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Geometric shapes and relationships of some one-body and multi-body leptodermous
distributions

G. Royer, N. Mokus and J. Jahan
Laboratoire Subatech, UMR: IN2P3/CNRS-Université-IMT, Nantes 44, France

Different families of geometric shapes, derived mainly from lemniscatoids, are proposed to describe
ground and excited states of leptodermous distributions of nuclear matter. The transition from one
spherical or ellipsoidal nucleus to several spherical or ellipsoidal nuclei or vice versa (in the decay and
entrance channels of nuclear reactions: fission, fusion and fragmentation) is particularly investigated.
The geometric characteristics of these configurations are given, allowing the calculations of the
system energy, of the dynamics of the reactions and of the angular distribution of the fragments.

PACS numbers: 24.75.+i, 21.60.Gx, 23.60.+e, 02.40.-k, 02.40.Re

I. INTRODUCTION

In nuclear and particle physics, astrophysics, molecular physics, mechanics and in other various scientific domains it
is useful to simulate physical leptodermous (thin skin) distributions of matter or charge by geometric shapes, and, to
know their main characteristics such as center of inertia, volume, surface, curvature, moments of inertia, quadrupole
moment,... Assuming volume conservation during deformation, the spherical form minimizes the surface energy but
maximizes the Coulomb repulsion (as in atomic nuclei) or the gravitational attraction (as in stars and galaxies). The
rotation of these physical objects may induce large ellipsoidal deformations (super and hyperdeformations of rotating
nuclei, planets, ellipsoidal galaxies,...). Transition from one-body to two-body or several body shapes may also occur
by very rapid rotation or decay of excited nuclear systems (binary and ternary fission, fragmentation in heavy-ion
reactions at intermediate energies,...). Conversely, separated nuclei or astrophysical objects may also fuse (fusion of
two heavy ions, fusion of three α particles submitted to high pressure in stars,...).

The nuclear phenomena of large amplitude have been described within different hypotheses and various models;
mainly macroscopic-microscopic Liquid Drop Models [1–5] and cluster models ([5], dinuclear model [6], dynamical
cluster-decay model [7],...).

The purpose of the present work is to provide geometric shapes useful to carry on the description of the α and cluster
radioactivities [5, 8], fusion [3], fission [4, 9–12], fragmentation processes [13] and normal, super and hyperdeformed
states [14]. The main characteristics of these shapes are given in order to determine the energy of the nuclear systems,
the dynamics of the reactions and eventually the angular distribution of the fragments. After recalling general
definitions, the following shapes will be successively investigated: ellipsoids, symmetric and asymmetric elliptic and
hyperbolic lemniscatoids, prolate symmetric and asymmetric compact ternary shapes, toroids and bubbles.

Other planar and three-dimensional multibody shapes such as linear chain, triangle, square, tetrahedron, pentagon,
trigonal bipyramid, square pyramid, hexagon, octahedron, octagon and cube have also been used to describe some
light nuclei as α molecules [15].

II. GENERAL DEFINITIONS

For leptodermous distributions of constant matter or charge density, liquid drop models have been developped and
the total energy of the systems is mainly the sum of the volume, surface, curvature and Coulomb energies. The
relative (to the sphere of radius R0) shape-dependent surface Bs, curvature Bk and Coulomb (or gravitational) BC

functions are respectively given by [16–19]

Bs =
∫

σ

dσ

4πR0
2 , (1)

Bk =
∫

σ

kl
dσ

8πR0
, (2)

where kl is the mean local curvature of the surface given in terms of the principal curvature radii R1 and R2 by
kl = R−1

1 + R−1
2 .

BC =
15

16π2R0
5

∫
dτ

∫
dτ ′

|�r − �r ′| , (3)



2

which for axially symmetric shapes reduces to

BC =
1
2

∫
v(θi)
v0

[
R(θi)
R0

]3
sin (θi)dθi. (4)

The potential v(θ) is calculated at the surface of the shape and v0 is the surface potential of the sphere

v(θi)
v0

=
3

2πR0
2

∫ ρ
[
(ρi + ρ)dz

dθ + (zi − z)dρ
dθ

]
K(k) − 1

2 [(ρi + ρ)2 + (zi − z)2]dz
dθD(k)√

(ρi + ρ)2 + (zi − z)2
dθ, (5)

where ρ = R(θ) sin θ, z = R(θ) cos θ and D(k) and K(k) are deduced from elliptic integrals. These dimensionless
shape-dependent Bs, Bk and BC functions are equal to one for the spherical configuration.

