
HAL Id: hal-01523302
https://hal.science/hal-01523302

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal exploration of trees with energy-constrained
agents

Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld, Christina
Karousatou

To cite this version:
Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld, Christina Karousatou. Maximal
exploration of trees with energy-constrained agents. ALGOTEL 2017 - 19èmes Rencontres Franco-
phones sur les Aspects Algorithmiques des Télécommunications, May 2017, Quiberon, France. �hal-
01523302�

https://hal.science/hal-01523302
https://hal.archives-ouvertes.fr

Comment explorer un arbre inconnu avec des
agents à énergie limitée ?

Evangelos Bampas1, Jérémie Chalopin1, Shantanu Das1, Jan Hackfeld2

et Christina Karousatou1

1LIF, Aix-Marseille Université & CNRS, France
2TU Berlin, Institute of Mathematics, Germany

On souhaite explorer un arbre inconnu avec un groupe d’agents mobiles initialement regroupés sur un sommet. Chaque
agent dispose d’une énergie limitée et ne peut pas traverser plus de B arêtes. On souhaite maximiser le nombre de
sommets visités (par au moins un agent) lors de l’exécution. Initialement, les agents n’ont aucune connaissance sur
la structure de l’arbre, mais ils en découvrent la topologie au fur et à mesure qu’ils traversent de nouvelles arêtes.
Nous supposons que les agents peuvent communiquer entre eux à distance illimitée, donc la connaissance qu’un agent
obtient lors de la traversée d’une arête est instantanément transmise aux autres agents. Nous proposons un algorithme
très intuitif, basé sur le parcours en profondeur, et nous étudions son efficacité par rapport à la solution optimale qu’on
peut obtenir lorsqu’on connaı̂t initialement la carte. Nous prouvons que cet algorithme a un rapport de compétitivité
constant. Nous fournissons également une borne inférieure sur le rapport de compétitivité réalisable par un algorithme
quelconque.

Mots-clefs : agents mobiles, exploration, arbre inconnu, énergie limitée

1 Introduction
The problem of exploration of an unknown graph by one or more robots (agents) is a well known problem
with many applications ranging from searching the internet to physical exploration of unknown terrains
using mobile sensor robots. Most results on exploration algorithms focus on minimizing the exploration
time or sometimes the memory of the agent. For a brief survey of such results see [3].

We study the exploration problem under a very natural constraint that each agent can traverse at most
a finite number of edges, denoted by an integer B (henceforth called the energy budget of the agent). We
assume that the agents have limited energy resources, and movement consumes energy. A similar restriction
was considered in the piecemeal exploration problem [1], where the agent could refuel by going back to
its starting location. Thus, the exploration could be performed by a single agent using a sequence of tours
starting and ending at the root vertex. On the other hand, [5] and [4] studied exploration without refuelling,
using multiple agents with the objective of minimizing the energy budget per agent, or the number of agents
needed for a fixed budget. In the above studies, the graph (or tree) to be explored was assumed to be of a
restricted diameter allowing an agent with fixed budget to visit any node of the graph.

In this paper, we focus on exploration of tree networks of arbitrary size and structure. Since exploring
the complete tree is not always possible, our objective is to visit as many nodes of the tree as possible. We
provide and analyze an online algorithm for partial exploration of an unknown tree, using a fixed number
of agents with fixed energy budgets.

Model and problem description The agents operate in an undirected tree T . The edges at every vertex v
in T have locally distinct edge labels 0, . . . ,δv−1, where δv is the degree of v. These edge labels are referred
to as the local port numbers at v. Initially, a group of k agents (numbered 1 to k) are placed at a node r of T .
Each agent has limited energy B and it consumes one unit of energy for every edge that it traverses.

Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld et Christina Karousatou

The tree is initially unknown to the agents, but they learn the map of the tree as they traverse new edges.
Each time an agent arrives at a new node, it learns the local port number of the edge through which it
arrived, as well as the degree of the node. We assume that agents can communicate at arbitrary distances, so
the updated map of the tree, including all agent positions, is instantaneously available to all agents (global
communication). Moreover, we will assume, without loss of generality, that the local port number of the
edge leading back to the root r is δv−1 for any vertex v 6= r in T .

