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THE VELOCITY OF 1D MOTT VARIABLE-RANGE HOPPING WITH
EXTERNAL FIELD

ALESSANDRA FAGGIONATO, NINA GANTERT, AND MICHELE SALVI

ABSTRACT. Mott variable-range hopping is a fundamental mechanism for low—temperature
electron conduction in disordered solids in the regime of Anderson localization. In a
mean field approximation, it reduces to a random walk (shortly, Mott random walk) on
a random marked point process with possible long-range jumps.

We consider here the one-dimensional Mott random walk and we add an external field
(or a bias to the right). We show that the bias makes the walk transient, and investigate
its linear speed. Our main results are conditions for ballisticity (positive linear speed)
and for sub-ballisticity (zero linear speed), and the existence in the ballistic regime of
an invariant distribution for the environment viewed from the walker, which is mutually
absolutely continuous with respect to the original law of the environment. If the point
process is a renewal process, the aforementioned conditions result in a sharp criterion for

ballisticity. Interestingly, the speed is not always continuous as a function of the bias.
Keywords: random walk in random environment, disordered media, ballisticity, environ-
ment viewed from the walker, electron transport in disordered solids.

AMS Subject Classification: 60K37, 82D30, 60G50, 60G55.

1. INTRODUCTION

Mott variable-range hopping is a fundamental mechanism at the basis of low—temperature
electron conduction in disordered solids (e.g. doped semiconductors) in the regime of An-
derson localization (see [2, 19, 20, 22, 25]). By localization, and using a mean—field ap-
proximation, Mott variable-range hopping can be described by a suitable random walk
(Y¢)t>0 in a random environment w. The environment w is given by a marked simple
point process {(z;, E;) }icz with law P. The sites x; € R? correspond to the points in the
disordered solid around which the conduction electrons are localized, and FE; € [—A, A]
is the ground energy of the associated localized wave function. The random walk Y; has
state space {z;} and can jump from a site x; to any other site x; # x; with probability
rate

Taap (W) = exp{—|zi — x| — B(|Ei| + |Ek| + |E; — Eg|)},
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B being the inverse temperature.

We refer to [5, 6, 7, 13, 14] for rigorous results on the random walk Y;, including the
stretched exponential decay of the diffusion matrix as § — oo in accordance with the
physical Mott law for d > 2. Here we focus on the one-dimensional case, i.e. {z;}icz C R
(we order the sites x;’s in increasing order, with xg = 0), and study the effect of applying
an external field. This corresponds to modifying the above jump rates 7, 2, (w) by a

ANz —x;)

factor e , where A € (0,1) has to be interpreted as the intensity of the external

field. Moreover, we generalize the form of the jump rates, finally taking
r;‘i,zk (w) :=exp{—|x; — zx| + ANz — z;) + w(Ei, Ex)},

with u a symmetric bounded function. For simplicity, we keep the same notation Y; for
the resulting random walk starting at the origin.

Under rather weak assumptions on the environment, we will show that Yy is a.s. transient
for almost every environment w (cf. Theorem 1-(i)). In the rest of Theorem 1 we give two
conditions in terms of the exponential moments of the inter—point distances, both assuring

that the asymptotic velocity vy (A) := limy— o0 % is well defined and almost surely constant,
that is, it does not depend on the realization of w. Call E the expectation with respect to
P. The first condition, namely E[e(lﬂ\)(“*xo)] < oo and u continuous, implies ballisticity,
i.e. vy(A) > 0. The second condition, namely IE[e(l_’\)(“’"l_”0)_(1+k)($0_$*1)] = 00, implies
sub-ballisticity, i.e. vy(\) = 0. In particular, if the points {x;};cz are given by a renewal
process, our two conditions give a sharp dichotomy (when w is continuous). We point out
that there are cases in which vy(\) is not continuous in A (see Example 2 in Subsection
2.2).

Under the condition leading to ballisticity we also show that the Markov process given
by the environment viewed from the walker admits a stationary ergodic distribution Q°,
which is mutually absolutely continuous to the original law P of the environment. More-
over, we give an upper bound for the Radon—Nikodym derivative dg% in terms of an
explicit function in L!(P) and we give a lower bound in terms of a positive constant. We
also characterize the asymptotic velocity as the expectation of the local drift with respect
to the measure Q> (cf. Theorem 2).

The study of ballisticity for the Mott random walk is the first fundamental step towards
proving the Einstein Relation, which states the proportionality of diffusivity and mobility

of the process (see e.g. [17]). Among other important applications, the Einstein Relation
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would allow to conclude the proof of the physical Mott law, which was originally stated
for the mobility of the process and has only been proved for its diffusivity (see [5], [13]
and [14]). The Einstein Relation will be addressed in future work (some remarks in the

paper will stress the behavior of some crucial bounds in the limit A — 0).

The techniques used to prove ballisticity and sub-ballisticity are different. In order to
comment them it is convenient to refer to the discrete-time random walk? (Xn)nen on Z
such that X,, = 7 if after n jumps the random walk Y, is at site x;. Due to our assumptions
on the environment, the ballistic/sub-ballistic behavior of (Y;);>o is indeed the same as

that of (X,,)nen, and therefore we focus on the latter.

We first comment the ballistic regime. Considering first a generic random walk on
Z starting at the origin and a.s. transient to the right, ballisticity is usually derived by
proving a law of large numbers (LLN) for the hitting times (7},)n>1, where T}, is the
first time the random walk reaches the half-line [n, +00). In the case of nearest neighbor
random walks, T}, is simply the hitting time of n, and considering an ergodic environment
one can derive the LLN for (7},),>1 by showing that the sequence (T,,+1 — Tp)n>1 1S
stationary and mixing for the annealed law as in [1, 26]. This technique cannot be applied
in the present case, since our random walk has infinite range and much information about
the environment to the right is known, when a site in [n,+o0) is visited for the first
time. A very useful tool is the method developed in [8] where the authors have studied
ballisticity for a class of random walks on Z with arbitrarily long jumps. Their strategy is as
follows. First one introduces for any positive integer p a truncated random walk obtained
from the original one by forbidding all jumps of length larger than p. The ergodicity
of the environment and the finite range of the jumps allow to introduce a regenerative
structure related to the times 7),, and to analyze the asymptotic behavior of the p-
truncated random walk. In particular, one proves that the environment viewed from the
p—truncated random walk admits a stationary ergodic distribution Q° which is mutually
absolutely continuous to the original law of the environment. A basic ingredient here is the
theory of cycle-stationarity and cycle—ergodicity (cf. [28, Chapter 8] and [9] for an example
in a simplified setting). Finally, one proves that the sequence (Q”),en, converges weakly
to a probability distribution Q°°, which is indeed a stationary and ergodic distribution for
the environment viewed from the random walker (X,,),en and is also mutually absolutely
continuous to the law of the environment P. Since, as usual, the random walk can be

1We use the convention N;:={1,2,...} and N:={0,1,2,...}
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written as an additive functional of the environment viewed from the random walker, one
can apply Birkhoff’s ergodic theorem and use the ergodicity of Q*° to get the strong LLN
for the random walk (hence its asymptotic velocity) for Q*°—a.e. environment. Using the
fact that P < Q°°, the above strong LLN holds for P-a.e. environment, too. Finally, since
the velocities of the p-truncated walks are uniformly bounded from below by a strictly
positive constant and since they converge to the velocity of (X,),eny when p — oo, we
obtain a ballistic behavior.

To analyze ballisticity we have used the same method as in [8], although one cannot
apply [8, Theorems 2.3, 2.4] directly to the present case, since some hypotheses are not
satisfied in our context. In particular, in [8] three conditions (called E, C, D) are assumed,
and only condition C is satisfied by our model. By means of estimates based on electrical
networks, we are able to extend the method developed in [8] to the present case. We point
out that a crucial tool in the study of effective conductances is given by a comparison with
the nearest—neighbor conductance model. Indeed, a posteriori, the ballistic/subballistic
behavior of Mott random walk appears very similar to the one of the modified version

with only nearest—neighbor jumps.

We now move to sub-ballisticity (the regime of zero velocity is not covered in [8] and
our method could be in principle applied to random walks on Z with arbitrarily long
jumps). We define a coupling between the random walk (X,,),>0, a sequence of suitable
N, —valued i.i.d. random variables &1, &s, ... with finite mean, and an ergodic sequence of
random variables S1,S2,... with the following properties: Fix w and call now Tj1q the
first time the random walk overjumps the point & + -+ 4+ . Sk is a geometric random
variable of parameter s, = s(7¢, 4...4¢,w), Where 7. is the usual shift and s a deterministic
function. The coupling guarantees that Xr, , does not exceed § + -+ + & + &1 and

also ensures that the time Ty — T} is larger than Si. Notice that

Xn SXTIH—I < §1+"'+§k+1

An it T <n< T, 1
n Ty ~— S48+ +5 b= s M)

and therefore the sub-ballisticity of (X, ),>0 follows from the LLN for ({)ren, and the
LLN for (Sg)ken, , since our assumption IE[e(lf)‘)(xl*xo)*(H)‘)(‘”O*’”—l)] = oo implies that

E[1/s(w)] = 4oc.

1.1. Outline. In Section 2 we rigorously introduce the (perturbed) Mott random walk

in its continuous and discrete-time versions. Theorem 1 states the transience to the right
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and gives conditions implying ballisticity or subballisticity. Theorem 2 deals with the
Radon-Nikodym derivative of the invariant measure for the environment viewed from the
walker with respect to the original law P of the environment and gives a characterization
of the limiting speed of the walk. Subsection 2.1 comments the assumptions we made for
the Theorems, while two important (counter-)examples can be found in Subsection 2.2.

In Section 3 we collect results on the p-truncated walks. FEstimates of the effective
conductances induced by these walks and of the time they spend on a given interval are
carried out in Subsections 3.1 and 3.2, respectively. In Subsection 3.3 we show that the
probability for them to hit a specific site to the right is uniformly bounded from below.

Section 4 introduces the regenerative structure for the p—truncated random walks and in
Subsection 4.1 we give estimates on the regeneration times. The existence and positivity
of the limiting speed for the truncated walks is proven in Subsection 4.2.

In Section 5 we characterize the density of the invariant measure for the process viewed
from the p—truncated walker with respect to the original law of the environment. In
Subsection 5.1 we bound the Radon-Nikodym derivatives from above by an L' function,
while in Subsection 5.2 we give a uniform lower bound. In Subsection 5.3 we finally pass
to the limit p — oo and obtain an invariant measure for the environment viewed from the
non-truncated walker and show that it is also absolutely continuous with respect to P (see
Lemma 5.9).

To conclude, in Sections 6, 7 and 8 we prove, respectively, parts (i), (ii) and (iii) of

Theorem 1. Some technical results are collected in the Appendixes A, B and C.

2. MOTT RANDOM WALK AND MAIN RESULTS

One-dimensional Mott random walk is a particular random walk in a random envi-
ronment. The environment w is given by a double-sided sequence (Zy, Ey)kez, with
Z € (0,400) and Ej, € R for all k € Z. We denote by Q = ((0,+00) x R)Z the set
of all environments. Let P be a probability on €2, standing for the law of the environment.
We denote by E the associated expectation. Given ¢ € Z, we define the shifted environ-
ment 7w as 7w := (Zk1¢, Ex1¢)kez. From now on, with slight abuse of notation, we will
denote by Z, E}, also the random variables on (2, P) such that (Z;(w), Ex(w)) is the k—th
projection of the environment w.

Our main assumptions on the environment are the following:

(A1) The random sequence (Zy, Ey)kez is stationary and ergodic with respect to shifts;
5



(A2) E[Z)] is finite;
(A3) P(w = mw) =0 for all £ € Z,;
(A4) There exists d > 0 satisfying P(Zy > d) = 1.

We postpone to Subsection 2.1 some comments on the above assumptions.

It is convenient to introduce the sequence (xj)rez of points on the real line, where
xo = 0 and xx4+1 = T + Zg. Then the environment w can be thought also as the marked
simple point process (x, Ex)rez, which will be denoted again by w (with some abuse of
notation). In this case, the f—shift reads Tyw = (2x4¢ — ¢, Ex1¢)kez. For physical reasons,
E. is called the energy mark associated to point zjp, while Zj is the interpoint distance
(between xp_1 and zy).

Fix now a symmetric and bounded (from below by wupi, and from above by umax)
measurable function v : R x R — R. Given an environment w, the Mott random walk

(Y¢)>0 is the continuous-time random walk on {zy }rez with probability rate
Tz (W) := exp{—|z; — zx| + u(E;, Ej)} (2)

for a jump from x; to x # x;. For convenience, we set 7, ,(w) = 0. Note that the Mott
walk is well defined for P-a.a. w. Indeed, since the interpoint distance is a.s. at least d and
the function u is uniformly bounded, the holding time parameter ry(w) := >, rzy(w) can
be bounded from above by a constant C' > 0 uniformly in x € {z\}xez, hence explosion

does not take place.

We now introduce a bias A which corresponds to the intensity of the external field.
For a fixed A € [0,1), the biased Mott random walk (Y;);>o with environment w is the

continuous—time random walk on {xj }recz with probability rates

ri"y(w) = e/\(yix)rx,y(w) (3)

for a jump from z to y # x. For convenience, we set ri‘w (w) = 0 and denote the holding
time parameter by r}(w) := 2y r:;\,y(w). When A = 0, one recovers the original Mott
random walk. Since for A € (0,1) we have, for P-a.a. w, r)(w) < 3oy e~ (I VIKldFumax <

oo, the biased Mott random walk with environment w is well defined for P-a.a. w.