To determine the angular distribution of the fragments in fission, the knowledge of the inverse effective moment of
inertia is needed. For axially symmetric shapes it reads

Ieff
−1 = I‖

−1 − I⊥−1, (6)

where I‖ and I⊥ are respectively the parallel and perpendicular moments of inertia.
The nature of the deformation of a nuclear system may be deduced from its experimental spectrum and associated

quadrupole moment. The relative (dimensionless) quadrupole moment Q is defined as

Q =
1

R0
5

∫∫∫
(3z2 − r2)dτ, (7)

(the z axis being the axis of revolution).
The deformation parameter β, often used in nuclear spectroscopy, follows

β =
0.75√

5π
QR0

2〈r2〉−1
, (8)

β = 2
√

π

5
I⊥ − I‖

I⊥ + 0.5I‖
. (9)

III. ELLIPSOIDS

Most of the nuclei and planets are slightly ellipsoidally deformed by rotation. In polar coordinates the axially
symmetric ellipsoids are defined by

1/R(θ)2 = sin2 θ/a2 + cos2 θ/c2, (10)

where a is the transverse semi-axis and c is half the elongation on the axis of revolution. The volume conservation
implies a2 c = R3

0 , where R0 is the radius of the sphere (see Fig. 1).
The prolate deformation is characterized by s < 1 and the related eccentricity is e2 = 1 − s2 while in the oblate

case s > 1 and e2 = 1 − s−2 [18, 20, 21].
In the prolate case, the relative surface function is given by

Bs =
(1 − e2)1/3

2

[
1 +

sin−1(e)
e(1 − e2)1/2

]
, (11)

and in the oblate case

Bs =
(1 + ε2)1/3

2

[
1 +

ln(ε + (1 + ε2)1/2)
ε(1 + ε2)1/2

]
ε2 = s2 − 1. (12)

The relative Coulomb function is, in the prolate case

BC =
(1 − e2)1/3

2e
ln
(

1 + e

1 − e

)
, (13)



3

FIG. 1: Evolution of the ellipsoid configuration as a function of the ratio of the minor and major semi-axes s = a/c. The
horizontal axis is the common axis of revolution (φ = 0). s is respectively: 1/3, 2/3, 1, 4/3 and 5/3. The ellipsoid is prolate
when s < 1 and oblate for s > 1.

and, in the oblate case

BC =
(1 + ε2)1/3

ε
tan−1 ε. (14)

The relative curvature function is, in the prolate case

Bk =
1

2(1 − e2)1/3
+

(1 − e2)2/3

4e
ln
(

1 + e

1 − e

)
, (15)

and, in the oblate case

Bk =
1

2(1 + ε2)1/3
+

(1 + ε2)2/3

2ε
tan−1 ε. (16)

For the prolate ellipsoidal shapes, one simply has

I⊥ =
s−4/3 + s2/3

2
, (17)

I‖ = s2/3, (18)

Q =
8π

15
(s−4/3 − s2/3). (19)

IV. ELLIPTIC LEMNISCATOIDS

To describe the fusion and fission processes, it is necessary to define a shape sequence evolving from one sphere
to two tangent spheres or vice-versa, assuming volume conservation [17, 22]. The elliptic lemniscatoid family allows
the simulation of this transition. It describes the progressive formation and suppression of a deep neck while keeping
almost spherical ends. Mathematically, the elliptic lemniscatoid is the inverse of an oblate ellipsoid and the first pedal
surface of a prolate ellipsoid, reciprocal of the oblate ellipsoid (see Fig. 2).

The axially symmetric prolate ellipsoid is defined as

x2/a2 + y2/a2 + z2/c2 = 1, (20)

and its reciprocal oblate ellipsoid by

a2x2 + a2y2 + c2z2 = 1. (21)
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FIG. 2: Inversion leading to the elliptic lemniscatoid L. The point H of the elliptic lemniscatoid L is the projection of the origin
onto the tangential plane in M of the prolate ellipsoid E1. M’, of the oblate ellipsoid E2, is the inverse of the point H. The
horizontal z axis is the axis of revolution.

The elliptic lemniscatoid reads as

a2x2 + a2y2 + c2z2 = (x2 + y2 + z2)2. (22)

Assuming volume conservation, the unique dimensionless parameter s = a/c is sufficient to completely define the
shape. It is simply the ratio of the neck diameter to the system elongation. When s decreases from 1 to 0 the
lemniscatoid varies continuously from a single sphere to two ones with the intermediate formation of a deep neck (see
Figures 3 and 4). (These elliptic lemniscates can also generate pumpkin-like configurations when the transverse x axis

FIG. 3: Evolution of the elliptic lemniscatoid shape as a function of the ratio of the minor and major semi-axes s = a/c.
Assuming volume conservation, the shape varies continuously from a sphere (s = 1) to two touching spherical fragments
(s = 0). The neck disappears when s > 0.5

