, since the stability of mi’s opinion

does not allow for cyclic behaviour in the opinion dynamic. Note

that, in the worst case, we need to update the individual opinions

on the cycle a number of steps equal to the size of C.

Let us now consider the general case. Let C1, . . . , Cs be a clus-

tering of the network E such that each Cj is either one of the

vertex-disjoint cycles in E or a single vertex. Assume moreover

that the order is consistent with the graph, i.e., if (ij , ik) ∈ E and

ij ∈ Cj and ik ∈ Ck for distinct j and k, then j < k. Obtain-

ing such an ordering is possible since all cycles are vertex-disjoint.

By induction on this ordering we now prove that all nodes reach

convergence. First, observe that C1 must be a source node, hence

it converges in one step as in the proof of Theorem 2. Otherwise,

C1 would be a circle that has no external influencer, contradicting

the hypothesis that at least one node in the circle has more than two

influencers. Assume now that all nodes until Ck reach convergence

after |C1|+ · · ·+ |Ck| steps, and consider Ck+1. Observe that all

influencers of nodes in Ck+1 belong to C1 ∪ · · · ∪ Ck, since all

cycles need to be disjoint, and hence by inductive hypothesis have

reached convergence. Therefore, either Ck+1 is a single node, and

then we can apply U-POD once to obtain convergence, or Ck+1

is a cycle with stable influencers, in which case we know by the

first part of the proof that it converges after 2|Ck+1| steps. Since

|C1|+ · · ·+ |Cs| = |N | we obtain the desired statement.

Theorem 6 shows that if cycles in the influence network are

vertex-disjoint, then a minimal condition suffices to ensure con-

vergence of unanimous POD . The result at convergence can then

be computed in polynomial time by simply computing opinion dif-

fusion a sufficient number of steps, i.e., a number of steps equal to

the number of nodes in the network.

6. THE MAJORITARIAN CASE
In this section we study the diffusion of opinions over a network

where each individual follows the opinion of the majority of her

influencers (possibly including herself). We are able to strenghten

Theorem 2 obtaining convergence on a larger class of graphs, and

we provide a closed form to compute the set of individual opinions

at convergence from the initial opinions of the network sources.

6.1 Convergence results
On multi-issue domains the majority rule does not always re-

sult in admissible outcomes, i.e., it is possible that all individuals

have admissible opinions while the result of the majority is not ad-

missible; this is a well known result in judgment aggregation and

merging. To avoid similar problems, in this paper we restrict to

the case of a single issue. Our results generalise immediately to all

cases in which the majority rule constitutes a collectively rational

aggregator; that is, to all domains defined by integrity constraints

that are equivalent to a formula in 2-CNF [16].

Let p be a single issue. In this case, individuals have initial opin-

ions Bi ∈ {0, 1}, forming an initial profile B0 ∈ {0, 1}n. Given a

profile B, let n1
B be the number of individuals that accept the issue

in profile B and n0
B the number of those that reject it. Formally,

the majority rule maj (B) = 1 if n1
B > n0

B , maj (B) = 0 if

n0
B > n1

B and maj (B) = {0, 1} in case n1
B = n0

B . Technically,

the above-defined majority rule constitutes a non-resolute aggre-

gation procedure, since it can output a set of admissible opinions

rather than always a single one. This explains the following setting

which takes care of possible ties:

B
t
i =






Bt−1
i if Inf (i) = ∅

Bt−1
i if |maj (Bt−1

Inf (i))| = 2

maj (Bt−1
Inf (i)) otherwise

Under these assumptions, an agent changes her opinion at time t

only if she observes a strict majority of opposite opinions at time

t − 1 among her influencers. We call this process majoritarian

propositional opinion diffusion (maj-POD).

We are interested in strenghtening Theorem 2, obtaining conver-

gence on a larger class of networks. The following theorem shows

that convergence can be guaranteed even if the graph contains cy-

cles:

THEOREM 7. Let E be an influence network such that all cy-

cles contained in E are vertex-disjoint and, if a node i belongs to a

cycle, then |Inf (i)| is of even cardinality, then maj-POD converges

on E after at most |N | steps.

PROOF. Let us first show that if E contains a single cycle and

satisfies the properties in the statement, then maj-POD converges.

Let therefore C = {m1,m2, . . . ,mk} be the nodes in the single

cycle, such that (mj ,mj+1) ∈ E for all j ≤ k and (mk,m1) ∈ E.