The goal is to design an algorithm A that maximizes the number of edges collectively discovered by
the agents. If I = 〈T,r,k,B〉 is an instance of the problem, let A(I) denote the number of edges explored
using algorithm A on I. We measure the performance of an algorithm A by the competitive ratio ρA =

supI
OPT(I)

A(I) , where OPT(I) is the maximum number of edges that can be explored on instance I with full
initial knowledge of the instance.

2 Exploration algorithm
Given an instance I = 〈T,r,k,B〉 of the online tree exploration problem, for d ≥ 0 we let Td denote the
induced subtree of T containing all vertices at distance at most d from r. We propose an algorithm that
works in phases. In each phase i, the agents attempt to completely explore Tdi , for some di ≥ 0. The
increasing sequence (di)i≥1 depends only on B and is chosen appropriately, so as to optimize the obtained
competitive ratio.

In each phase i, the agents essentially perform a collaborative depth-first search within Tdi (they ignore
unexplored edges that lead to nodes at distance greater than di from r). Agents are sent off sequentially, i.e.,
the next agent waits until the current one has depleted its energy. Each agent always chooses the smallest
local port number that leads to an unexplored edge within Tdi . Formally, the algorithm is as follows: (the
computation of (di)i≥1 is explained in the proof of Theorem 1)

Instance: Tree T , root vertex r, number of agents k, energy budget B
1: for i← 1,2, . . . do
2: while there is an agent a at r and Tdi is not fully explored do
3: a← the agent with the least positive remaining energy at r
4: while agent a has energy and Tdi is not fully explored do
5: agent a follows the smallest local port number that leads to an unexplored edge in Tdi

6: while agent a has energy and it is not at r do
7: agent a moves towards r

Note that, if the current agent stops and leaves some unexplored edges in the subtree rooted at its last
position, then the next agent will move to the last position of the current agent and will continue the depth-
first search. On the other hand, if the current agent has completely explored the subtree rooted at its last
position, the next agent will take a shortcut to the next node along the depth-first search path of Tdi that has
unexplored edges.

Theorem 1. The sequence (di)i≥1 can be chosen as a function of B so that the proposed algorithm achieves
a competitive ratio of 1+4ϕ < 7.473, where ϕ≈ 1.618 is the golden ratio.

Proof. Consider the sequence (fi)i≥0 given by f0 = 0, f1 = 1, f2 = 2, and fi = fi−1+ fi−2 for i≥ 3. For i≥ 0,
let Si = ∑

i
j=0 f j and let γ≥ 1 be the smallest index such that Sγ+1 > B. Note that Si = fi+2−2 for all i≥ 0

and, furthermore, γ ≥ 2 if and only if B ≥ 3. Now, for i = 1, . . . ,γ, we define di = B−Sγ−i. The sequence
(d1, . . . ,dγ) is strictly increasing and, setting for convenience d0 = 0, it satisfies di−1− di−2 > B− di for
i≥ 2.

We will assume that the instance is such that the algorithm fails to explore the whole tree T . We further
assume for the moment that B≥ 3, therefore γ≥ 2, and that the last phase to be executed by the algorithm
is phase σ≥ 2, i.e., Tdσ−1 is completely explored and Tdσ

only partially.

Comment explorer un arbre inconnu avec des agents à énergie limitée ?

r

B

v(i)j

T (i)
j

di−2

di−1

di

Fig. 1: Subtrees T (i)
j in tree T .

We first give an upper bound on the number of edges explored by an optimal offline algorithm OPT.
Any agent in the offline algorithm can explore at most B−dσ−1 new edges that are not contained in Tdσ−1 ,
because it uses up at least dσ−1 of its energy to reach the bottommost node of Tdσ−1 . We can therefore bound
the number of edges explored by OPT as |OPT| ≤ |Tdσ−1 |+ k(B−dσ−1).