We can consider also the jump chain (Y,),>0 associated to the biased Mott random

walk (we call it the discrete-time Mott random walk). Given the environment w, (Y;,)n>0
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is the discrete—time random walk on {xj }rez with jump probabilities

PryWw) = 505wy (4)

A similar definition holds for the unbiased case (A = 0).

The following result concerns transience, sub-ballisticity and ballisticity:

Theorem 1. Fiz A € (0,1). Then, for P-a.a. w, the continuous-time Mott random
walk (Yi)e>0 with environment w, bias X\ and starting at the origin satisfies the following
properties:

(i) Transience to the right: lim; o, Yy = 400 a.s.

(ii) Ballistic regime: IfE[e(lf)‘)ZO] < 400 and u: R x R = R is continuous, then the

asymptotic velocity

exists a.s., it is deterministic (and does not depend on w ), finite and strictly positive
(an integral representation of vy is given in Section 7, see (85) and (95)).

(iii) Sub-ballistic regime: If

E[e(lf)\)Z()f(1+)\)Z_1j| =0, (5)
then
.Yy
vy(A) := tliglo 5= 0 a.s. (6)

In particular, if E[Z_1|Zo] < C for some constant C" which does not depend on w
and E[e1=N%] = oo, then condition (5) is satisfied and vy(\) = 0.
In addition, for P—a.a. w the above properties remain valid (restricting to integer times
n > 0) for the discrete-time Mott random walk (Yy)n>0 with environment w, bias A and

starting at the origin, and its velocity vy (A) := limy, %

Remark 2.1. In the case X = 0 the Mott random walks Y; and Y,, are recurrent and
have a.s. zero velocity. Recurrence follows from [6, Thm. 1.2—(iii)] and the recurrence of

the spatially homogeneous discrete-time random walk on Z with probability to jump from

x to y proportional to e~1*=Y. To see that the velocity is zero, set Q(dw) = E[gﬁ})P(dw).

Q is a reversible and ergodic distribution for the environment viewed from the discrete-

time Mott random walker Y, (see [5]). By writing Y, as an additive function of the

process “environment viewed from the walker” and using the ergodicity of Q, one gets that
7



vy (A = 0) is zero a.s., for Q—a.a. w and therefore for P-a.a. w. Similarly, vy(A =0) =0
a.s., for P-a.a. w (use that P is reversible and ergodic for the environment viewed from

Yy, see [14]).

Remark 2.2. If the random variables Zy are i.i.d. (or even when only Zy, Zxi1 are
independent for every k) and u is continuous, the above theorem implies the following
dichotomy: vy(X) > 0 if and only ifE[e(lf)‘)ZO] < 400, otherwise vy(\) = 0. The same
holds for vy (X). We point out that, if the Zy’s are correlated, E[e(l_)‘)zo] = +0o0 does not

imply in general zero velocity (see Example 1 in Section 2.2).

Remark 2.3. Theorem 1 shows that there are cases in which the limiting speed vy () is

not continuous in A. See Example 2 in Section 2.2.

Remark 2.4. When considering the continuous—time nearest neighbor random walk on
{z } ez with probability rate for a jump from x to a neighboring site y given by (3), the

random walk is ballistic if and only if
ZE[exp{(l S NZo— (L4 NZoi — 2N Zioq + - + Z,l)}} < (7)
i=1

(the same criterion holds for the discrete—time version of the random walk). A derivation
of this fact from classical results on random walks in random environment (cf. [30]) is
given in Appendiz C. Note that, if the Zy’s are i.i.d., the above condition (7) reduces to
the bound E[e(l_)‘)zo] < 00, thus leading to the same dichotomy as pointed out in Remark
2.2. Formula (7) would suggest that, in order to ensure ballisticity for Mott random walk,
the condition E[e(k)‘)z@] < 400 introduced in Theorem 1—(ii) could be weakened. As
outlined in Remark 3.13, this can indeed be achieved at the cost of dealing with rather ugly

formulas having some analogy with (7).

One of the most interesting technical results we use in the proof of Theorem 1, Part
(ii), concerns the invariant measure for the environment seen from the point of view of the

walker:

Theorem 2. Fiz A € (0,1). Suppose that E[e(l_)‘)zo] < 4o and vt RxR — R s

continuous. Then the following holds:



(i) The environment viewed from the discrete-time Mott random walker (Yy)n>0, i-e.
the process (T¢(yﬂ/)w)n>0 where ¢(x;) = i, admits an invariant and ergodic distri-
bution Q> absolutely continuous to P such that

dQ>
< —< -@.S.
0<vy< i < F, P-a.s (8)

for a suitable universal constant v and an explicit function F € L'(P) (defined in
(65) ).
(ii) By writing B> for the expectation with respect to Q>, the velocities vy (\), vy ()

can be expressed as

wr(A) = oy WE [1/rd ()] (9)
oy (N) = ELZJE* | 3 kps, ()] (10)
keZ

and the expectations in (9), (10) are finite and positive (recall that rd(w) =

>k Té,k(w)}

Proof. Theorem 2—(i) is part of Proposition 5.3 given at the end of Section 5. The proof
of Theorem 2-(ii) is part of Section 7, more precisely (9) and (10) are an immediate

consequence of (85), (94) and the observation just after (88). O

In the rest of the paper, if not stated otherwise, A will be thought of as a fixed constant
in (0,1).

2.1. Comments on assumptions (A1)—(A4). By Assumption (Al) both random se-
quences (Zy)kez and (Eg)kez are stationary and ergodic with respect to shifts. The physi-
cally interesting case is given by two independent random sequences (Zx)xez and (Ex)kez,
the former stationary and ergodic, while the latter given by i.i.d. random variables. In
this case assumption (A1) is satisfied (see Lemma B.4 in Appendix B).

Assumption (A3) ensures that a.s. the environment is not periodic. If the energy marks
Ej are i.i.d. and non-constant, as in the physically interesting case, then (A3) is automat-
ically fulfilled. Note that the sequence (Zj)rez could be periodic, without violating our
assumptions (e.g. take Z; = 1 for all k € Z).

Assumption (A4), corresponding to interpoint distances which are uniformly bounded
from below, is not restrictive from a physical viewpoint and d can be taken of the angstrom

order. On the other hand, (A4) plays a crucial role in our proofs.
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2.2. Examples. In this section we give two examples highlighting the importance of the

assumptions in Theorem 1 and showing some of its consequences.

Example 1. E[e(l_A)ZO] = oo does in general not imply that vy(\) =0, vy () = 0.

We set u(-,-) = 0 and take p € (0,1/2). We choose (Zj)rez as the reversible Markov
chain with values in {~, 2v, 3+, ...} for some v > 1 and with transition probabilities defined
as follows:

P(ky, (k+1)y) =p for k> 1,
Pky,(k—1)y)=1—p fork>2,

P(y,y) =1-p.
The equilibrium distribution is given by w(ky) = c(p/(1 — p))* for k > 1, ¢ being
the normalizing constant. Hence, P(Zy = kv) = w(ky), for each k& > 1. Notice that
E[e(l_k)ZO] =C) >t ell=Nky (p/(1 —p))k is infinite if and only if

1 1-—
)\gl——logJ. (11)
Y p
We now show that we can choose the parameters such that E[e(l_)‘)Z‘J] = o0 and

Dok kr&xh (w) > 0 for each w, the latter implying that vy(\), vy (A) > 0 due to Theorem
2-(ii) and the definition of pg,, (w) in (4).

If Zy = jv, for some j > 1, the local drift )", kraxk (w) can be bounded from below by
the drift of the configuration with longer and longer interpoint distances to the right and
shorter and shorter interpoint distances to the left: Z; = (j + k)~ for all K > —j + 1 and

Z, = for all £ < —j. Note that in this case

o = y[kj + 2] ifh>1,
g = —y[kj — M5 if1<k<j—1,
v =M k- 1] k>

Hence we can write

Zkraxk(w) 2 A(Avf}/a]) - B(A777]) - C(A7773)7
k

where A(X,7,J) = k; k exp{—(1=N)vy(kj+k(k—1)/2)}, B(A\,v,j) = 1<kz<:_1 k exp{—(1+
N7 (kj — k(k+1)/2)} and C(X, 7, j) = 3k exp{=(1+N)7(i( - 1)/2+k—j+1)}. We
) "



bound A(A,7,j) from below with its first summand exp{—(1 — \)vj} and prove that

lim sup [B(\,7,5) + C(\,7,)] exp{(1 = A} < 1, (12)
T jeN

since this will imply the positivity of the local drift ), kré\’z . (w) for any possible w, for v
big enough. Using that Z_1 = v(j — 1) we bound B(\,7,5) < jZexp{—(1 4+ A\)y(j — 1)}
and, using that j(j —1)/2+ 1 > j/2, we bound

(14+X)

O .)€ e T (S (k= e FE=D) 4 5 S 90K) < i 7,
k>j k>0

for some constant K > 0 independent of A and v (recall that v > 1). With these bounds
we see that (12) holds as soon as A > 1/3. On the other hand, by (11) we can choose p

close enough to 1/2 so that E[e(l_)‘)ZO] is infinite.

Example 2. The velocities vy(\), vy (A) are not continuous in general.

Take u = 0. Let the Zj be ii.d. random variables larger than 1 such that e?° has

probability density f(x) := mﬂ[e,Jroo) (z), with v € (1,2) and ¢ is the normalizing

constant. Since, for x > e, aﬂ(lfm)g < x(lnlm)Q = —4(1/Inz), the constant c is well
defined and E[e(~M%0] = [ %dm < oo if and only if A > 2 — . Note that

Ac :=2— € (0,1). Then the above observations and Theorem 1 imply that vy(\), vy ()

are zero for A\ € (0, \.) and are strictly positive for A € [A.,1).
3. A CLASS OF RANDOM WALKS ON Z WITH JUMPS OF SIZE AT MOST p € [1,+o0]

Given i,j € Z we replace, with a slight abuse of notation, ri):j(w) = r;‘i,xj (w) and the

associated conductance ¢; ;(w) = e”‘xiri):j (w) (note that in ¢; j(w) the dependence on A

has been omitted). Hence we have ¢;; = 0 and

¢ij(w) = rEFm)=le—aituELEy) — ¢ () i#jinZ. (13)

Given p € Ny U{+oo} we introduce the discrete-time random walk (X£),>0 with environ-
ment w as the Markov chain on Z such that the w—dependent probability to jump from i
to j in one step is given by

)
Ci,j(“)/zigez cik(w), ifo<|i—j[<p

0 if |i—j|>p (14)

1= > W)/ ez ciplw) ifi=j.

\ J:li—il<p

11



Warning 3.1. When the Markov chain (X})n>0 starts at i € Z, we write P, for its

)

law and E;* for the associated expectation. In order to make the notation lighter, inside

PP(+) and EPP[] we will usually write X, instead of X%.

It is convenient to introduce the random bijection ¥ : Z — {z }rez defined as ¥ (i) = a;,
and also the continuous-time random walk (X2°);>0 on Z with probability rate r{\ﬂ- (w) for
a jump from ¢ to j. Since

@) T
Dokez Cik(W) Yz rz‘):k(w) ,

we conclude that realizations of Y and Y can be obtained as

Y= $(XF), Ve = o(X). (15)

In particular, when the denominators are nonzero, we can write

Yi (X)X Yo _ 9(X57) X° (16)
t Xpo ot n X® n

By Assumptions (Al) and (A2), lim;oo ¥(7)/i = E[Zy] < oo, P-a.s.. By this limit,
together with (15) and (16), we will see in Sections 7, 8 that in order to prove Theorem 1
it is enough to show the same properties for X*°, X instead of Y,Y".

In what follows, we write vx,(\) = v if, for P-a.a. w, lim, %5 =v PyP-as. A

similar meaning is assigned to vxe(A).

Remark 3.2. In the rest of this section we will present propositions, lemmas and corollar-
ies containing several bounds with positive constants. These will be denoted by the letter K
possibly with some subindex, which are uniform in p and w. As the reader can easily check,
these constants can be taken independent also from \ when A varies e.g. in [0,1/2). The
same is true also for the positive constant € appearing in Lemma 3.16. This observation

could be very relevant in the derivation of the Einsten relation.

3.1. Estimates on effective conductances. We take again p € N; U {+oo}. For A, B

disjoint subsets of Z, we introduce the effective conductance between A and B as

Ch(Ao Byi=min{ > ;(fG) = JG)?: fla=0 fls=1}.  (17)
i<jEL: [i—j|<p
12



We also set

w(i)= > @y, €L, (18)

JEL:|j—il<p

and define pfs. (i) as the escape probability of X}, from i € Z, i.e.
Pl (i) := PPP(X, #iforalln >1). (19)

It is known (see the discussion before Theorem 2.3 in [18, Section 2.2], formula (2.4) and

exercise 2.13 therein) that

CP(i <> (—o00,i — NJU[i + N, 00))
N—o00 7'('00(2)

(20)

(recall that the probability for X} to jump from i to j (for 0 < |i — j| < p) is given by
ci,j /T (1), cf. (14)). We will see (cf. Corollary 3.5) that the escape probability of each
p-random walk can be uniformly bounded from below and above by the escape probability

of the nearest neighbor walk times constants.

Warning 3.3. Note that C% (A <> B), 7 (i) and pbs(i) depend on the environment w,

although we have omitted w from the notation.

Proposition 3.4. There exists a constant K > 0 not depending on w, p, A and B such

that
Cog(A < B) < C%(A + B) < K Coy(A < B).

