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A METRIC VERSION OF SCHLICHTING’S THEOREM

ITAÏ BEN YAACOV AND FRANK O. WAGNER

Abstract. If F is a type-definable family of commensurable subsets, subgroups or sub-vector spaces
in a metric structure, then there is an invariant subset, subgroup or sub-vector space commensurable
with F. This in particular applies to type-definable or hyper-definable objects in a classical first-order
structure.

Introduction

Schlichting’s Theorem [5] states that if a subgroup H of a group G is uniformly commensurable with
all its G-conjugates, then it is commensurable with a normal subgroup of G. This was generalized by
Bergman and Lenstra [1], who showed that if H is uniformly commensurable with all its K-conjugates for
some subgroup K of G, then it is commensurable with a K-invariant subgroup. Peter Neumann deduced
from this an analogous theorem for sets: A family of subsets of some set Ω invariant under a subgroup K
of Sym(Ω) with bounded symmetric differences yields a K-invariant subset whose symmetric difference
with members of the original family is bounded. This was studied further by Brailovsky, Pasechnik and
Praeger [2], Neumann [4] and the second author [6], who proved a version for vector spaces, as well as
more general objects.

Meanwhile, a similar theorem was shown for type-definable groups in simple theories, where the finite
index condition of commensurability is re-interpreted as bounded index [7, Theorem 4.5.13] (building on
results of Hrushovski for the S1-case). However, simplicity seemed a necessary condition, as the proof is
based on the Independence Theorem.

Recently, the second author proved a hyperdefinable version of Schlichting’s Theorem in [8] without
any hypotheses on the ambient theory. In this note we shall rephrase the result in the language of
continuous logic and metric structures, and generalize it to families of sub-objects other than groups. As
already in [6] it will follow from a corresponding fixed point theorem for a certain kind of lattice.

It should be noted that in [3] Hrushovski has generalized the so-called Stabilizer Theorem, which in
simple theories is closely related to Schlichting’s Theorem, to a much more general context, assuming the
existence of an S1-ideal of “small” formulæ. An intriguing question is thus to what extent our version of
Schlichting’s Theorem is related to Hrushovski’s Stabilizer Theorem, and whether our approach might
be used to generalize the Stabilizer Theorem even further.

Finally, in the last section we use Galois Theory to deduce a new version of Schlichting’s Theorem for
(finitely) commensurable fields.

1. Close-knit Families

Recall that Peter Neumann [4] calls a family F of subsets of some ambient set close-knit if there is a
finite bound on the cardinality of the difference F rF ′ for F, F ′ ∈ F. This was generalized by the second
author [6] to a family F of points of a lattice with some integer-valued distance function δ: it is close-knit
if δ(F, F ′) is bounded for all F, F ′ ∈ F. In our set-up, the distance function on the lattice is no longer
integer-valued; finiteness of the number of values is replaced by a suitable compactness condition.

Definition 1.1. Assume the following data are given:

• A κ-complete lower semi-lattice L (i.e. every sub-family of size < κ admits an infimum), for
some regular cardinal κ.

• A family F = {fa : a ∈ A} ⊆ L, where the enumeration may have repetitions.
• A compact Hausdorff topological space I equipped with a closed partial order relation. We let

λ = w(I)+ +ℵ0, where w denotes the weight of I (i.e., the least cardinal of an open basis), and
require that κ ≥ λ.
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• A map δ : L×A → I.
• A map Fκ × A → L denoted (s, a) 7→ sa, where Fκ ⊆ L denotes the family of meets of < κ

elements of F.

We say that F (together with the additional data) is a close-knit family if the following holds:

(i) The map δ is monotonous and “upper semi-continuous” in its first argument in the sense that if
S ⊆ L is closed under finite meet and |S| < κ, then δ(

∧

S, a) =
∧

{δ(s, a) : s ∈ S}.
(ii) Let ξ ∈ I and let S ⊆ L be closed under finite meet such that |S| < κ. Assume that for every

neighbourhood ξ ∈ U ⊆ I and s ∈ S there exists ζ ∈ U and a ∈ A such that δ(s, a) ≥ ζ. Then
there exists a ∈ A satisfying δ(s, a) ≥ ξ for all s ∈ S. (In this case, δ

(
∧

S, a
)

≥ ξ as well, by
(i).)