Next, we give a lower bound on the number of edges |ALG| explored by our algorithm. For i = 1, . . . ,σ,
let ni be the number of newly explored edges in phase i of the algorithm and ki be the number of fresh
agents (not carried over from the previous phase) used in this phase. For convenience, let also n0 = 0. Note
that we have ∑

σ−1
i=1 ni = |Tdσ−1 |.

Consider the first phase of the algorithm. Let DFS1 be the closed walk visiting all edges in Td1 in the same
order as a depth-first search, which always follows the local port with the smallest number first. The length
of DFS1 satisfies |DFS1| ≤ 2n1. The first agent used by the algorithm will spend all of its energy making a
progress of B steps on DFS1. The second agent either moves to where the first agent stopped or shortcuts to
a point in the path from r to where the first agent stopped, and then makes progress on the closed walk DFS1.
Note that if the previous agent stopped at distance d1, then the next agent will always shortcut. In any case,
the second agent uses at most d1−1 of its energy before it starts making progress on DFS1, so the progress
is at least B−d1 +1. Similarly, all other agents in the first phase, except for the last agent, make a progress
of at least B−d1+1 on DFS1, yielding a total progress of at least B+(k1−2)(B−d1+1) for the first k1−1
agents. If p is the progress contributed by the k1-th agent, we have B+(k1−2)(B−d1 +1)+ p≤ 2n1.

The k1-th agent used at most d1 − 1 of its energy before it made progress p, therefore at the end of
phase 1 either its energy is exhausted (which implies p ≥ B−d1 +1, and the previous progress inequality
gives k1(B− d1 + 1) ≤ 2n1), or it is located at the root with at least B− d1 + 1− p available energy. If its
remaining energy is positive, it will be the first agent to be activated in the second phase.

Now assume that the algorithm has completed phase i− 1 for i ≥ 2 and therefore completely explored
Tdi−1 . Let v(i)1 ,v(i)2 , . . . ,v(i)ti be all vertices of depth di−2 in T , whose subtrees contain unexplored edges.

Moreover, let T (i)
j be the induced subtree of Tdi with root v(i)j (Fig. 1) and n(i)j be the number of edges of

T (i)
j . The subtrees T (i)

j are completely explored up to the vertices at level di−1, but unexplored below. As all

vertices of the subtrees T (i)
j lie at a distance between di−2 and di from the root, we have ∑

ti
j=1 n(i)j ≤ ni−1+ni.

Let k(i)j be the number of agents that start in the i-th phase and reach the vertex v(i)j with energy at least
B− di−2. As the agents in every phase only move to subtrees with unexplored edges, every agent used in
phase i, will move to one of the subtrees T (i)

j and therefore arrive at v(i)j with energy B−di−2. We therefore

have ∑
ti
j=1 k(i)j = ki. We now want to bound the number of agents k(i)j that we need to explore a subtree T (i)

j

in terms of n(i)j as above. Let DFS(i)
j be a depth-first search tour of all vertices in T (i)

j . Then |DFS(i)
j | ≤ 2n(i)j

and |DFS(i)
j | ≥ 2(di−1−di−2) because T (i)

j contains an unexplored leaf at distance at least di−1−di−2 from

Evangelos Bampas, Jérémie Chalopin, Shantanu Das, Jan Hackfeld et Christina Karousatou

v(i)j . Every agent that enters T (i)
j with energy at least B− di−2, will either move to the previous agent’s

stopping position or shortcut, thus making at least B− di + 1 progress on DFS(i)
j . This also holds for the

last agent because at the time the last agent enters T (i)
j there is still an unexplored leaf and thus also the

last agent can make a progress of at least B−di +1 on DFS(i)
j as the part of DFS(i)

j returning from the last

unexplored leaf to v(i)j is at least di−1−di−2 > B−di. We get k(i)j · (B−di +1)≤ 2n(i)j and hence assuming

i≥ 3: ki · (B−di +1) = ∑
ti
j=1 k(i)j · (B−di +1)≤ ∑

ti
j=1 2n(i)j ≤ 2ni−1 +2ni. By considering the subtree T ′dσ

of Tdσ
containing all vertices explored by our algorithm, we obtain the above inequality also for the last

phase σ of the algorithm. In particular for i = 2, we also take into account the contribution of the last agent
of phase 1 (assuming it reached r), which starts at v(2)1 = r with at least B−d1 +1− p available energy and,
since it is the first agent to contribute to DFS(2)1 , it contributes at least B− d1 + 1− p progress. The total
progress during the second phase is, therefore: B−d1 +1− p+ k2 · (B−d2 +1)≤ 2n1 +2n2. If, however,
the last agent of the first phase didn’t reach r, then for phase 2 we have simply k2 · (B−d2+1)≤ 2n1+2n2.