Proof. Since C%(A « B) is increasing in p, it is enough to show the second inequality for

p = oo. To this aim take any valid f : Z — R and note that

-1
> i) - 102 = Y ey (S fe+1 - 1)

i<jEZ i<jez

7j—1

< ey G- (fe+1) - £(2)°

1<JEZ z=1

S UCERIENIC) DD DT R A R eIV
2€EZL i<z j>z+1

where we have used the Cauchy-Schwarz inequality for the second step. Define the new
conductances
=X Y s G-

i<z j>z+1
13



Now we are left to show that ¢, .11 < Kc; .41 for some K and this will conclude the

proof. Using the fact that Vk > k' we have x — 2 > d (k — k'), we have

o1l = Z Z ek(ziﬂj)*(%’*Iz‘)+u(Eiij)(j — i)

i<z j>z+1
< M@aF@a41) = (@241 —2) Fimax Z Z —(zj—z241) (1) (J»‘z—fvz‘)(l-f')\)(j — )
i<z j>z+1
S CZ’Z+1eumax_umin Z Z e_d(j_z_l)(I_A)e_d(z_i)(l'i')‘) (] — ’L)

i<z j>z+1

o oo
S CZ’ZJ’_IGUmax—’UJmin Z Z e—d(l—)\)he—d(l"l‘/\)l(h + l + 1): Cz7z+1K .
=0 h=0

Since the last double sum is bounded for each A € [0, 1), we obtain the claim. O
As a byproduct of (20) and Prop. 3.4 we get:

Corollary 3.5. There exist constants K1, Ko > 0 which do not depend on w, p such that

Klpésc(i) < pgsc(i) < KQpésc(i) ) VieZ.
Lemma 3.6. There exists a constant K > 0 which does not depend on w, p such that

(k) < wP(k) < Knl(k), VkeZ.

Proof. Since 7°(k) is increasing in p it is enough to prove that 7>°(k) < K='(k) for all
k € Z. We easily see that

Z Chj = M@ r1tar) — (T 1 —2k) Z e~ (1=N () =2k 1) +u(E;, Ey)

i>k i>k

(22)
< CpppretmTimin Yy "o U DI — g L K
>k
Analogously,
z Chj = M @r—1tay)—(zp—zk—1) Z o~ (@r—1—7;) (1= +u(E;,Ey)
i<k J<k (23)
S Ck_l’keumaxfumin Zefd(kflfj)(lf)‘): ck—l,k K2
i>k
O

The following lemma is well known and corresponds to formula (2.1.4) in [30]:

Lemma 3.7. Let {¢k 11} ez be any system of strictly positive conductances on the nearest

neighbor bonds of Z. Let H4 be the first hitting time of the set A C Z for the associated
14



discrete-time nearest-neighbor random walk among the conductances {Cy g41}rez, which
Jumps from k to k+1 with probability ¢ g+1/(Ck k-1 +Crpt1). Take —oco < M <z < N <
oo, with M,x, N € Z and write Hy, Hy for Hypry, Hiny. Then

o (x> (=00, M])
(x4 (—o0, M]U [N, 0))’

PIM(Hy < Hy) =

where P is the probability for the nearest-neighbor random walk starting at z, and

" (A <> B) is the effective conductance of the nearest-neighbor walk between A and B.

We state another technical lemma which will be frequently used when dealing with

conductances:

Lemma 3.8. P (ZOO L < —I—OO) =1

7=0 ¢jj+1

Proof. By assumption (Al), (zj11 — 2j)jez is a stationary ergodic sequence. By writing
xj = Z'Z;;]b(xk_Fl — x},), the ergodic theorem implies that lim;_, xj—] = E[z1], P-a.s. As a

consequence we get that

—Mzj + zj41) + (2541 — 75)

lim , = —2)E[z1] <0, P-a.s.
J—r0 ]
Since > 22, c“% =3 720 e A@ite 1)+ (@41-25) | the claim follows. O

We conclude this section with a simple estimate leading to an exponential decay of the

transition probabilities:

Lemma 3.9. There exists a constant K which does not depend on w, p, such that P—a.s.

PO Xi—i]>8) < Y =t <Ke 0V vs pe N, U{+oo}, Vi€ Z.

5 s 2heB ik

(24)
Proof. The first inequality follows from the definitions. To prove the second one, we can

estimate

Z Cij = A @ip1+w) = (Tig1—xi) Z o~ (@j—zip1) (1= +u(Ej, Eq)

j>i+s j>i+s
S CZ',’L'+1 eumax_umin § e_d(J_Z_l)(l_A) (25)
7>i+s
_ _ eumax_umin -
= ¢iit1e ds(1—X\) ds(1—X\) K

)

[ o-di—n Gt
15



Z Cij — AMmicitwi)—(wi—wi-1) Z o~ (@ic1—2;) (1=N)+u(E;,B;)

j<i—s i<i—s

(26)
S Ci1 ieumax*umin Z efd(lflfj)(lfA): Ci—1.4 e*dS(l*)\) Kl .
i<i—s
The second bound in (24) now follows from (25), (26) and Lemma 3.6. O

3.2. Expected number of visits. We fix some notations which will be frequently used
below. For I C {0,1,2,...} and A C Z, we denote by N7(A) the time spent by the

random walk X} in the set A during the time interval I:

P(A):=> Txrea-

kel

If 7:={0,1,2,...} we simply write N&%(A) and if A = {x} we write N5 (z).

Warning 3.10. When appearing inside P“P(-) or E¥P(.), Ni(A), Noo(A) will usually
replace N7 (A), N&(A).

We can state our main result on the expected number of visits to a site k for a given

environment:

Proposition 3.11. There exists a constant Ky, not depending on p,w, such that the

function g, : {0,1,...} = Ry, defined as

o
gu(n) = Kor'(—n) 3 e 2t (m0mm=e), >0, (27)
7=0

satisfies

Ey*[Neo(k)] < gu(E]),  Vk<0. (28)

We recall that 7!(k) = Ck—1k + Ci k+1 for all k € Z. Moreover, we point out that g, (n)
can be rewritten as Kor!(—n) >0 5 +1’ therefore it is finite P-a.s. by Lemma 3.8. We
remark that estimate (28) is not uniform in the environment w, and in general one cannot
expect a uniform bound. This technical fact represents a major difference with the setting

of [8], where the existence of an w-independent upper bound of the expected number of

visits is required (cf. Condition D therein).

Proof. During the proof K will denote a generic positive constant, not depending on p, w

whose value may change from line to line.
16



Fix k < 0. Starting from 0, the random variable N4 (k) is equal to

0 with probability 1 — Py"*( X. eventually reaches k )
NE (k) =

Y (k) with probability Py"*( X. eventually reaches k )

where Y (k) is a geometric random variable whose parameter is the escape probability

phsc(k) from k (recall Warning 3.3). Therefore

FS P [Nog ()] =

= PY"?( X. eventually reaches k ). 29
pgsc(k,) 0 ( ) ( )

Let us start by giving an upper bound for the probability of reaching k in finite time:

P3P ( X. eventually reaches k ) < Py"”( X. eventually reaches A := (—o0,k] )
= lim Py"’(Hp, > Ha), (30)
N—o00
where By := [N,o00) and the H’s are the hitting times of the respective sets. By a

well-known formula (see [3, Proof of Fact 2], [18, Exercise 2.36])

Cle(0 < A)

PYP(Hpy > Ha) < . 31
0" (Hy A>_Cé’ﬁ(0<—>AUBN) (51
Using now Proposition 3.4 we have that there exists a K such that
Cl(0+ A
PyP( X. eventually reaches k) < lim K— i )
N—o0 CeH(O < AU By)
CL(0+ A

=K eﬂ( ) (32)

T CL(0+ AUBL)’

where Clz(0 <> AU By) := limy_00 Clg (0 <+ AU By).

Call Cy := (—00,—N + k] U [N + k,00). By Corollary 3.5 and equation (20), we know

that
1 Cl(k< Cy) 1 Cl(k+ Cx)
Pe(k) > — lim —efi —2r — — el 2200 33
Plclk) = 7 NI T IRy K~ (k) (33)
where C’;ﬂ(k  Cs) = limpy 00 Céﬁ(k < Cn).
Since we have conductances in series, we can write
k—1 1 0o 1
1 _ 1 1
Clath o C)= (> ) + () (34)
j=—00 =k
We claim that
k—1 )
1 1 .
Z G = T Z oo < oo P-a.s. (35)
j=—00 =k

17



Indeed, the first series diverges a.s. since, for j < —1, 1/¢; j41 > Ke Maitzjp)+(zj+1-25) >

K (note that z;, ;411 < 0). The second series is finite a.s. due to Lemma 3.8.

Due to (29), (32), (33), (34) and (35) we can write

L(k) ClL(0 < A)
ESP[Noo (k)] < K - it
0" Neo(k)] < Cle(k + Cx) CL(0 < AU By)
-1

1\ !
Fl(k) | (jz];c]',jH)
_ o -1 —! - s -
( Z Cj,31‘+1> 1 + (ch,]l_ﬂ) <ch,al‘+1) 1 + (chl'+1) 1

j=—o0 j=k j=k j=0

= K () (D gtr) < Kom (k) S0 e e o) < g (k])
j=0 J=0
(36)

We now consider the case k = 0. By (29), (33), (34) and (35) we have

1 71 (0) =
E“P[Noo(0)] = <K :K10§ 1
0 [ ( )] pgsC(O) = Cgﬁ-(o o COO> ™ ( ) — Cjj+1

and we can conclude as in (36). O

We now collect some properties of the function g,,:

Lemma 3.12. There exist constants K, > 0 which do not depend on p,w, such that

(k) < K.e2%  vE<0, (37)
o—2Adk (-2

E[g. (k)] < K*mE[e 1] ) Vk >0, (38)

9w(k) > grw(k + 1), Vk, 0> 0, (39)

1 k|
(1 _ e—2)\d)2 + 1— e_2’\d

EE;"[Noo(Z-)] < K. ( ) E[eMa] vk <0.  (40)

Trivially, the second and fourth estimates are effective when E[e(l_”‘”l] < 00.
Proof. We first prove (37). Recall 7!(k) = Ck—1k T Ckk+1. Given ¢ < 0 we have z; < id,
implying ¢;—1; < elmaxA(Fi—1H+2i)=(zi—wi1) < [e2Mi By the same argument, for i < 0
one gets ¢; i1 < Ke2Mdi and, for i =0, cp,1 = e z1—z1+u(Eo, B1) <K.

(38) is obtained noting that, by (37), E[g. (k)] < K,e 2 >0 e 2NIE [e(l_k)xl].

To get (39) we first observe that z;_y(7yw) = z;(w) — x¢(w) and E;_¢(Tyw) = E;(w) for

all i € Z. As a consequence, we get wl(—k — £)[rw] = e 2 xl(—k) (the r.h.s. refers
18



to the environment w). Therefore, using also that z;(mw) = z;4/(w) — z¢(w) and that

xj11(Tew) — 2 (Tw) = xj1140(w) — xj10(w), we have

o)
gfgw(k + £) _ Koﬂ_l(_k)e—2>\zg(w) Ze—QAzj(Tgw)+(l—)\)(a:j+1(77gw)—zj(Tgw))
=0
N (41)
= Kor'( Ze 2@t (=N @ e=2i00) < g (k)
7=0

thus completing the proof of (39).

Finally, for (40), we write, thanks to Proposition 3.11,

EE PN, =Y EE[Nu(2)]+ Y EE’[Nuo(2)]

z<k k<z<0

< ZEE;:”)[NOO(Z)] + Z EE??[Noo(2)] (Markov Property)

z2<k k<2<0
<> Elgne (@) + [k Elg.(0)],
>0
and the claim then follows from (38). O

Remark 3.13. In the spirit of Remark 2.4, we point out that we could consider weaker

14)20]

conditions than E[e( < 400, at the cost of dealing with rather involved formulas.

I_A)ZO] < +oo guarantees, by Lemma 3.12,

Take for simplicity uw = 0. In our case, E[e(
that Elg, (k)] is finite and summable over k > 0. But what is actually required is that
9w (k) bounds from above the quantity o (k) = Krl(—k) Z]>0 5 - (see the proof of

Prop. 3.11). By stationarity, one has

E[ck kt1/Chipriv] = Ele” HHNZ0=2M At 2i-)+(1=0 71

This identity allows to provide conditions for » ;. Elaw (k)] to be finite, which are weaker
than E[e(lf)‘)ZO] < 400. One could go on in weakening conditions, also inside Prop. 5.4,

and still get the ballisticity of the Mott random walks Y; and Y.
Corollary 3.14. There exist constants K1, Ko > 0 which do not depend on p,w such that

Eg*[Noo (k)] < K1 Eg*' [Noo (k)] < K1 gu(IK]) Vk <0, (42)

E§"[Noo(k)] < Kz E§ [Noo (k)] k>0, (43)

Proof. First we consider (42). Its second inequality is a restatement of Prop. 3.11. For

the first inequality we distinguish the cases k < 0 and &k = 0. When &k < 0 note that (32)
19



and Lemma 3.7 imply that
Py?( X. eventually reaches k ) < K Py’ 1( X. eventually reaches k ). (44)

Then put together equation (29) (and its analogous version for p = 1), equation (44) and

Corollary 3.5. For k = 0 use that Ej"”[Ne(0)] = -

T 0) (also in the case p = 1) and use

Corollary 3.5.
Let us now consider equation (43). Start with (29). Due to Corollary 3.5 and the
fact that P! ( X. eventually reaches k ) = 1 for each k > 0 (cf. Lemma 3.15 below) it is

simple to conclude. O

3.3. Probability to hit a site on the right. Following [8], given k, z € Z, we set
T? :=inf{n >0: X/ > 2}, 0 =17, r(z) = PP (X, = 2).

Note that the dependence of w has been omitted. Again (see Warnings 3.1 and 3.10), we

simply write T, rx(2) inside P.7(-), EpP(-).
Lemma 3.15. For P-a.a. w and for each p € Ny U {oo} it holds that
POP(T, < o00) =1 Vk <zinZ.