(iii) We have s ≤ sa, and whenever t ≤ s are in Fκ with δ(t, a) = δ(s, a), then ta = sa.
(iv) For any s ∈ Fλ, where Fλ denotes the family of meets of < λ elements of F, there is some

cardinal µs < κ such that for all a ∈ A, any chain in L between s and sa has cardinality < µs.

If Γ is a group of automorphisms of L, also acting on A, and all the data (namely, the maps a → fa, δ
and (s, a) 7→ sa) are invariant under Γ, then we say that F is a Γ-close-knit family.

We should think of δ(s, a) as a measure of how much s � fa. In particular, in most applications
s ≤ fa if and only if δ(s, a) = 0. The idea behind the map (s, a) 7→ sa is to increase s a little, toward
being greater than fa. For example, in the next section, when s and fa represent sets of small symmetric
difference, we let sa = s ∪ fa. Similarly, when they represent vector spaces not much bigger than their
intersection, we achieve the same effect with sa = s + fa. However, unlike what these examples might
suggest, we cannot actually require that sa ≥ fa, since this fails in the setting of commensurable groups.

Theorem 1.2. Let L be a κ-complete lower semi-lattice, Γ a group of automorphisms of L, and F a
Γ-close-knit family in L. Then Γ has a fixed point in L.

Proof. For s ∈ L define

m(s) =
{

ξ ∈ I : ξ ≤ δ(s, a) for some a ∈ A
}

.

Definition 1.1(ii) with S = {s} implies that m(s) is closed. As λ = w(I)+ + ℵ0, it follows that there is
no strictly decreasing chain (m(si) : i < λ) with si ∈ L. But if s, t ∈ L with t ≤ s, then δ(t, a) ≤ δ(s, a)
for all a ∈ A, whence m(t) ⊆ m(s). Hence {m(s) : s ∈ Fκ} has a unique minimal element m. We call
s ∈ Fκ strong if m(s) = m.

If S ⊂ L is closed under finite meets with |S| < κ and ξ /∈ m(
∧

S), then by Definition 1.1(ii) there
exists s ∈ S such that ξ /∈ m(s). It follows that for any strong s ∈ Fκ there is some strong s′ ∈ Fλ with
s ≤ s′ (and in fact s′ is a subintersection of s). For strong s we define

A(s) =
{

a ∈ A : δ(s, a) is maximal in m
}

, and

n(s) =
∧

{

sa : a ∈ A(s)
}

.

Since m is closed, it contains maximal elements, so A(s) is non-empty. Note that if t ∈ Fκ with t ≤ s,
then m(t) ⊆ m(s) = m, so t is also strong by minimality of m, and A(t) ⊆ A(s). If, in addition, we have
a ∈ A(t), then δ(t, a) = δ(s, a) (since both are maximal in m, and they are comparable), whence ta = sa

by Definition 1.1(iii). In particular, if Fλ ∋ s′ ≥ s is strong and a ∈ A(s) we have s ≤ s′ ≤ s′a = sa, so by
Definition 1.1(iv) applied to s′, the meet n(s) is indeed defined. Note that for t ≤ s we have n(t) ≥ n(s).

Suppose there is no greatest n(s) for strong s. Choose strong s0 ∈ Fλ and let µ = µs0 as per
Definition 1.1(iv). Since µ < κ, we may then construct by induction a sequence (sα)α≤µ of strong
elements, starting with s0. At successor stages take some strong t such that n(t) � n(sα) and let
sα+1 = sα ∧ t, so n(sα+1) ≥ n(t) and n(sα+1) ≥ n(sα), whence n(sα+1) > n(sα). At limit stages put
sα =

∧

β<α sβ. If a ∈ A(sµ) then for every α ≤ µ we have a ∈ A(sα) and

s0 ≤ n(s0) ≤ n(sα) ≤ saα = sa0 .