Let ExtInf (mj) = Inf (mj) \ (mj−1) be the set of influencers of

mj different than mj−1, and possibly including herself. Consider

any node mj ∈ C at time 1. Since Inf (mj) has even cardinality,

we can distinguish two cases:

(a) there is strong majority among ExtInf (mj) either support-

ing or against the issue, i.e., either n1
B1 ≥ n0

B1 + 2 or

n0
Bt ≥ n1

Bt + 2. In this case the opinion of the internal

influencer mj−1 is irrelevant: at step 1 agent mj will update

her opinion to that of the majority of ExtInf (mj) and her

opinion will not change for the rest of the process.

(b) there is a simple majority among external influencers for ei-

ther accepting or rejecting the issue, i.e., there is one more

individual supporting than rejecting the issue or viceversa.

We distinguish two sub-cases:

(b1) if mj−1 agrees with the majority of external influ-

encers, then mj updates her opinion accordingly and

will not change it anymore. To see this, observe that

after step 1 the opinion of mj−1 becomes irrelevant,

since in the worst case mj will observe a tie in the in-

fluencers opinions and will not change her view.

(b2) if mj−1 does not agree with the majority, mj does not

change her opinion since she observes a tie.

Hence, we have shown that once a node on the cycle updates her

opinion to that of the majority of her sources, it is then not possible

to revert it. Therefore, in at most k steps the opinions on the cycle

stabilise, where k is the size of the cycle. The worst case is the

influence network depicted in Figure 2, where in exactly k steps

the systems converges to consensus on 1.

The general case of vertex-disjoint cycles can be treated in an

analogous way to the proof of Theorem 6.
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Figure 2: Maj-POD converges in k steps.

Theorem 7 shows convergence of maj-POD when all cycles

present in the graph are vertex-disjoints, and when each node that

belongs to a graph has an even number of influencers, i.e., it has

at least one external influencer and an odd number of them if there

are more. The graph in Figure 2 shows an example where each ver-

tex on the graph has exactly two influencers, one internal and one

external. Theorem 7 cannot be strengthened easily. Figure 3 shows

a network and an initial opinion vector where maj-POD does not

converge. To see this, observe that at each step any of the two in-

ternal nodes observes a tie in the opinions of their external sources,

and will hence copy the opinion of the other individual in the cycle.

0 1

0

10

1

Figure 3: Maj-POD does not converge.

Theorem 7 guarantees that the result of maj-POD at convergence

can be computed in polynomial time:

COROLLARY 8. The result of maj-POD at convergence B∗ can

be computed in time O(n2m), where n = |N | and m = |E|.

PROOF. Theorem 7 guarantees convergence of maj-POD in

|N | = n steps. Hence, we can compute the opinion profile B
∗

at convergence in an iterative fashion: first we compute B2
i for all

i ∈ N using the majority update, then all B3
i for i ∈ N , until we

reach Bn
i in a total of n2 steps. Each step is a simple application of

the majority rule among at most |E| edges, resulting in a bound of

O(n2m).

6.2 From dynamic to static computation of
opinion diffusion

In this section we focus on a decomposition feature specific to

the majority rule, in order to provide faster algorithms for the com-

putation of maj-POD . To do so, we express opinions at conver-

gence as a sort of linear combination of the initial opinions of the

network sources, defining in passing a novel measure of the (indi-

rect) influence of a source agent on the rest of the graph.

We first need some additional notation. Let E be the network

relating the individuals. A path on E is a sequence of distinct nodes

i1, . . . , im such that (ij , ij+1) ∈ E for all 1 ≤ j ≤ k− 1. Given a

path g = i1, . . . , im, we say that k ∈ g if there exists a j such that

an ij = k. We denote with P (i1, i2) the set of paths connecting

node i1 to node i2. Let deg(i) = |Inf (i)| be the indegree of a node

i, i.e. the number of her influencers. Finally, let us indicate with

C−1(i) the set of ancestors of a node i, i.e., all nodes that have a

path connecting them to i.

In what follows we restrict to networks that do not allow for ties

between the influencers of any given node, guaranteeing the exis-

tence of a strict majority at any step of opinion update. Hence, we

call a network resolute if deg(i) is either zero or it is an odd number

for every i ∈ N . We can finally state the following characterisation

of individuals’ opinions at convergence of maj-POD in terms of the

initial opinions of the sources:

THEOREM 9. Let E be a resolute DAG, and let B∗ be the opin-

ion profile at convergence of maj-POD . The following holds:

B
∗
i = maj (α(s1, i)B

0
s1 , . . . , α(sm, i)B0

sm) (1)

Where s1, . . . , sm are the sources of E, αB stands for α copies of

B, and α(sj , i) is computed as follows:

α(sj , i) =
∑

g∈P (sj ,i)

∏

k 6∈g

k∈C−1(i)

d̂eg(k) (2)

where d̂eg(k) = 1 if k is a source node, and d̂eg(k) = deg(k)
otherwise, α(sj , i) = 0 if sj is not connected to i, and we assume

the empty product to be equal to 1. Finally, we set B∗
i = B0

i if

Inf (i) = ∅, i.e., if i is already a source node.