Proof. Without loss of generality we take k < 0 =: z and prove that P]:J P(Ty = o0) = 0.
As in (31), setting C := (—o00,—N] and D = [0, 00), we can bound

w . w .. Cé(k < Cn
Py P(Ty = 00) = ngn EDlc’p(TCN <7p) < lﬂmf c EZ<H Cn U)D) ‘
o 0 Yot

We observe that Cl;(k <> Cn U D) = Cly(k <> Cn) + Cly(k +» D), while (recall (35))

k—1 -1

1 -1 1 -1
lim Cl(k:<—>C'N):< ) ~0, Cl(k<—>D):< ) >0.
Novoo " j:z_:oo Cj.j+l “ gzk G+l
Together with Proposition 3.4, this allows to conclude that P,”" (T = o) = 0. O

Our next result, Lemma 3.16, is the analog of Lemma 3.1 in [8]. Our proof follows
a different strategy in order to avoid to deal with Conditions D, E of [8], which are not

satisfied in our context.

Lemma 3.16. There exists € > 0 which does not depend on p,w such that, P-a.s., rz(O) >

2e for all k < 0 and for all p € Ny U {o0}.
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Proof. We just make a pathwise analysis. By the Markov property we get

9
Tz(o) = Z ZP]:;U’/J(XH:O7 Xn—l :j7 XOale”an—Q <0)
—p<j<0n=1

[o@)
= > ) POX1 = 0P (X1 =, Xo, X1y ooy Xn2 < 0). (45)
—p<j<0n=1

We claim that there exists € > 0 such that, for all j and w,

PP (X = 0) > 2e PP (X > 0).

Indeed, given j with —p < j < 0, we can write
P;va(Xl — 0) S Cj,O - K e)\xj+a:j ok 1
P;‘”'O(Xl >0) ~ > 20ca o eMaitz;)—(z—z5) Yoo e~ 1=z

1
> -
= e

=: 2e.
Coming back to (45), using the Markov property and the fact that Ty < oo a.s., we get

oo
rh(0)> 2 Y Y PY(X) 2 0)P (X1 = g, Xo, X1, e X2 < 0)
—p<j<0n=1

=2 Y ) PP(Xp20, X1 =4, X0, X1,.., X2 < 0)
—p<j<0n=1

=2e PP (Xp, > 0) = 2e. O

4. REGENERATIVE STRUCTURE FOR THE p—TRUNCATED RANDOM WALK WITH p < 00

In this section we take p < oco. We recall the regenerative structure of [8] for the

p-truncated random walk with p finite.

Warning 4.1. In order to avoid heavy notation, in this section p is fixed once and for all
in Ny and we write PY, Ty, r,(2), Xn,... instead of Py, T, ri(z), Xh,... The whole
section refers to the p-truncated random walk. Only in Subsection 4.2, in which we collect

the main conclusions, we will indicate p explicitly according to the usual notation.

Consider a sequence of i.i.d. Bernoulli r.v.’s (1, (2, ... with parameter P(¢; = 1) = € (the
same ¢ as in Lemma 3.16) which does not depend on the environment w. P and E denote
the probability law and the expectation of the (’s. We couple the sequence ¢ = ({1, (2, ...)

with the random walk X, in such a way that (; =1 implies X7, = jp.
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To this aim we construct the quenched measure Py’  of the random walk starting at 0

once both w and ¢ are fixed. Recall Lemma 3.16. First, the law of (X;,),<7, is defined by

P P (1Xr, = o)

W To 1—7ro(p
L=y 15 (X, = p)+1l{<1:o}[ ; %)

LLpp (1, > p)]. (46)

Then, given j > 1 and X7,, =y € [jp, (j + 1)p), the law of (XT]-ern)ne[O,T(Hl)p—Tj,,] is

Uiy =13 Py (1 X0y, = G+ Dp)
ry((J +1)p) —¢

¢, =0 1_¢ wa(“XT(Hl)p =(j+1)p) (47)
L—r ((] + 1)/)) w ;

One can check that, by averaging Py < over ¢, one obtains the law Fj of the original

random walk (X, )n>0-

We introduce by iteration the sequence (¢x)i>0 as follows:
by =0, €k+1::min{j>€k:g:1} kE>0.

Note that by construction we have XTekp = {p.
Given k > 0 let Cy, := (TXj_i_Tekpw 0L <Ty p— Tgkp). As in [8] one can prove the

following result (cf. [8, Lemma 3.2] and the corresponding proof):

Lemma 4.2. Let p < co. Then the sequence of random pieces (Ci)r>0 is stationary and
ergodic under the measure P QP ® PSJ’C. In particular, 74, ,w has the same law P as w for

alk=1,2,....

As in [28], the fact that (C)r>1 is stationary and ergodic can be restated as follows:
under PR P ® POW’C the random path (X,,),>0 with time points 0 < Ty, < Tp,, < ... s

cycle—stationary and ergodic. This is the regenerative structure pointed out in [8].

In what follows, we will consider also the random walk (X, ),>0 starting at x and with
law P%*°. This random walk is built as follows. Fix a such that z € [ap, (a + 1)p). Then,
the law of (Xn)nST(aH)p is defined by (47) with j replaced by a and y replaced by z. Note
that Ty, = 0. Given j > a+1and X7,, =y € [jp, (j+1)p), the law of (Xn)ne[ij+1,T(j+1)p}

is then given by (47). Again, the average over ¢ of Py < gives P
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4.1. Estimates on the regeneration times. As in [8] we set
P:=PxP, E'[] = E[E[]] .
In what follows we assume that E [e(l_/\)xl] < oo.

Lemma 4.3. Let p < co. There exist constants K1, Ko > 0 not depending on w, p such
that

E[ES*[Th,)) > Kip, (48)

w, 1 P Nz
E/[EO C[TEWH < K2<(1 —e_2/\d)2 + 1 _e—Q)\d>E[e(1 A) 1] ) (49)

Proof. The proof of (48) is very similar to the derivation of the first inequality of (19) in

[8]. We make some comments. One first gets that
BIEG[Th,p]) 2 EIEG[T,]] = e 5T, (50)

since, arguing as in [8], one derives from Lemma 3.16 that Ej T pl > 7= E§'[T},] on the
event {¢1 = 0}. Now take a sequence Y1,Ys,... of i.i.d. positive random variables with
P(Y; > s5) = (Ke=%(-Y) A1 for s > 1 integer, K being the constant appearing in Lemma
3.9. Due to this lemma, under Py, X}, is stochastically dominated by Y7 + --- + Y}, for

any k > 0. This domination allows to bound Ef[T),] from below as in [8].

We concentrate on (49). Exactly like on page 731, formulas (21) and (22) of [8], we also

have that for any ¢ and for all j > 0

w 1 w
By [T(j41)0) < 20— o) v TGyl (51)

for all y € [jp,(j+1)p—1).

When /1 = k we can write
Tglp = Tp + (Tgp — Tp) + ...+ (Tkp — T(k—l)p)-

Now for each 7 > 1 we have

BTy, —Tipl = > BT, PV (Xr, = y)
y€lip,(j+1)p)
1 . "
< EY [T, P (X1, = v)

]__
f0=8) emGrm
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where we have used (51). Now we see that, for any y € [jp, (7 + 1)p),

By [T 1)) < By [Noo((—00, (7 + 1)p])]
< K B [Noo((—00, ( + 1)p))]

< K ES Noo((—00, (j + 1)p))],

where the second inequality is due to Corollary 3.14.

Hence

BT = Tyl € K e 5 Iol(=20. G+ D)
<K (BN Y L Na(2))

DR -2
<ip Jp<z<(j+1)p

(T BN Y B N()

s1-9V =, jp<z<(G+1)p

Using the results of Lemma 3.12 and Corollary 3.14 we obtain for every 57 > 1

w 1
EE, ’C[T(jﬂ)p —Tjpl <K ST ( ZE[erpw(k)] + Z E[gTzw(O)])
k>0 Jp<z<(j+1)p

1 1 P (1-X)
SEa—y ((1 —omaE T e JE[]

and hence

k 1 p _
EEYCIT, | < K E[e(l-Mz1] |
0 [Tkp) < c1—2) ((1 — oMy Tz e—2>\d> e ]

Since P(¢; = k) = ¢(1 — €)1, we obtain

" 1 e N -
E/ [EO 7C[Tglﬂ]] < K ((1 _ e—2)\d)2 + 1— epr/\d)E[e(l N 1} Zk (1 - 5)k 2

k=1

7 1 4 1-Nz
=K ((1 ~ )2 T e—2>\d)E[e( =] (52)
O

Recall the definition of the function g, given in Prop. 3.11.
Lemma 4.4. Let p < co. Given k <0 it holds

w 1L & ,

E07C [Noo (k)] < ngrjpw(’k“i‘JP)‘ (53)
j=0
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Proof. As for the derivation of (33) in [8] one can prove that, if y € [jp, ( + 1)p), then

1
w,C w
Ey |:N[TjP7T(j+1)p)(k)] < e(1— E)Ey N[ij7T<j+1)p)(k)] : (54)

On the other hand, by applying Prop. 3.11 , we get

B [Nipy, 1100 (0] < B [NaolB)] = B3 [Noo(k = )] < g6l +9). (55)

At this point we write y as y = jp + ¢ and set w’ := 7j,w. Then, by applying (39) in

Lemma 3.12, we get

Iryw (k] +Y) = grpur (K] + Jp +€) < g (|E] + 5p) = gry (k] +5p) - (56)

As a byproduct of (54), (55) and (56) we conclude that

w 1 )
B2 Nigy, 1,00 (R)] < S +30)- (57)

e(l—e

The above bound and the strong Markov property applied at time T}, (which holds by

construction of Py’ ’C) imply that

1

B [Nty 0 )] = B3 [BRS, [Nty 1000 ®)]] < i

9z (K| +jp) - (58)

Since Noo(k) = 32720 Niz;,.11,.,1,,) (k), the above bound (58) implies (53). O

4.2. Speed for the truncated process. Recall that p < oo is fixed and recall Warning
4.1. Here we follow the usual notation, indicating explicitly p, and we also write Py’ 6P

instead of Py’ < to stress the dependence on p.

Proposition 4.5. Fiz p < +00. For P-a.a. w € § it holds

. X pE[] p
p()\) = nh—{go n 17 w56 [P - 17 0w, 1P
n E'[Eq [Tel p” eE'[Ey [Tzlp]]

v Py -a.s. (59)

X

where € is the same as in Lemma 3.16. Moreover, v, ,(\) does not depend on w and

Uxe(A) € (c1,¢2) (60)

for strictly positive constants ci1,ca, which do neither depend on w nor on p.

Proof. We work on the probability space (6, PR P® Py**) where © := {0, 1}N+ x @ x 7N,

—T°

p P
For n € [T, Ty 1p Tp

bep? )p < XB < lgy1p (note in particular

) we have {10 — (T},
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that X} has to be thought as a function on ©). It then follows

0 P
- <<
Ley1p n Lip

(61)

Due to the cycle stationarity and ergodicity stated in Lemma 4.2, we let n — oo in
(61) and obtain that the limit in (59) holds P ® P @ P¥“*-a.s. This can be restated as

E [E (PSP (XE n — p/eR/ [ESC(TY

leﬂ)]] = 1. To conclude the proof of (59), it is enough

to recall that, by averaging P(‘)” 'SP over ¢, one obtains the law P(‘)” # of the original random
walk (X7)n>0, in particular we get E[Py™" (Xf/n — p/aE’[ES”C[TZp]])] =1.
Finally, we observe that v, (\) does not depend on w since the last term in (59) doesn’t,

and that v, , () € (c1,c2) due to (48) and (49). O

5. STATIONARY DISTRIBUTION Q'D OF THE ENVIRONMENT VIEWED FROM THE

p—~WALKER

In this section we assume that E[e(l_’\)“] < oo and we fix p < co. We consider the
process environment viewed from the p—walker, which is the Markov chain (Txgw)neN on
the space of environments ) with transition mechanism induced by Fy”. When starting
with initial distribution ), we denote by 736 its law as probability distribution on QY.

Lemma 4.2 and bound (49) in Lemma 4.3 guarantee (cf. [28, Sec. 4, Chapter 8]) the
existence of a stationary distribution Q” of the process environment viewed from the p—
walker, such that Qf is absolutely continuous with respect to P.

From [28, Chapter 8, Eq. (4.14°)], Q” can be characterized by its expectation:

1 Ty p

B ) = g, ] ° [Es“")[; frx@)]] (62)

As in [8, Prop. 3.4] one can prove that Qf is absolutely continuous to P with Radon—
Nikodym derivative

dgr 1

_ T_pw,C,p
P Y N o

kEZ
Note that the denominator in the r.h.s. is finite due to (49) and the numerator is positive.

As a consequence, P is also absolutely continuous to Q.

Lemma 5.1. Fixz p € Ny. Then QF s ergodic with respect to shifts for the environment

seen from the p-walker.
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Remark 5.2. The above ergodicity means that any Borel subset of the path space Y,
which is left invariant by shifts, has Pép —probability equal to 0 or 1.