This produces a chain of length µ between s0 and sa0 , contradicting the choice of µ. Therefore there
exists a greatest n(s) ∈ L; as it must be unique, it is a fixed point of Γ. �

If I is finite then λ = ℵ0; if all µs are finite, we can also take κ = ℵ0 (in particular, condition (ii)
of Definition 1.1 holds automatically), and Theorem 1.2 allows us to recover [6, Theorem 1] at least
qualitatively. The finite index/difference/codimension versions of Schlichting’s Theorem follow.
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2. Almost invariant families in continuous logic

Recall that in a κ-saturated metric structure M with domain M , a subset of Mn is type-definable if
it is the intersection of the zero-sets of fewer than κ many formulæ. Given a set F ⊆ Mα × Mβ and
a ∈ Mβ, we define Fa =

{

b : (b, a) ∈ F
}

. A family F of subsets of Mα is type-definable if there are

type-definable sets F ⊆ Mα ×Mβ and A ⊆ Mβ such that F = FA = {Fa : a ∈ A}.

Definition 2.1. We shall consider a type-definable ambient object X of one of three kinds: sets, groups
or vector-spaces over a definable field K. For two type-definable sub-objects of the same kind S, S′ ⊆ X ,
we say that S is commensurably contained in S′ if

• |S r S′|, or
• [S : S ∩ S′], or
• codimS(S ∩ S′), respectively,

is strictly less than κ. We say that S and S′ are commensurable if either is commensurably contained in
the other.

Note that by κ-saturation this implies that the difference/index/codimension does not increase when
we replace M by an elementary extension; we say that it is bounded. In the following, whenever we talk
about type-definable sets, we shall assume that M is sufficiently saturated.

Definition 2.2. Let X be a type-definable set/group/vector space over K in a metric structure M. A
type-definable family F of subsets/subgroups/subspaces of X is almost invariant if F and F ′ are commen-
surable for all F, F ′ ∈ F. For an almost invariant family F, we shall say that a subset/subgroup/subspace
S is commensurable with F if S is commensurable with some (equivalently, all) F ∈ F.

Remark 2.3. If F is an almost invariant type-definable family, then by compactness the commensurability
must be uniform: There is a cardinal λ < κ such that the difference/index/codimension is bounded by
λ for all F, F ′ ∈ F. This implies that if S is commensurable with F, it is uniformly commensurable with
F, i.e. the difference/index/codimension is bounded independently of F ∈ F.

Theorem 2.4. Let X be a type-definable set/group/vector space over a definable field K in a metric
structure M, and Γ a type-definable group of automorphisms of X. Suppose F is a Γ-invariant almost
invariant type-definable family of subsets/subgroups/subspaces of X. Then there is a Γ-invariant sub-
set/subgroup/subspace N of X commensurable with all F ∈ F, which is moreover type-definable over the
same parameters.

Proof. We may assume that X , Γ and F = {Fa : a ∈ A} are type-defined over ∅, and K is definable over
∅. Notice that then we may also enumerate the family F as {Fa,γ : a ∈ A, γ ∈ Γ} where Fa,γ = γFa.
Let S ⊆ X be type-definable. Suppose Fa is defined (for a ∈ A) by Φ(x, a) = 0, where Φ is a family of
[0, 1]-valued formulæ closed under the connective max, and |Φ| < κ. For γ ∈ Γ, n ∈ N and ϕ ∈ Φ define

• in the set case: δϕ,n(S, a, γ) = supx∈Sn

(

mini<j<n d(γ−1xi, γ
−1xj) ∧mini<n ϕ(γ

−1xi, a)
)

,
• in the group case: δϕ,n(S, a, γ) = supx∈Sn mini<j<n ϕ

(

γ−1(x−1
i xj), a

)

,
• in the vector space case: δϕ,n(S, a, γ) = supx∈Sn infη∈Knr0̄ ϕ

(

γ−1(
∑

ηixi), a
)

.