PROOF. Since the network E is resolute, the majority rule will

never result in a tie. Hence, the definition of Maj-POD simplifies

to B∗
i = maj(B∗

Inf (i)). Observe that if k is an odd integer, then:

maj (B0,maj (B1, . . . , Bk)) = maj (kB0, B1, . . . , Bk) (3)

where kB0 stands for k copies of ballot B0. To see this, observe

that the majority rule gives equal weights to each of the ballots

that are being aggregated, and if one is itself a majority of k other

ballots then the weights should be redistributed to reflect this num-

ber. Let us therefore go back to the computation of B∗
i . For each

j ∈ Inf (i) that is not a source, B∗
j is also defined in terms of

the majority rule as B∗
j = maj (B∗

Inf (j)). Now, since the net-

work is resolute, each node has an odd number of influencers and

hence we can iterate equation (3) from i to the sources of E ob-

taining that B∗
i = maj (α(s1, i)B

∗
s1 , . . . , α(sm, i)B∗

sm). Every

source that is not connected to i will not appear in the formulation,

hence α(sj , i) = 0. Since sources do not update their opinions,

i.e., B∗
sj

= B0
sj

, we obtain equation (1).

Let us now show how to compute the multiplicative coefficients

α(sj , i). First, consider the case of E being a polytree, i.e., a di-

rected graph such that its undirected version is a tree. If E is a poly-

tree then there is a unique path relating any two nodes on the graph,

i.e., |P (i1, i2)| = 1 for any i1, i2 ∈ N . Therefore, equation (2)

boils down to α(sj , i) =
∏

k 6∈g deg(k) where g is the unique path

relating the source sj to node i. Consider now i’s opinion at con-

vergence B∗
i = maj (B∗

Inf (i)). We can expand further this expres-

sion by observing that each Bj for j ∈ Inf (j) that is not a source

can be written as the result of the majority over its influencers, and

then simplify this expression using (3). Observe moreover that the

multiplicative coefficient in (3) are equal to the indegrees deg(j)
of influencers j ∈ Inf (i). Let us now use once more the assump-

tion that E is a polytree. Since every source connected to node i

reaches i from one and only one influencer, say j̄, the overall mul-

tiplicative coefficient at step one is equal to
∏

j∈Inf (i),j 6=j̄ d̂eg(j).
We can now repeat the same process one level further, and so on

until we reach the sources, obtaining the expression (2) for the case

of polytrees.



Let us now consider the general case of an acyclic resolute net-

work without loops. Under these assumptions there are several

paths that connect a given source sj to node i, hence any source

sj is connected to i through one or several direct influencers of i.

Hence, each source sj may occur more than once in the unravel-

ing of B∗
i obtained using (3). However, the multiplicative coeffi-

cient of each path is computed as in the previous part of the proof.

Since the majority rule is anonymous we can permute the aggre-

gated ballots in order to sum these multiplicative coefficients, each

one obtained following a different path that connects a source to i,

obtaining equation (2) for the general case.

We are now able to refine the bound given by Corollary 8 on the

computation of opinions at convergence for maj-POD :

COROLLARY 10. If E is a resolute DAG, then B∗
i can be com-

puted in time O(k(n + m)), where k is the number of sources of

E, n = |N | and m = |E|.

PROOF SKETCH. First, the indegree of each node in the graph

can be computed in time O(n+m). Sources can be identified from

the indegree table – recall that the graph is a DAG – and all simple

paths that connects a source s with node i can be computed with

a depth-first search in time O(n + m). It is then sufficient to use

equation (2) to compute the multiplicative coefficient α(s, i) and

use equation (1) to compute the result of maj-POD at convergence

for agent i.