Due to Theorem 6.9 in [29] (cf. also [23, Chapter IV]), the above ergodicity is equivalent
to the following fact: QP(A) € {0, 1} whenever A C 2 is an invariant Borel set, in the sense
that “Txew € A for anyn € N” holds Q° ® Py ~a.s. on {w € A} and “Txpw € A° for any
n € N” holds Q?@ Py ~a.s. on{w € A°}. As usual, Q°®Py"" is the probability measure on
QxZN such that the expectation of a function f is given by [ QP (dw)Ey"” [ f(w, (Xn)n>0)]-

Proof of Lemma 5.1. The proof can be obtained as in [8, page 735-736]. The only differ-
ence is that in [8] the authors use their formula (29), which is not satisfied in our case. More
precisely , they use their formula (29) to argue that 0 < P(A) < 1 for any Q”—nontrivial

set A. On the other hand, this claim follows simply from the absolute continuity of Q° to
P. O

The rest of this section is devoted to the proof of Lemma 5.9 which leads to the following

result:

Proposition 5.3. Suppose E[e(l_”xl] < o0 and that ©v : R x R — R is continuous.
Then the sequence (Q),en, converges weakly to a umque measure Q> as p — co. Q is
absolutely continuous to P and, P-a.s., 0 <~y < 9= < F (¢f. (65)). Furthermore, Q™ is

invariant and ergodic for the dynamics from the point of view of the co-walker.?

Having Lemma 3.9 and Lemma 5.9 below, Proposition 5.3 can be proved by the same
arguments used in [8, p. 735], with some slight modifications. For completeness, we give

the proof in Appendix A.

5.1. Upper bound for the Radon-Nikodym derivative dQ”/dP.

Proposition 5.4. Suppose E[e(lf)‘)‘“] < 0o. Then, uniformly in p € Ny,

where
oo
F(w) Z j+ 2)%e Pzt A-N (@1 -w) (65)
Jj=0
for some constant K > 0. Moreover, E[F] <
2Ergodicity means that the law Pgs. on the path space QY is ergodic with respect to shifts (cf. Remark

5.2).
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Before proving Prop. 5.4 we state a technical result:

Lemma 5.5. Let Fy(w) := Ko 350, (i+1)e” @it (0=N@it1=20) with Ky as in Proposition
3.11. Then

oo [ee]

Y Ikl +30) <D grw(lk] +7) < ' (—[k) Fulw). (66)

7=0 r=0

Proof. The first inequality in (66) is trivial. We prove the second one. By (41) we can

write
(o] o (o]
3 grallk] 4 7) < Ko (—[kl) 32 D e st N st
r=0 r=0 j=0

o)
_Koﬂ_ —|k‘| Z 2)\1171'4-(1—/\)(1‘1'4,_1—1‘1') ]
=0
We can now prove Prop. 5.4:

Proof of Prop. 5.4. Due to (48) and (63) we can bound

dQr Hy(w)+ H_(w)

—p W) = Kip (67)

where K is the constant appearing in (48) and
Hao(w):= Y EEj %" [NTélﬂ(k;)} . H_(w):= Y EBEjRCr [NTelp(k:)] .
k>0 k<0

As a byproduct of Lemma 4.4 and Lemma 5.5 it holds (see the proof of (39) for the

equality below)

H_(w) 1_5 Yo (k) [k B (1) = . ! 71 (0)> e PR (r_pw) . (68)

k<0 (1-¢) k<0

Let us bound Hy(w). We can write

> B [ 0] =X S0 [t v, 0]

k=0 m=0k€[mp,(m+1)p) i=1
= Zo Z ZZE []151 =i Tﬁkw,cp[ [Jva(JH)p)(k)” :
m=0 ke [mp,(m-+1)p) i=1 j=0

Note that, given m > j > 0 and k € [mp, (m+1)p), it holds N[ij,T<j+1)p)(k) = 0, hence in

(69)

the last expression of (69) we can restrict to 0 < m < j < i. Moreover note that (cf. (54))

T—kUhC P 1 T—kW,P
EO [N[ ;wT(jH)p)(k)} < 5(1 _ 5) EO [ JP’T<j+1)P)(k) ’ (70)
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Consider then the case k € [mp, (m + 1)p) with 0 < m < j < i. Note that Xéijp €

[ip, (j +1)p) due to the maximal length of the jump. Fix y € [jp, (j +1)p). Then, for any

environment w, we have

w,pP w,p ngW(O) lfj:m’
Ly |:N[TjP’T(j+1)p)(k)] =L, [NT(an(k)} = . o
Irpw(ip—Fk) i j>m.

Indeed, consider first the case 5 > m. Then k < y and by Prop. 3.11
E?(fp |:NT(j+1)p(k)] < Egpr [N (k)] = Egywm N1, (k —y)] < gfyw(y — k)
Write y = jp + ¢ and ' := 7j,w. Then we have

Iryw(y — k) = grw (Gp — k + ) < g (Gp — k) = gr;,0(ip — k)

(in the last step we have used (39)). This proves (71) for j > m. If j = m we bound (by

the Markov property at the first visit of k)

B [Nr, ., (0)] < B9 [Np (R)] < B2 (Vg (k)] = B5* [Nr.,(0)]

At this point (71) for j = m follows from Prop. 3.11.
The above bound (71), the Markov property and (70) imply

1 9w(0) if j=m,

T*kwvgvp
Ly N[ij’T(jH)p)(k)] S e(1—¢) '

Gy lip— k) i j > m.

Coming back to (69) and due to the above observations we can bound
Hy(w) < 37 BEZ S [Np, ()] < AWw) + B(w),
k=0

where (distinguishing the cases m = j and m < j)

A(w> = Z Z Z E []151=i] gw(o) =p (E(gl) + 1) gw(o) )
i=1 =0 keljp,G+1)p)

co ¢

j—1
B(w) := ZZ Z Z E [1g,=i] gr; 1 (Gp — k) -

i=1 j=1 m=0 k€[mp,(m+1)p)
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For what concerns B(w) observe that 3 E [1y,—] = (1 — )1, hence

e’} J—1
<M a-e Y S g, el k)
= m=0 k€[mp,(m+1)p) (76)

[e.e]

9] Jp
1_5 Z I7jp—rw (jp— k) Z(l—e)j_IZgThw(h)
=1 h—1

=1 ke[0,5p)

.

Since, by (39), gr,w(h) < gu,(0), we get that B(w) < >°72,(1 — £)7715pg.(0). Combining
this estimate with (75) we conclude that H, (w) < Cpg,,(0), where the constant C' depends
only on . Coming back to (67) and (68), and observing that g,,(0) < 7!(0)Fi(w), we have

de ¢’ 7' (0) > k<0 e PNk B (T_gw)
< T O TR (T w)

k<0

where C” depends only on e. Since x4(7_w) = T4 (w) — z_j(w), by definition of F, (and
setting r = i — k) we can write

Z o2 FF (T_pw) = Ko Z Z i+1)e =222+ (1-A)(Ti— k1~ Tik)

k<0 k<0 i>0

=K, Z e—2/\mr+(1—>\)(zr+1—m” (T + 1)(7" + 2) )

2
r>0

As byproduct of (77) and (78) we get (64).
Finally, by using (37) and that z; > jd for j > 0, we can bound E[F] < C’ijo(j +

1—/\)I1] < OO,

2)2e~2ME[e(1=M71] for some positive constant C. Since by assumption Ele!

we conclude that E[F] < oco. O

5.2. Uniform lower bound for dQ”/dP. We remark that, following the proof of Propo-
sition 3.4 in [8], we could easily obtain a lower bound on dQ”/dPP which is independent of
p, but which would in principle depend on the particular argument w. Here we will do

more: We will exhibit a lower bound that is uniform in both p and w (see Corollary 5.8

below).

For fixed w € (1, we denote by % the empirical measure at time n for the environment
viewed from the p-walker. More precisely, )% is a random probability measure on €2
defined as

1
= ]Zl Or ;w
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Averaging over the paths of the walk we obtain the probability E;”[Q%(-)]. For fixed

w € 2, we define another probability measure on €2, given by

where m(n) :=n-v,,/2 and v,, is the positive limiting speed of the truncated random

walk given in (59) (we are omitting the dependence on A; the 1/2 could be replaced by

any other constant smaller than 1).

We remark that R and E;"*[Q%(-)] can be thought of as random variables on (Q,P)
with values in P(2), the space of probability measures on {2 endowed with the weak
topology. Note also that P, Q” € P(Q2). Furthermore, Q¥ can be thought of as a random
variable on the probability space (Q x ZN, P ® Py*) with values in P(Q).

Proposition 5.6. For P-almost every w € Q we have that RY — P and E;"[Q%(-)] — QF
weakly in P(Q). Moreover, P® Py"’-a.s., we have that Q% — QP weakly in P(12).

Proof. The a.s. convergence of R to P comes directly from the ergodicity of P with respect
to shifts.

We claim that Q¥ — Q” weakly in P(Q2), Q” ® Py"’-a.s. This follows from Birkhoff’s
ergodic theorem applied to the Markov chain Tysw starting from the ergodic distribution
Q” (cf. Lemma 5.1). As already observed after equation (63), P is absolutely continuous
to Q°. Hence, due to the above claim, Q¥ — Qf weakly in P(Q) also P ® Py "-a.s.

Finally, the last a.s. convergence and the dominated convergence theorem imply that

EFPIQ%(-)] — Q° weakly in P(Q), P-a.s. 0

Lemma 5.7. There exists v > 0, depending neither on w nor on p, such that the following

holds: For P-almost every w, there exists an n, such that, Yn > n,,

Eg Q5 ({mrew})]

>, VE: 1 <k<m(n).
Rilmwh) "
Proof. For all k = 1,...,m(n), we have
w w ]- W .
By [Qn()] = ~ P3P (3] <nt Xj = K)ore. (79)

We claim that, for n big enough and k£ = 1, ..., m(n), it holds

PyP(Fj<n: X;=k)>¢, (80)
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where £ > 0 is the same as in Lemma 3.16. To prove our claim, we bound

PS%P(Ej <n:X;=k)> PS)”)(XTk =k, Tp <n)
> ng’p(XTk = k) — Pow’p(Tk > n)

> 2e — Péu’p(Tm(n) > n),

where in the last line we have used Lemma 3.16. On the other hand, we also know, by
the definition of the limiting speed, that for almost every w € (2, there exists an n,, such
that, Vn > fg, Py* (Thmy > n) < PyP(X, <m(n)) <e. This completes the proof of the
claim.

Hence, putting together (79) and (80), for all n > n, and k = 1,...,m(n), we have

EG IR ()] =

3
A -
n k

On the other hand, by definition, R¥({mxw}) = #n) for all k =1,...,m(n) and for P-a.a.

w (since periodic environments have P-measure zero by Assumption (A3)). It then follows

that, for all k = 1,...,m(n) and for P-a.a. w,

EP1Q% ({mpw})] £ ev ecy

n > n = XP >~ 772 = >0 81
RY({mw}) m%n) 2~ 2 T (81)
where ¢ is from (60). Note that v does not depend on w. g

We finally need to show that the lower bound extends also to the Radon-Nikodym

derivative of the limiting measures.

Corollary 5.8. The Radon-Nikodym derivative %%7 is uniformly bounded from below:

dé% >y, where 7y is from (81).

Proof. Take any f > 0 continuous and bounded. Lemma 5.7 and the fact that R¥ has

support in {ryw : k=1,...,m(n)} guarantee that, for all n large enough,
EJP1Q%(f)] > vRE(f) for P-a.e. w.

Passing to the limit n — oo, and observing that, by Proposition 5.6, E"’[Q¥(f)] — Q°(f)
and R(f) — P(f) for P-a.e. w, we have that Q°(f) > vP(f). The claim follows from the

arbitrariness of f. O
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5.3. The weak limit of Q” as p — co. Recall the definition of the function F' given in

(65) and of the constant « given in Corollary 5.8.

Lemma 5.9. Suppose ]E[e(l_)‘)“”l] < 00. Then the following holds:

(i) The family of probability measures (Q°) e, is tight;

(i) Any subsequential limit Q> of (QF),en, is absolutely continuous to P and

0<7§T§F P-a.s.

dQ
P
Proof. For proving part (i), fix an increasing sequence of compact subsets K, exhausting

all of €. Thanks to Proposition 5.4 we have

Setting f, := Flge we have that 0 < f, < F and f,(w) — 0 everywhere. By the
dominated convergence theorem, given € > 0 we conclude that Q°(K};) < e uniformly in
p eventually in n, hence the tightness.

We turn now to (ii). Let Q> be any subsequential limit of (Q”),en, . In particular,
there exists a sequence pp — oo such that QP* converges weakly to Q. Let A C ) be
measurable. Due to Cor. 5.8 and Prop. 5.4 we have yP(C) < QP*(C) and Q”*(G) < E[F1¢]
for any C C A C G with C closed and G open. Hence, by the Portmanteau Theorem
(cf. [4, Thm. 2.1]), we conclude that

TB(C) < limsupQ(C) < 0¥(C) < @¥(4) < Q%(G) < lmint @*(G) < EFLg).
(2)
By the the regularity of P (cf. [4, Thm. 1.1]), one can choose C' and G so that the extreme
terms in (82) are arbitrary close to yP(A) and E[F1 4] respectively, from which Item (ii)
follows. g

6. PROOF OF THEOREM 1—(I): TRANSIENCE TO THE RIGHT

By the discussion at the end of Section 3, it is enough to show the a.s. transience to
the right of X ° and X?°. Since the former is the jump chain associated to the latter, we
only need to derive the a.s. transience to the right of X °. To this aim, it is sufficient
to show that, for any m € N, there exists some n(m,w) < oo such that X°° > m for all

n>n(m,w).
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First of all notice that, by Proposition 3.11, for P-almost every w € Q and ¢ € Z we

have

M

E;U’OO[NOO((_OOa i])] Iriw(k)
k=0
- KO(ZKOW1<—]€)[TM]> . (Ze*”\%‘(Tiw)Jr(l*/\)(ijH(Tz‘w)*Ij(Tz‘w))),
k=0 Jj=0

which is P—almost surely finite (see (37) and the discussion after Prop. 3.11). Hence
PP (Noo((—00,1]) < 00) = 1. (83)

Now fix m € N and consider T;,, the first time the random walk is larger or equal than

m. Applying the Markov property at time 7T, and using (83) one gets the claim.