Summing the progress inequalities from each phase and using the monotonicity of the di and the fact
that ∑

σ
i=1 ki = k, we obtain k(B−dσ +1)≤ ∑

σ
i=1 ki(B−dσ +1)≤ ∑

σ
i=1 ki(B−di +1)≤ ∑

σ
i=1 2ni−1 +2ni ≤

4|ALG|. Combining the upper bound on OPT, the lower bound on ALG above, and the inquality |Tdσ−1 | ≤

|ALG|, we obtain |OPT|
|ALG| ≤

|Tdσ−1 |+k(B−dσ−1)

|ALG| ≤ 1 + 4 B−dσ−1
B−dσ+1 = 1 + 4 Sγ−σ+1

1+Sγ−σ
= 1 + 4−2+ fγ−σ+3

−1+ fγ−σ+2
. It can be

verified that −2+ fi+3
−1+ fi+2

is strictly increasing in i for i≥ 0 and it converges to ϕ, therefore ρA ≤ 1+4ϕ.
Finally, if B≤ 2, which implies γ=σ= 1, or if σ= 1< γ, then the algorithm finishes in the first phase and

it follows from the above arguments that |ALG| ≥ k(B−d1+1)
2 , while |OPT| ≤ kB. Therefore, ρA ≤ 2B

B−d1+1 =

2B
1+Sγ−1

. However, recall that Sγ+1 >B, so we have ρA≤ 2−1+Sγ+1
1+Sγ−1

= 2−3+ fγ+3
−1+ fγ+1

. It can be verified that −3+ fi+3
−1+ fi+1

is strictly increasing in i for i≥ 2 and it converges to ϕ+1, therefore ρA ≤ 2+2ϕ < 1+4ϕ.

2.1 Lower bound on the competitive ratio
Proposition 2. No algorithm achieves a competitive ratio of 2−o(1).

Proof. Given positive integers k and B, where B is even, consider the star consisting of k rays of length B
and kB

2 rays of length 1. A group of k agents, each with energy B, start on r. For every algorithm, the
adversary can ensure that no agent ever enters a long ray: Whenever an agent is at the center and decides to
follow an unexplored edge, the adversary directs it to a short ray. For every edge that an agent explores, it
needs to go back to the center in order to explore other edges. Therefore, every agent can explore at most B

2
edges for a total of at most kB

2 edges. On the other hand, the optimal solution is to send all agents in the
long rays and explore kB edges.

References
[1] B. Awerbuch, M. Betke, and M. Singh. Piecemeal graph learning by a mobile robot. Information and

Computation, 152:155–172, 1999.

[2] J. Anaya, J. Chalopin, J. Czyzowicz, A. Labourel, A. Pelc, Y. Vaxés. Convergecast and Broadcast by
Power-Aware Mobile Agents. Algorithmica, 1–39, 2014.

[3] S. Das. Mobile Agents in Distributed Computing: Network Exploration. Bulletin of the European
Association for Theoretical Computer Science (EATCS), No. 109, pages 54–69, 2013.

[4] S. Das, D. Dereniowski, and C. Karousatou, Collaborative Exploration by Energy-Constrained Mobile
Robots. In Proc. 22nd Int. Colloquium on Structural Information and Communication Complexity
(SIROCCO), LNCS 9439, pages 357-369, 2015.

[5] M. Dynia, M. Korzeniowski, and C. Schindelhauer. Power-Aware Collective Tree Exploration. In
Proc. 19th Int. Conference on Architecture of Computing Systems (ARCS), pp. 341-351, 2006.

	Introduction
	Exploration algorithm
	Lower bound on the competitive ratio