When loops are present, or when the network is not resolute,

the situation is more complex and neither a reduction in the style

of Theorem 9 nor a faster computation may be possible. Observe

however that loops can be neglected by making use of a suitable

notion of graph transformation. More precisely, let E be a graph

with loops. Given i ∈ N and time t ∈ N, we can construct a

graph E′ without loops, which contains a copy of E and is such

that Bt
i = Bt

i′ . The graph transformation works as follows: the

opinion of a node i with a loop at time t is equivalent to that of a

node i′ without loops that has exactly the same influencers with the

same opinions, but has also a copy of itself at time t−1 as external

influencer. We can then substitute the loop around i with a copy of

all parent nodes of i (possibly containing loops) and an extra copy

of itself (containing a loop) at time t − 1. This defines a recursive

procedure that is guaranteed to end after at most t steps, and that

can be applied to eliminate each loop in the network. Hence, if we

are able to prove convergence for graphs without loops, then the

same is guaranteed for graphs with loops. However, the size of the

equivalent graph without loops may be prohibitively large.

The multiplicative coefficient α(s, i) introduced in Theorem 9

can be considered as a precise measure of the (indirect) influence

of a source s on a node i. As observed in Section 2, influence

measures have already been introduced in the literature on formal

models of influence. In particular, Grabisch and Rusinovska [15]

focus on situations of binary choice such as those considered in this

section. However, without the guarantee of convergence, their mea-

sure of influence focuses on one step changes in individual opin-

ions, counting how often a given individual changes her opinion

according to the unanimous opinion of a given coalition. Explor-

ing potential connections between these two measures of influence

constitutes a prominent direction for future work.

Theorem 9 opens several other interesting problems concern-

ing the characterisation and the computation of opinions at conver-

gence of maj-POD . For instance, we may be interested in comput-

ing the ratio of sources needed to obtain consensus on a given net-

work structure, or study strategic reasoning aspects such as bribery

and control to enforce specific patterns of opinions to form at con-

vergence or at a given point in time.

7. CONCLUSIONS
In this paper we presented a formal model of opinion propaga-

tion on networks, based on the notion of aggregation procedure.

Our work differs from classical models of opinion diffusion and

formation as we commit to a fully qualitative view of opinions and

we consider each individual opinion formation process as a (possi-

bly different) aggregation procedure.

Our results show that individuals’ opinions reach a convergence

state on directed acyclic graphs, even when self loops are allowed.

For two specific cases, namely that of the unanimity rule and the

majority rule, we presented sufficient conditions to guarantee con-

vergence on general networks, provided that there is no interplay

among the influence cycles that may be present. For all cases un-

der question we devised tractable algorithms for the computation of

opinions at convergence. We also showed that in the specific case

of majoritarian opinion diffusion it is possible to reduce the com-

putation of the opinions at convergence to a suitable combination

of the initial opinions of the sources.

Amongst other directions, in future work we aim to relax two of

the main hypothesis of this paper: the completeness of individual

opinions and the tractability of aggregation procedures:

Uncertain opinions Each Bi could be viewed as a subset of the

models of IC. In this case, opinion formation is closer to

merging and all classical merging procedures could be rel-

evant to our context [27]. Numerous issues then needs to

be considered. First, distance-based procedures [26] will

become central for defining the impact of influence. Sec-

ond, as aggregation becomes more complex, tractability may

become an issue. The computational complexity of belief

merging is no longer polynomial and closed forms such as

the one shown in Theorem 9 may be hard to obtain. A first

step in this direction may use recently proposed approxima-

tions of distance-based procedures in binary aggregation [9].

Opinion aggregator Several other aggregation procedures may be

considered in order to take into account more sophisticated

phenomena. Fist, in the current paper we have assumed only

one network for building an opinion on multiple issues. An

immediate extension is to consider multiple influence graphs:

one for each issue or subset of issues. Once we consider at

the same time correlated issues and different influence net-

works for different issues, new aggregation procedures need

to be defined and novel convergence results be studied. Sec-

ond, our influence network is qualitative and thus does not

handle hierarchy between influencers: a selfish agent may

give at first a high importance to her own opinion. This hier-

archy can be viewed as bridge between qualitative and quan-

titative models: If an agent has little influence on a second

one, then her opinion should also be weighted in the aggre-

gation procedure. Recent work on trust-based belief change

[33] can provide a promising starting point in this direction:

it shows how an agent revises her epistemic state with re-

spect to some public announcement and weight of trust, the

strength of trust propagating to the strength of belief.

In conclusion, in this paper we combined research in social net-

work analysis and judgment aggregation and merging, obtaining

a number of tractable models for opinion dynamics. Our initial

results explored a variety of problems posed by the model, and

opened several directions for both empirical research and theoreti-

cal exploration of the problem of opinion diffusion on networks.
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