7. PROOF OF THEOREM 1—(11): THE BALLISTIC REGIME

In this section we assume that E[e(!~Y*1] < 400 and that u : R x R — R is continu-
ous. Recall that (Y)¢>0 and (Y;,)n,>0 denote the continuous-time Mott random walk and
the associated jump process, respectively. Recall also the definition of the Markov chains
(X2°)i>0 and (X °)pen, given in Section 3 and that 735 is the law of the process envi-

n

ronment viewed from the p—walker (Txpw)nen when started with some initial distribution
Q.

Given p € Ny U {400}, by writing (X7)nen as a functional of (7xrw)nen (which is
possible for P-a.e. w to due Assumption (A3)) and using the ergodicity of Q7 (cf. Lemma
5.1 and Proposition 5.3) we get that the asymptotic velocity of (X7),>0 exists Pépfa.s. and

therefore P{;fa.s. since Q” and P are mutually absolutely continuous:

XP
vxe(N) := lim =" Phe-a.s. and Pg-a.s. (84)

n—oo n

Moreover, vxp(A) does not depend on w and can be characterized as
vxe(N) 1= EP[ESP[X,]] = IEP[ N mPe(X, = m)], Vpe Ny U{+o0}.  (85)
meZ

Here, Ef denotes the expectation with respect to Q°. Recall that for p < oo we have also

an alternative representation for vx,(\) (see Proposition 4.5).

We now prove that

lim (% ¢4 ()\) — VX oo ()\) . (86)

p—00
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By the exponential decay of the jump probabilities (see (24)), for all § > 0 there exists

mg € N such that, for all p,
Z Im|Py (X1 =m)<é  P-as.
|m|>mg

We now observe that, for p > |m| > 0, we have

co.m(w)

ZkeZ cor(w)’

and the r.h.s. of (87) is continuous in w due to the continuity assumption on u and since

Py? (X1 =m) = Py (X1 =m) = (87)

l[co.k()|loo < e~ U=NdhHlule - Since QF 5 @, it is now simple to get (86).

Finally, we also have that vxe(\) € [c1, o] because of the limit (86) and since, by

Proposition 4.5, v, () € (c1,¢2) for suitable strictly positive constants cq, ca.

By the previous observations and by the second identity in (16), we also obtain that
the limit
Y,
vy(\) == lim (88)

n—oo N
exists Ppo-a.s. and equals E[Zp|vuxe()). As a consequence, vy () is deterministic, finite

and strictly positive.

By a suitable time change we can recover the LLN for (X°);>o from the LLN for
(X2°)>0 as follows. By enlarging the probability space (QV, P@e) with a product space,
we introduce a sequence of i.i.d. exponential random variables (8y,)n>0 of mean one, all
independent from the process environment viewed from the co—walker (Txgow)neN. We
call (N ® RN,ﬁ(afoo) the resulting probability space. Note that 75(5@0 is stationary and

ergodic with respect to shifts. On (N ® RE, 75(5%0) we define the random variable

M |

) r(w) =12 0)w] = Y corw).

k=0 kEZ
We note that r(w) coincides with 7 (w) of Section 2. By the ergodicity of 75(5%0 we have

S [e’e] OO .
nh_)rgo = E>[1/r] Por—a.s. (89)
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Since, by Proposition 5.3, Q*° <« P and dQ < F with F defined in (65), using Lemma
3.6, Assumption (A4) and the hypothesis E[e('~Y%] < 400 we get

0 < E*[1/r] < KE[ LS+ 2)e e 0N )|
7=0
(90)

0o
Z ]+2 2 —2)\dE[ (1- )\)Zo] < +400.
7=0

For any ¢ > 0 we define n(t) on (QN @ RY, 75(5000) as the only integer n such that S, <t <
Sn+1. By (89) and (90) we get that n(t) — oo as t — oo, 75&,07&.3. As a byproduct of the

above limit, of (89) and the bound

)“ , (91)

we conclude that

. _ _m o
nh_)IrOlo = /7] Pgee—a.s. (92)
XOO
By writing —® = n’zg 210 from (84) and (92) we get that
XOO

oo (A _
lim ) _ vx=(N) Peaus. (93)
t—oo ¢ E>[1/r]
At this point it is enough to observe that the process (Xz?t))tZO defined on the probability
space (N ® RN,ﬁéf’oo) has the same law as the process (X§°):>0. Using also (90) and the

fact that Pp° < Pgse, we conclude that

X7 oo (A
Uxoo(A) := lim — = vx(A)

Jim == = gy € (0:00) (94)

holds Py"*~a.s., for P-a.e. w. Finally, using (16), we conclude that

Y:  E[Z]

vy(N) == tlggo - = vaoo (M) € (0,400) (95)

holds for almost all trajectories of the Mott random walk, for P-a.e. w. As already ob-
served, the r.h.s. of (95) is deterministic and this concludes the proof of Theorem 1-(ii)

and its counterpart for the jump process (Y,)n>0 (cf. (83)).

8. PROOF OF THEOREM 1—(111): THE SUB-BALLISTIC REGIME

First we point out that it will be sufficient to prove that vxe(\) = 0 a.s., for P-a.e.

realization of the environment w: Recall the identities (15) and (16) of Section 3. By
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Assumptions (Al) and (A2), lim; o 9 (i)/i = E[Zy] < oo, P-a.s.. On the other hand, as
proved in Section 6, the random walks X°° and X2 are a.s. transient to the right. As a
byproduct, due to (15) and (16), we have vy (\) = 0, vy(A) = 0 whenever vxe(A) = 0,
vxee (A) = 0, respectively. But we also have that vxee(A) = 0 implies vxe (A) = 0. Indeed,
the continuous-time random walk (X$°);>¢ is obtained from the discrete-time random walk
(X°)n>0 by the rule that, when site k is reached, X*° remains at k for an exponential
time with parameter rp(w). Since supyez ,ecqrp(w) = C' < oo (cf. Section 2), we can
speed up X* by replacing all parameters r,i‘ (w) by C. The resulting random walk can be

realized as t +— er‘(’t) where (n(t)) is a Poisson process with intensity C. Hence, its

t>0

velocity is zero whenever vxeo(A) = 0.

We first show in Proposition 8.1 a sufficient condition for vxe(A) = 0. In Lemma 8.2
we prove that this condition is equivalent to the hypothesis (5) of Theorem 1-(iii) and in
Corollary 8.3 we discuss some stronger conditions corresponding to the last statement in

Theorem 1—(iii).
Proposition 8.1. Suppose that

-1
E[ (supPZw’oo(Xl > 1)) ] = . (96)
2<0
Then vxe(X) = 0.
We postpone the proof of the above proposition to Section 8.1.
Lemma 8.2. Condition (96) is equivalent to

E[e(l—)\)Zo—(l‘F)\)Zfl] =00. (97)

Proof. First of all, we claim that for all w € 2 and z < 0 we have

Py (X > 1) > e2(umin=tmax) po(x) > 1), (98)
In fact,
Z S e_(1_>‘)$j
P"u X > 1 > e(umin_umax) JZ
0 ( L= ) - Z]Zl e_(l—)\)fl'j _I_ Z]S—l e(1+>\)$]
and

e(lf)\)mz ijl ef(lf)\)a:j

T G CEER I SRR
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Hence, (98) is satisfied if

Zj>1 e—(1=N)z; INEEDIER Zj>1 o—(1-N)z;

2 ——— —
Zj21 e_(l_)‘)xj —+ ngfl e(1+>‘)zj 2j22+1 e_(1_>\)($] zz) + Ejngl e(1+/\)(xj Tz)

which is true if and only if

e—(l—A)xz( Y e V@) o §7 e(1+A><xj—:vz)) > eV N e,

j>a+1 j<a—1 i>1 j<—1
Simplifying the expression (the terms with j > 1 cancel out), the last display is equivalent

to

Z ef(lf/\)xj_’_l_i_eflxz Z e(1+)\)xj > Z e(1+)\)a:j +e(1+)\)zz+ Z e(1+/\)m]~

z+1<j<-1 j<z—1 z+1<j<-1 Jj<z—-1
and the last inequality clearly holds since the L.h.s. terms dominate one by one the
r.h.s. ones.

Equation (98) shows that Fy'(X; > 1) < sup,o P (X3 > 1) < C- Ff(X; > 1) for a
constant C' which does not depend on w. On the other hand, using estimates (22) and

(23)7

. Cn 5
Z]>1 0,5 < K- €o,1 :Ki'ef(1f/\)zo+(1+)\)z_1

PY(X;>1) =
G =1) > j£0C05 €0,~1

Po(X Ky — 01 ! e TN
> > . 2 p— .
0 ( 1= 1) = A2 o1 + o1 2 e—(1+N)Z_1 + e—(1-N)Zo

for constants K1, K/, Ka, K which do not depend on w.

Hence, we have (96) <— E[ ] =00 = Ele(l"MN%0-(14N)Z-1]) = o, O

1
Py (X321)
Corollary 8.3. Suppose that E[Z_1|Zy] < C for some constant which does not depend on
w (e.g. if the (Z;)iez, are i.i.d.) and that Ele('=Y%0] = oo. Then condition (97) is satisfied

and in particular vxee(A) = 0.
Proof. Conditioning on Zj and using Jensen’s inequality, we get
E[e(lf)\)Zof(1+)\)Z_1] _ E[e(l”\)ZOE[e’(H’\)Z‘l |ZOH > E[e(lf)\)Zoef(lJr)\)IE[Z_l|Zo]]
> o HNCR[(1-M70] — o . 0
8.1. Proof of Proposition 8.1. The proof goes through the construction of several
couplings, including the so called quantile coupling that we recall in Lemma 8.4 below.

Before entering into the technical details we give a sketch of the proof and its main

ideas. We fix an environment w € €2. In STEP 1 below we define T} as the first time
38



the random walk (X;;"™), .y goes to the right of the origin and couple Wi := X7»™ with
a suitable finite-mean random variable £; such that &; is independent of w and & > W
almost surely (see Claim 8.6). We also couple (see the paragraph containing (112)) T}
with a geometric random variable Sy of parameter sg = sup,<q Pz (X1 > 1) in a way
that guarantees Sy < 77 almost surely.

At this point, we can inductively define the random variables Tyy1, Wii1, ki1 (see

STEP k+1) and Sy, (see the paragraph containing (112)) for £ > 1 in the following way:

Ty11 is the first time (X5;"°),en goes to the right of the point & + ... + &;

Wi41 is the overshoot X;kiol — (&1 + -+ &)

&k+1 i1s a random variable with the same law of & that is independent of all the
previous £.’s and of w. We can couple ;1 and Wyq so that €11 > Wyyq almost
surely (see Claim 8.8). As a consequence, X7, < & + - + &1 almost surely.

e Sj is a geometric random variable (with parameter given in (112)) coupled with

the difference Ty y1 — T}, in a way that guarantees Sy < Tyy1 — T almost surely.

We point out that, to have a unique probability space where all the above infinite random
objects are defined, we will use the Ionescu—Tulcea Extension Theorem as discussed in
STEP +o00. In particular, to be precise, in the k—th step we will work on a k—fold product
probability space, and the random walk built on such a space, and behaving as (X" ),en
when w is fixed, will be denoted by (X)nen.

Notice now that, by construction, for T < n < Tky1 we have

w,00
n — T, = Si+---+5

and we would like to conclude by applying the LLN to the £.’s and S.’s sequences. While
(§k)ken, is an ii.d. sequence, the S.’s are unfortunately not independent since their pa-
rameters depend on the £.’s. Nevertheless, it can be proven that they still constitute a
stationary ergodic sequence (see Lemma B.3 in Appendix B). Hence, we are allowed to
apply the LLN and derive the sub-ballisticity of (X:°),en by noticing that & has finite

mean, but E[S;] = 400 because of our assumption (96).

Finally, we point out that the above strategy can be implemented in other contexts to
derive sub—ballisticity of random walks in random environment, possibly with long jumps.

On the other hand, the construction of the above mentioned couplings require some care
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also from a notational viewpoint. In order not to introduce further notation we have

restricted the exposition to our random walk (X},""),en.

Before giving the proof of Proposition 8.1 we describe in the next lemma a basic tool

to build couplings:

Lemma 8.4 (Quantile coupling). For a distribution function G and a value u € [0,1],
define the function
#(G,u) :==inf{x e R: G(z) > u}.

Let F and F' be two distribution functions such that F(z) < F'(x) for all x € R. Take
U to be a uniform random variable on [0,1] and let Y := ¢(F,U) and Y' := ¢(F',U).
Then'Y is distributed according to F, Y’ is distributed according to F' andY >Y' almost

surely.

The proof of the above lemma can be found in [28]. Usually, as in [28], the quantile
coupling is defined with ¢4(G, u) instead of ¢(G, u), where ¢4(G, u) is the quantile function
¢¢(G,u) :=inf{x € R: G(z) > u}. One can easily prove that ¢(G,U) = ¢4(G,U) a.s.

Proof of Proposition 8.1. Call F¢ the distribution function of the random variable £ :=

L + G, where L € N is some constant such that

eumax_umin e_(l_A)dL
1 — o—(—Nd

<1, (100)

and G is a geometric random variable with parameter v = 1 — e~ (1="4_ Note that given
an integer a it holds

1 ifa—L <0,
1—Fe(a) = (101)

(1 -yt = e~ (I=Ndla=L)  jfq [ >1.
In particular, given an integer M > L + 2, due to (100) we have

eumax_umin e_(l_k)d(M_l)
1 — e—(1-N)d

< o~ (1=Nd(M-1-L) _ 1 _ Fe(M—1). (102)

We will now inductively construct a sequence of probability spaces (QxZNx [0, 1]7, P("),

on which we will define some random variables.