Let I = [0, 1]Φ×N, so λ = |Φ|+ + ℵ0. For type-definable S ⊆ X and (a, γ) ∈ A× Γ define

δ(S, a, γ) =
(

δϕ,n(S, a, γ) : (ϕ, n) ∈ Φ× N
)

∈ I.

Let L be the lower semi-lattice of type-definable subsets/subgroups/subspaces commensurable with F.
Then conditions (i) and (ii) of Definition 1.1 hold by compactness.

For S ∈ L and F ∈ F put SF = S ∪ F in the set case, and SF = S + F in the vector space case. In
the group case, put

SF =
⋂

s∈S

(SF )s

and note that SF is a supergroup of S with [SF : S] bounded. Moreover, since S and F are commen-
surable, there is a bounded set I ⊆ S with S = (S ∩ F )I. Then SF =

⋂

s∈S(SF )s =
⋂

s∈I(SF )s, so SF

is type-definable, Finally, put Sa,γ = SFa,γ .
We claim that in all three cases, condition (iii) of Definition 1.1 holds. Clearly S ⊆ SF . So assume

that T ⊆ S and TF 6= SF , where F = Fa,γ .
In the set case, since T ∪ F ⊆ S ∪ F , this means that there exists x ∈ S r (T ∪ F ). In particular,

d(γ−1x, γ−1T ) > 0, so for some ϕ ∈ Φ and 0 < e < 1 we have d(γ−1x, γ−1y) ∧ ϕ(γ−1x, a) ≥ e for all
y ∈ T . Since T and F are commensurable, there exists n such that δϕ,n(T, a, γ) < e, and we may assume
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that n is least such. As δϕ,0 ≡ 1, we have n > 0, and δϕ,n−1(T, a, γ) ≥ e by minimality of n. Therefore
δϕ,n(S, γ) ≥ e, so δ(T, F ) < δ(S, F ).

In the group case, note that if T ≤ S with SF = TF and I ⊂ T is a system of representatives for
S/(S ∩ F ) ∼= SF/F = TF/F ∼= T/(T ∩ F ), then

SF =
⋂

s∈S

(SF )s =
⋂

s∈I

(SF )s =
⋂

s∈I

(TF )s =
⋂

s∈T

(TF )s = TF .

It hence suffices to show that S ⊆ TF , as then SF = TF . Suppose not, and consider x ∈ S r TF . In
other words y−1x /∈ F for all y ∈ T . By compactness, for some ϕ ∈ Φ and 0 < e < 1 the partial type
y ∈ T implies that ϕ

(

γ−1(y−1x), a
)

≥ e. We conclude as above.
In the vector space case, since T + F ≤ S + F , this means that there is x ∈ S r (T + F ). That is,

ηx + y /∈ F for all η ∈ K× and y ∈ T . By compactness, for some ϕ ∈ Φ and 0 < e < 1 the partial type
y ∈ T implies that infη∈K× ϕ

(

γ−1(ηx+ y), a
)

≥ e. Again we conclude as above.

If F ∈ F and S ∈ Fλ, then SF is type-definable with strictly less than λ parameters. Since F and
S are commensurable, the difference |SF r S|, the index [SF : S] or the co-dimension codimSF (S) are
bounded by 2<λ. It follows that any chain between S and SF has length at most 2<λ. We can thus put
κ = (2<λ)+ to satisfy condition (iv) of Definition 1.1.

Define an action of Γ on (A× Γ) by γ′ · (a, γ) = (a, γ′γ). Then

γ′Fa,γ = γ′γFa = Fa,γ′γ = Fγ′·(a,γ),
δϕ,n(γ

′S, γ′ · (a, γ)) = δϕ,n(γ
′S, a, γ′γ) = δϕ,n(S, a, γ),

(γ′S)Fγ′·(a,γ) = (γ′S)γ
′Fa,γ = γ′(SFa,γ ),

so everything is Γ-invariant. Clearly, we also have invariance under Aut(M).
By Theorem 1.2 there is some N ∈ L invariant under the group of automorphisms of L generated by

Γ ∪ Aut(M). In particular N is commensurable with F, type-definable over ∅, and Γ-invariant. �

Remark 2.1. The usual metrisation of quotients modulo type-definable equivalence relations shows
that Theorem 2.4 also holds for hyperdefinable families of commensurable subsets/subgroups/sub-vector
spaces. (If the equivalence relation is given by an uncountable partial type, we first express the quotient
as a type-definable subset of an infinite (possibly uncountable) product of hyperimaginary sets modulo
countable equivalence relations, which in turn are equivalent to imaginary metric sorts.)