STEP 1. We first consider the space Q x ZN x [0, 1], the generic element of which is denoted

by (w7 ja Ul)-
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We introduce a probability P on Q x ZN x [0, 1] by the following rules. The marginal
of P on Q is P, its marginal on [0,1] is the uniform distribution and, under PM the
coordinate functions (w, Z,u1) — w and (w, T, u1) — w3 are independent random variables.

Finally, we require that
POXY € Alw,uy) = P°(X. € Al Xp, = ¢(FD, uy)) (103)

for any measurable set A C ZN, where (Xél))neN is the second—coordinate function

(w,Z,u1) — T and
FM(y) = Py (X7, <), Ty =inf{n e N: X ° > 0}.

From now on we consider the space Q x ZN x [0,1] endowed with the probability P(1).

It is convenient to introduce the random variables Uy, &1, W, defined as follows®:
Ur(w, Z,u1) :=up, §1(w, T,ur) = d(Fe,u1), Wi(w, Z,u1) = ¢(ES) uy) .

Note that, by the quantile coupling (cf. Lemma 8.4), & is distributed as £ and W; under
PO (-|w) is distributed as X7 under Py,

The interpretation to keep in mind is the following: (X,(Zl))neN plays the role of our
initial random walk in environment w; W7 is the overshoot at time 717, i.e. how far from
0 the random walk will land the first time it jumps beyond the point 0; &; is a positive

random variable that dominates W; (see Claim 8.6) and that is distributed like & .

Claim 8.5. For any integer M > 1 it holds

Py (X, > M) <sup P2™(X; > M| X; > 1). (104)
2<0
Proof of Claim 8.5. Given j > 1 and integers 21, 22, ..., 2j—1 < 0 we denote by

E(z1,22,...,2j—1) the event {X° = 21,0, X2 = zj—1}. Note that, by the Markov
property,

Py (Xy > M Bz, 2-1)) _ PS (X > M) PO (X, > M| X, > 1)
PYR(X; > 1L,E(2, .., 2j1))  PO(X1 > 1) zj-1\ = L=

3We will denote the first—coordinate function again by w, without introducing a new symbol.
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By the above identity we can write
P(()IJ’OO(XTl > M)

00
:Z Z P(()U’OO (Xj2M|XjZl,E(Zl,...,Zj_l))PS)’OO (XjZl,E(Zl,...,Zj_l))

J=1z21,...,2;-1<0

oo
<sup PEO(Xy > MIX >1)> 0 Y PEN(X; 21, Bz, zim1))

< .
=20 =1 21,0021 <0

<sup PY(X1 > M| X1 >1). 0
2<0

Claim 8.6. The following holds:

(i) POE& = W) = 1;
i) & is independent of w under PO ;
(i) ¢ p
(iii) P(l)(X.(l) € Blw) = PY"*(X. € B) for each measurable set B C ZN.

Proof of Claim 8.6. In order to show (i), we just have to prove that Fugl)(ac) < F¢(x) for
all w € Q and z € R (in fact, it is enough to prove it for all x € N) thanks to Lemma
8.4. To this aim, recall the definition of L (see (100)) and notice that for all w € Q and
all integers M > L + 2, one has

1= FM(M —1) = P (X, > M) < SE%P?‘"’(Xl > M| X, >1)
2<

5 g € (N @50+l )

— < Umax —Umin =
P S oo NG el ) = ¢ " e (N
— eumax_umin Z e_(l_A)(xj_xl) S eumax_umin Z e_(l_)‘)d(j_l)
j>M j=M
o—(1=N)d(M~1)
— aUmax—Umin — —
=€ 1 — o—(1—nd <1 F&(M 1)7 (105)

where in the first line we have used Claim 8.5 and in the last bound we have used (102) and
the fact that M > L 4 2. This proves that Fogl)(a) > F¢(a) for all a € N with a > L + 1.
The same inequality trivially holds also for a < L since in this case Fg(a) = 0 (because
§>1L).

Part (ii) is clear since & is determined only by Uj, while U; and w are independent by

construction.
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4 ...+ & X, 4 ...+ & Xy S+ +&kp1

w(u41)

§(up+1)

FiGURE 1. Ty.1 is the first time the random walk overjumps the point
&14...4+&;. The overshoot w(ug1) is dominated by E(uky1) by construction.

For part (iii) take some measurable set B C ZY and notice that (recalling (103) and the
independence of w and U — 1)

PO(xY e Blw) = / POXY € Blw, Uy = u))PO(U; € duy)
[0.1]

_/ Py (X. € B| X7y = ¢(FLM, w1)) duy
[0.1]

ZPWOXGB|XT1_])P (X, =5)=PY>(X. €B). O

STEP k+1. Suppose now we have achieved our construction up to step k. In particular,
we have built the probability P*) on the space Qx ZN x [0, 1]* and several random variables

on (Q x ZN x [0,1]%, P()) that we list:

e Up,..., Ui are independent and uniformly distributed random variables such that
(Ui, ...,Uy) is the projection function on [0, 1]¥;
o &1,...,& is defined as & = ¢(Fe,Uj), j=1,...,k;
. (X}Lk))n>o, defined as the projection function on ZN, whose law under P%*) (.| w) is
PYioe.
0 )
o Wi, Wa,...,W; such that P*®)(& > W, foralli=1,...,k) = 1.
We introduce a probability P*+D on Q x ZN x [0,1]¥*! by the following rules. The
marginal of P*+1D on Q is P, its marginal on [0,1]**! is the uniform distribution and,

under P41 | the projection functions (w, Z, u1, . . ., upr1) — w and (w, T, uy, ..., Upy1) —
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(u1,...,urs+1) are independent random variables. Finally, we require that

plet1) (X.(]H_l) € Alw,uty ..., ug, uk+1)
(106)
— pk) (X.(k) € Alw,uq,... ,uk,X( =&+ o+ &+ o wkﬁ) ,uk,u/kﬂ))

Tk+1

for any measurable set A C ZN, where

FED () =POXE < bty wu,. . wm),

Tkt

Tipr :=inf{fneN: X > ¢ + .. +&}.

Note that Ty is a random variable on (Q x ZN x [0,1]%, P(%)). We stress that the
conditional probability in the r.h.s. of (106) has to be thought of as the regular conditional
probability P*) ( |w, ug, .. uk) further conditioned on the event {XT =&+ .. +&+

(PSS e ursn) -
Claim 8.7. The marginal of P**Y on Q x ZN x [0,1]F is ezactly P*),

Proof of Claim 8.7. Since the marginal of P**t1) along the coordinate Ug1 is the uniform

distribution, by integrating (106) over uxy1, we get

P(k+1)(X_(k+1) € Alw,ur, ... up) =

e}

1
> PO € Al XL = €t 643) [ 1O, ) = )
j=1

(107)

Above we have used Lemma 8.4 to deduce that qb(Fu()kJLll) g, W) has integer values. Apply-

ing again Lemma 8.4 and the definition of Fogkj 1) u, We have

1
. k .
/0 L(p(FERY | u) = j)du = P(k)(X}k)H =&+ F &g wur, . ug) . (108)
Plugging (108) into (107), we get
P(kH)(X.(kJrl) € Alw,u, ... ,uk) = (k)( x® ¢ Alw,uq, ... k) . (109)

On the other hand, the projections of P*#+1 and P*) on Q x [0,1]*, i.e. along the coordi-

nates w, u1,...,u, are equal by construction, thus concluding the proof of our claim. [

Due to the above claim, any random variable Y defined on (Q x ZN x [0,1]%, P(*)) can

be thought of as a random variable on (Q x ZN x [0, 1]¥+1, P*:+1)) by considering the map
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(W, Z,uty ... U, Ups1) — Y (0, Z,ug, ..., ug). With some abuse of notation, we denote by
Y also the last random variable.

As a consequence, Uy, ..., Ug, &1,..., &, W1,..., Wi can be thought as random vari-
ables on (€ x ZN x [0,1]F+1, P*+1)) " Finally, we introduce the new random variables

Upg1s Ena1, Wigr on (Q x ZN x [0, 11541, P*+1)) defined as

Uk+1(w, T, ui,..., uk+1) = Uk41,
é‘k—i-l(waja ut, - - 7uk+1) = ¢(F§7uk+1) )
W/C—i—l(wa T, UL, - 7uk+1) = ¢(Fu.()],€1j;}),uk7uk+l) .

The interpretation is similar as in STEP 1: Wy is the overshoot at time Ty 1, i.e. how
far from & +...4+& the random walk will land the first time it jumps beyond that point; {41

is a positive random variable that dominates Wy, (see Claim 8.8) and that is distributed

as £.

Claim 8.8. The following three facts hold true:

(i) P*HD(&pq > W) = 1;
(ii) &pq1 is independent of w, Uy, ..., Uy under P+,

(iii) For each measurable set B C ZV,
PrD(x*H) ¢ Blw) = PY®(X. € B).

Proof of Claim 8.8. The three facts can be proved in a similar way as Claim 8.6. We give
the proof for completeness.

For Part (i) we want to show that FUS’“JI”W (M —1) > Fe(M —1) for all M > L +2,
with M € N. In fact, as for Claim 8.6, this inequality can easily be extended to all M € N
and the conclusion follows.

First of all we notice that, by iteratively applying (106) and using Claim 8.6—(iii), we

have

1—F&ED (M —1) = B (xP

W, U ,..., UL Tk+1

= Py (Xintfn: X, >€(un) 4 4€p)} = E1) + ... + &(ur) + M | Dy), (110)
45

>& 4+ o+ &+ Mw,ug,. .., u)



where we have used the shortened notation &(u) := ¢(F¢,u) and Dy, is the event

Dy : = { X7, = ¢(FY, u1), Xint{n: X, >¢(ur)y = §(u1) + ¢(Fo%17u2), vy

Xint{n: X () b tbup)) = E1) + oo+ E(up_1) + 9(FE, o un)}

For convenience we call

D;c = {Xinf{n: Xn>E(ur)++E(up—1)} = Yk}
Yk 1= yk(u17 cens Uk) = 5(@61) + ...+ ﬁ(uk—l) =+ ¢(F£lf111,---7uk—1’uk)

Wr = wk(ul, ceey uk) = ¢(Fc£21,---,uk_1’uk>'

We also note that &(uy) > wy, P®-as. (see the list of properties at the beginning of
STEP k+1). Coming back to (110), by using the strong Markov Property, we obtain (see
also the proof of Claim 8.5)

P<’€>(X;’Z)+1 >4t &t M|w,u, ... u)
= Py (Xint{n: X >€(u )+ teup)) = Eua) + .o+ E(ug) + M |Dy,)
= ngkwpo(Xinf{n: Xn>E(ug)—wg } > g(uk) — Wk + M)

= Z ngkw7oo(XZ’ > &(ug) —wg + M | inf{n : X,, > &{(ux) — wg} = 1)

1€ENL
x Py (inf{n : X, > €(ug)} = 1)
< sup  PMUUT(X > MIX;>1). (111)
2<E(ug) —wy

The last inequality follows by conditioning to the position of the random walk at time
i — 1. Knowing this, we can proceed as in (105) getting that the last term in (111) is
bounded from above by 1 — F¢(M — 1). This concludes the proof of Part (i).

Part (ii) is clear by the construction of &;.1. Finally, we prove Part (iii). Since
the projections of PE+D) and of P*) on [0, 1]'“, i.e. along the coordinates ui,...,ug,
are both the uniform distribution on [0,1]*, integrating (109) over wi,...,u; we get
P(kH)(X.(kH) € A|w) = pk) (X.(k) € A|w). The claim then follows by the induction
hypothesis (see the discussion at the beginning of STEP k + 1). O

Due to the results discussed above, the list of properties at the beginning of STEP k41

is valid also for P(*+1),
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STEP +o0: By the Ionescu-Tulcea Extension Theorem, there exists a measure P(>) on
the space Q x ZN x [0, 1]V, random variables &1, &, ..., Wi, Wa, ..., T1,T5, ... and a random
walk (X,(fo))neN, such that: For all measurable A C Q, P(®)(w € A) = P(w € A); the
&’s are i..d., distributed like £ and independent of w; P(Oo)(X;ZO) =& 4+ ..+ &1+
W) = 1; POO)(&, > Wy) = 1; for all measurable B ¢ ZVN, PO (X{)),en € Blw) =
Py ((Xn)nen € B).

We are now ready to finish the proof. Notice that, under P(>)(-|w), the differences
(Th+1 — Tk)k=o0,1,... have a rather complicated structure, but they stochastically dominate
a sequence of pretty simple objects, call them (Sk)k=0.1,... Each S} is a geometric random
variable of parameter

sp = sup P, T TR x> ). (112)
2<0

In fact, due to Lemma 3.16, we can imagine that for each n > T} the random walk
“attempts” to overjump &; + ... + & and manages to do so with a probability that is
clearly smaller than s;. By Strassen’s Theorem, on an enlarged probability space with

oo)

new probability P , we can couple each Sy with Ty1q — T} so that Sy < Tpi1 — Tx
almost surely. Moreover, due to the strong Markov property of the random walk, all the
Si’s can be taken independent once we have fixed the parameters s;’s. Now note the
key fact that, since the £.’s are independent of the environment and that the GCD of the
values attained with positive probability by the &£’s is 1, the shifts (7¢, 4. ¢, w)ken form a
stationary ergodic sequence under P(®). We refer to Appendix B for a proof of this fact
(see Lemma B.1). This observation allows to prove that (S;);ecy is a stationary ergodic
sequence with respect to shifts under P(>) (see Lemma B.3 in Appendix B).

We now take w €  such that lim,,_,~, X,, = +00 Py —a.s. (which holds for P-a.a. w by
Theorem 1-(i)). This implies that liminf, % >0, P§-a.s.