3. Fields

For two fields F and K we say that F is commensurably contained in K if the degree [FK : K] is finite.
Then commensurable fields form an upper semi-lattice which need not be closed under meet. Theorem 1
applied to Example 1.(v) in [6] implies in particular that if K is a field, Γ a group of automorphisms of K
and F a family of uniformly commensurable subfields of K such that any finite intersection of elements
in F is commensurable with F, then there is a Γ-invariant subfield of K commensurable with F. However,
the condition that finite intersections be commensurable with F is much stronger than mere pairwise
commensurability. In this section, we shall show that in case the extensions FF ′/F for F, F ′ ∈ F are
separable, or the Eršov invariant of any field in F is finite, there still is a Γ-invariant commensurable
subfield.

Theorem 3.1. Let K be a field, Γ a group of automorphisms of K and F a Γ-invariant family of
uniformly commensurable subfields of K. If FF ′/F is separable for all F, F ′ ∈ F, or if the Eršov
invariant [F : F p] is finite for any F ∈ F, there is a Γ-invariant subfield N commensurable with F.

Proof. Clearly we may assume that F consists of a single orbit under Γ. For a subfield F ≤ K let
F s be the separable closure of F in K, and put Ks =

⋂

F∈F F s, a Γ-invariant subfield of K satisfying
Ks = Ks

s . If FF ′/F is separable for all F, F ′ ∈ F, then F ≤ Ks = F s for all F ∈ F, and Ks is Galois
over F ∩Ks = F . We put Fs = F.

Otherwise, by uniform commensurability of F there is a finite power q of p such that F qF ′/F ′ is
separable for all F, F ′ ∈ F, where p = char(K) > 0 is the characteristic. Then F q ≤ F ∩Ks ≤ F ≤ F s

for all F ∈ F; note that F s is normal over F q, whence over F ∩ Ks, and F is the pure inseparable
closure of F ∩ Ks inside F s. Hence F s = F (F ∩ Ks)

s. Since (F ∩ Ks)
s ≤ Ks

s = Ks ≤ F s, we have
(F ∩Ks)

s = Ks, so Ks is Galois over (F ∩Ks). Moreover, as F has finite Eršov invariant, [F : F q] is
finite; it is independent of F since F consists of a single Γ-orbit. Thus Fs = {F ∩Ks : F ∈ F} is a family
of uniformly commensurable subfields of Ks.

Let G = Aut(Ks) with the topology of pointwise convergence and the induced action of Γ. For F ∈ F

put HF = Gal(Ks/F ∩Ks) ≤ G. Then F ∩Ks = FixKs
(HF ).
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Now HγF = Hγ−1

F for γ ∈ Γ. Uniform commensurability of Fs implies that H = {HF : F ∈ F} is
a Γ-invariant family of uniformly commensurable closed subgroups of G. By Schlichting’s Theorem [1,
Theorem 6(iii)] applied to the family H of subgroups of G ⋊ Γ, there is a Γ-invariant subgroup H ≤ G
commensurable with H. Moreover H is closed as it is a finite extension of a finite intersection of groups
in H. Then N = FixKs

(H) is a Γ-invariant subfield of Ks commensurable with FixKs
(HF ) = F ∩Ks for

any HF ∈ H. As F ∩Ks is commensurable with F , we are done. �

[9] gives examples of commensurable fields F and F ′ such that FF ′/F is purely inseparable, FF ′/F ′

is either separable or purely inseparable, and F ∩ F ′ has infinite degree in F and in F ′. As we have not
been able to deal with this problem, we have not managed to prove Theorem 3.1 in full generality.
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