We can bound (see (1))

P&(limsup& > 0) = P(m)(limsup% >0 ’ w) < P(OO)<linr1supXij+1 > O’w)

n—oo N n—00 k—00 k

§P(°°)<limsup f;—il-...+§k+1 0’w>
koo Do (Tjer = 1T5)

< P(OO)<limsup (Z;Hll l) (Z;:é Sj)l > O’w).

Let us concentrate on the last line. The arithmetic mean of &;, ... &x41 converges almost

surely to L 4+ 1/+, the mean of &, by the law of large numbers. The arithmetic mean of
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So, ..., Sk—1 converges instead to E[Sy] because of the ergodic theorem (for simplicity, we
write simply E for the expectation with respect to P(>)). Since E[Sp] = E[E[So|so]] =
E[%] = oo by assumption (96) and by (112), we obtain that P;*° (limsup,,_,,, 2= > 0) =

0 for almost all w € . Taking into account that liminf, . % > 0, Py ™ —a.s., we get

that lim,,_ o % =0, Py -as. O

APPENDIX A. PROOF OF PROPOSITION 5.3

By the tightness stated in Lemma 5.9 and by Prohorov’s theorem, (Q”) en, admits some
limit point and any limit point Q°° is absolutely continuous to P, with Radon-Nikodym
derivative Cﬁg% bounded by F' from above and by ~ from below.

We now show that any limit point is an invariant distribution of the process given by
the environment viewed from the walker without truncation (Txgow)neN. To this end, let
(QP*)k>1 be a subsequence weakly converging to some probability Q> on Q. We take a
bounded continuous function f on Q (without loss of generality we assume || f|jo < 1) and

we write

[E%[f(w)] = BBy [f (rx,w)]| < [E%[f(w)] — E*[f(w)]]
+ BBy * [ f (rx,w)] — EXEQ? [f (mx,w)]
+ ‘EOOES),’OIQ [f(TXlw)] - EMESJ,m[f(TX1w)]|

=:B1 + By + Bs. (113)

Above, E* is the expectation with respect to the measure Q°° and in the second line we
have used the fact that E°*, the expectation with respect to the measure Qf*, is invariant
for the process (TXZk wW)nen. The term Bj goes to zero as k — oo since QP — Q. To
deal with term By we observe that, by Lemma 3.9, for any § > 0 there exists hg such that,
for any p € Ny U {oo},

ng’p(|X1| > ho) < 9, P-a.s. (114)
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Then, for pg > hg, we write

By <[E%[ Y BP0 = )f ()| —EX| YD PO = ) f ()] + 20
l7l<ho l71<ho

}
<[ [ D0 BTG = ) ftrw)]| —EX YD PO = )i w)|

l1<ho l71<ho
+ B[ PY(1Xa] > ho)| + B [BE(1X] > ho)| +26

s]wk[% (X, = ) f (7jw)] —E“’[l% P (X0 = ) (0] | + 45

Note that we have used (114) in the first and third estimates. For the second bound
we have used that hy < pg, Py""* (X1 = j) = Py"°(Xy1 = j) for 0 < |j| < pg, while
PP (X1 = 0) = 1= X 0aiepn B (X1 = §) and PL(X1 = 0) = 0 (cf. (14)).
By the continuity assumption on u and since [co(-)]joo < e~ (ImNdFFumax " the map
, N co,j(w) . . .
Q5w PP7(X =j) = m € R, is continuous. Hence, using that Qrx
converges to Q> as k — oo, we can choose k large enough so that By < 5§. Bjs is also

smaller than ¢ for k big enough, again by (114). Altogether, letting p — oo, (113) implies

that Q° is invariant for (TXzow)neN with transition mechanism induced by Pow s

Having that Q> < P, the ergodicity of Q% can be proved in the same way as Lemma
5.1.

It remains to prove uniqueness of the limit point. To this aim, take two limit points
Q> and Q' of (Q”)pen, . Recall that we write P and Pgiw for the law on the path
space Q7 of the Markov chains (Txsow)nen, induced by Py, with initial distributions Q>
and Q'*°, respectively. As proved above, Pg and P are stationary and ergodic with
respect to shifts. In particular, they must be either singular or the same. They cannot be
singular, since Q> and Q'*° are both mutually absolutely continuous with respect to P by
Lemma 5.9 and therefore absolutely continuous with respect to each other. Hence, Pgi

and Pgi. are equal, and therefore Q> = Q".

APPENDIX B. ERGODIC ISSUES

In Lemmas B.1 and B.3 we prove the results we used in the proof of Proposition 8.1, see
the discussion after equation (112). In Lemma B.4 we prove an assertion on assumption

(A1) made in Subsection 2.1.
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For the first technical result, we slightly change the notation to make it lighter: Take
Q := RZ, the space of two-sided sequences with real values, and let 1 be a stationary
measure on (), ergodic with respect to the usual shift 7; for sequences. We indicate by w
an element in Q. Let = := NN and P be a probability measure on it. 7 = (1;)ien € Z is
an i.i.d. sequence of natural numbers under the measure P. We assume that the n;’s are
independent of the w’s.

On the space 2 x = endowed with the product measure . = py ® P, we define the

transformation T': Q@ x 2 = Q x E, with T'(w,n) = (7w, T11).

Lemma B.1. Assume that the greatest common divisor of {k : P(m = k) > 0} equals 1.
Assume also (just for simplicity) that the n;’s have finite expectation. Then, the transfor-

mation T s ergodic.

Remark B.2. The statement is not true in general without the GCD condition. Indeed,
take the very simple space with only two elements, w; = (...,0,1,0,1,0,1,...) and wy =
Tiw1, and take p putting 1/2 probability to each of the two elements. Then p is ergodic
with respect to 1. But, if we take n;’s that can attain only even values, then the sequence

(T +...4n;W)jen is not ergodic under L = p x P.

Proof. Take a function f = f(w,n) which is invariant under 7" and bounded. We are going
to show that f is constant, L-almost surely, hence proving the claim.

Assume we have, for two sequences n(*), n(?),
n n
1 2
S =0 (115)
k=1 k=1

for some n and 77,9) = n,(f) for k > n. Then T"(w,n™M) = T™(w,n®) and hence
Flw,nM) = flw,n®).
We define F,, as the o—algebra generated by w,n1,...,n,. By the above observation we
get
BL[f] Fa] (w, 1) = EL[f] Fu (w,0®) (116)

if (115) holds true for some n (where Ep, denotes the expectation with respect to the
measure L). On the other hand, f = lim, o Ep, [f\]-"n] L-a.s. As a byproduct, we
get that f(w,nM) = f(w,n?) for p® P ® P ae. (w,n"),7?)) such that (115) happens

for infinitely many n (note that this event has probability one due to the Chung—Fuchs
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Theorem [12] applied to the random walk Z,, := Z?Zl(nj(l) - j(-2))). Hence,

flw,n™) = flw,n?)  poP® P-as. (117)

We now claim that for p—a.e. w the function f(w,-) is constant P—a.s. To this aim, it is
enough to show that for y—a.e. w the P—variance of f(w,-) is zero, and this follows from

(117) and the identity

1 2

Varp(f(w, ) =

[ apa) [ape®) (1) - fw.n®)

Now let Ay, := {7] : i = E}. Since f is invariant under 7', f(w,n) = f(7w, Tmn) for
N € Apm. If P(Agm) >Z():,1we conclude that f(w,-) = f(7w, ) P-almost surely, for y—a.e.
w. Since the greatest common divisor of {k : P(n = k) > 0} equals 1, we conclude that
there is some finite L such that f(w,-) = f(7w,-) for all £ > L, for p—a.e. w. Since the
law of w is ergodic with respect to 71, this implies easily that f(-,-) is constant L-almost

surely. Il

Now recall the definition of the random sequence (Sk)r>o introduced at the end of the

proof of Prop. 8.1, and the notation therein.

Lemma B.3. The random sequence (Sk)ren 1S stationary and ergodic with respect to

shifts.

Proof. We first show that the sequence (si)r>0 (see (112)) is stationary and ergodic with
respect to shifts, under P(*). Indeed, writing (112) in a compact form as (Sk)k>0 =
G(w, (§)k>1), it holds (si)k>1 = G(1gw, (&k)k>2). Then stationarity and ergodicity of
(s1)x>0 under P(>) follow from the stationarity and ergodicity of (w, (& )r>1) under P(>°)
as in Lemma B.1.

We move to (Sk)r>0. Since (sg)g>0, under P(®)is stationary, one gets easily the
stationarity of (Sg)r>o under P(*). Take now a shift invariant Borel set A ¢ NYo (i.e.

A= {(x0,21,...) € NYO = (21, 29,...) € A}). We claim that
P ((Sp, S1,...) € A) € {0,1}. (118)
We define f : NNo — R as the Borel function such that

f(s0,51,82,...) = P ((So,S1,...) € Also,s1,...) -
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Since A is shift invariant, A belongs to the tail o—algebra of NYo. By Kolmogorov’s 0-1
law and due to the independence of Sy, S1,... under P()(-|sg,sy,...), we get that f has
values in {0, 1}.

Below, for the sake of intuition we condition to events of zero probability although all can
be formalized by means of regular conditional probabilities. Using that {(Sp, S1,...) €
A} = {(S1,52,...) € A} due to the shift invariance of A and using the definition of

(Sk)k>0, we get

f(ag,al,...) :]5(00)((5’0,51,...) GA‘SO = ap, S1 :al,...)
:]5(00)((51,52,...) EA‘S() = ap,S1 = ai, S2 ZQQ...)

:]5(00)((50,51,...) EA‘S() = a1, S :a2,...) :f(al,ag,...)

Hence f is shift invariant. By the ergodicity of (si)xr>0, we conclude that the 0/1-function

f(so0,s1,...) is constant P(®)_as. An integration over (s0,81,...) allows to get (118). O

Lemma B.4. Consider two independent random sequences (Zy)kez and (Ey)kez, the for-
mer stationary and ergodic with respect to shifts, the latter given by i.i.d. random variables.

Then the random sequence (Zy, Ey)kez is stationary and ergodic with respect to shifts.

The above statement can be derived also from more general results on ergodic theory

for dynamical systems, see [15]. We give an independent proof for completeness.

Proof. Call P the law of ((Zx)kez, (Ek)kez), which is a probability measure on the space
RZ x RZ, whose generic element will be denoted by (z,e). We write T for the shift
[T(z,e)]lx = (241, €rs1). Let A be a shift-invariant Borel subset of R” x R%. We want to

show that P(A) € {0,1}.

We first claim that, given r > 1, A is independent of any set B in the o—algebra
generated by e; with |i| < r. To this aim, given £ > 0, we fix a Borel set 4, C R? x R?
belonging to the o-algebra generated by e;, z; with |i| < n, and such that P(AAA,) <e.

We take m large enough so that [—r,7] N [—n + m,n +m] = (. We observe that
P(ANB)=P(A,NB)+ 0O(¢e), (119)
P(ANB)=P(T"ANB)=P(T"A,NB)+0O(c) =P(T™A,)P(B)+0(e). (120)

Indeed, the first identity in (120) follows from the shift invariance of A, while the second

identity follows from the shift stationarity of P implying that P(T™A,AT™A) < e. To
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get the third identity in (120) we observe that 7" A,, belongs to the o—algebra generated
by e;, z; with i € [-n +m,n + m|. By our choice of m and due to the properties of P, we
get that T A,, and B are independent, thus implying the third identity.

As a byproduct of (119) and (120) and the fact that P(T™A,,) = P(A) + O(e), we get
that P(AN B) = P(A)P(B) + O(e). By the arbitrariness of ¢ we conclude the proof of
our claim.

Due to our claim, 14 = P(A|F), F being the o—algebra generated by z;, i € Z. We
can think of P(A|F) as function of z € R%. Due to the shift invariance of A, P(A|F) is
shift invariant in R% except on an event of probability zero. Due to the ergodicity of the
marginal of P along z, we conclude that P(A|F) is constant a.s. Since 14 = P(A|F), 14
is constant a.s., hence P(A) € {0,1}. O

APPENDIX C. THE NEAREST NEIGHBOR RANDOM WALK (X£),>1, p=1

The biased Mott random walk (Y¢):>0 can be compared to the nearest neighbor random
walk obtained by considering only nearest neighbor jumps on {x;},cz with probability rate
for a jump from x to y given by (3) when x, y are nearest neighbors. By the same arguments
as in Section 7, it is simple to show that this random walk is ballistic/subballistic if and
only if the same holds for (X})nen, p = 1. The latter can be easily analyzed and the

following holds:

1
Proposition C.1. The limit vx1(A) := limy, 00 % exrists }P’B‘)’l—a.s. for P-a.a. w, and it
does not dependent on w. Moreover, the velocity vx1(\) is positive if and only if condition

(7) is fulfilled, otherwise it is zero.

Proof. We apply Theorem 2.1.9 in [30] using the notations therein. Since p; = ¢;i—1/¢iit1
we get that S = ino(c_i,_i_l + c—i—it1). Therefore, E(S) < oo if and only if

€o,1

> 0E(c—i—i—1/c01) < oo. The last condition is equivalent to (7) since the energy marks

are bounded. On the other hand F = —L Yo i(cii—1 + ¢iiv1). Hence, E(F) = oo if and

C—-1,0

only if > 72 E(ciiy1/c—1,0) = oo. Since, when u = 0, ¢;;r1/c—10 = exp{(1 + \)Z_1 +
2AN(Zo+ -+ Zi—1) — (1 = \)Z;}, by Assumption (A4) it follows that E(F) = +oo always.
The claim then follows since, by Theorem 2.1.9 in [30], vx:(A) > 0 if E(S) < oo, while

vx1(A) = 0 if E(S) = 0o and E(F) = cc. O
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