√
2.

is chosen as axis of revolution (see section 10)).
The axially symmetric elliptic lemniscatoid is given simply in polar coordinates (in the plane φ = 0) by

R(θ)2 = a2 sin2 θ + c2 cos2 θ. (23)

The volume and surface area are given, respectively, by

V =
4
3
πR0

3 =
π

12
c3

[
4 + 6s2 +

3s4

√
1 − s2

sinh−1

(
2
s2

√
1 − s2

)]
, (24)

and

S = 4πR0
2Bs = 2πc2

[
1 +

s4

√
1 − s4

sinh−1

(
1
s2

√
1 − s4

)]
, (25)

where R0 is the radius of the equivalent sphere.
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FIG. 4: 3D figure for s = 1/3.

The distance r between the centres of mass of the left and right parts of the system is

r =
2
∫ c

0
zd3r∫ c

0
d3r

, (26)

which leads for these elliptic lemniscatoids to

r = πc4 1 + s2 + s4

3V
. (27)

The dimensionless surface curvature function is

Bk = c
2(1+s2)R0

[
2(1 + s2) + s4√

1−s2 sinh−1

(√
1−s2

s2

)
− s√

1−s2 tan−1

(√
1−s2

s2

)]
. (28)

The relative perpendicular and parallel moments of inertia (moment of inertia divided by 2
5mR0

2, the moment of the
equivalent sphere) are respectively

I⊥,rel = c5s2

512(1−s2)R0
5

[
112
s2 + 8 + 30s2 − 135s4 + 120s4−135s6√

1−s2 sinh−1

(√
1−s2

s2

)]
. (29)

I‖,rel = c5s2

512(1−s2)R0
5

[
32
s2 + 48 + 100s2 − 210s4 + 240s4−210s6√

1−s2 sinh−1

(√
1−s2

s2

)]
. (30)

The relative quadrupole moment Q reads as

Q =
πc5s2

96(1 − s2)R0
5

[
16
s2

− 8 − 14s2 + 15s4 − 24s4 − 15s6

√
1 − s2

sinh−1

(√
1 − s2

s2

)]
. (31)

V. ASYMMETRIC QUASIMOLECULAR SHAPES

To describe the transition from two inequal spherical nuclei to one spherical nucleus or vice versa (see Fig. 5) two
halves of different elliptic lemniscatoids may be joined, assuming the same transverse distance a [3, 8, 23]. Then the
shape is given simply in polar coordinates (in the plane φ = 0) by

R(θ)2 =
{

a2 sin2 θ + c1
2 cos2 θ 0 ≤ θ ≤ π/2

a2 sin2 θ + c2
2 cos2 θ π/2 ≤ θ ≤ π,

(32)

where c1 and c2 are the two different half-elongations. The volume conservation is assumed, then:

R0
3 = R1

3 + R2
3, (33)
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FIG. 5: Two halves of different lemniscatoids linked by a same transverse distance a, R2/R1 = 0.72. The horizontal axis is the
axis of revolution.

where R0, R1 and R2 are the radii of the different spheres.
The two parameters s1 = a/c1 and s2 = a/c2 are sufficient to completely define the shape. The ratio of the two

radii R2 and R1 allows to connect s1 and s2:

s2
2 =

s1
2

s1
2 + (1 − s1

2)(R2/R1)2
. (34)

when s1 decreases from 1 to 0 the shape evolves continuously from one sphere to two touching different spheres with
the natural formation of a deep neck, while keeping almost spherical ends.

The distance r between the centres of mass of the two parts of the system is r = r1 + r2. The volume of the two
parts being conserved, the separation plane between them is at the distance zv from the origin, and r1 and r2 depend
on zv. zv is the solution of the equation

1
3
z3 − 1

2
a2z +

1
12

(2c2
3 + 3a2c2) + (35)

1
2

√
c2

2 − a2
[
D2 sinh−1

(c2

D

)
− D2 sinh−1

( z

D

)
− z
√

z2 + D2
]

=
4
3
R2

3,

with D2 = a4/4(c2
2 − a2).

The positions of the mass centres r1 and r2 are then given by

r1 =
1

4
3R1

3

{
zv

4 − a2zv
2

4
+

c1
4 + a2c1

2 + a4

12
− (36)

as2
2

3(1 − s2
2)

[(
zv

2(1 − s2
2)

s2
2

+
a2

4

)3/2

− a3

8

]}
,

and

r2 =
1

4
3R2

3

{
zv

4 − a2zv
2

4
− a4

4

(
1 − s2

2

s2
4

)
+ (37)

as2
2

3(1 − s2
2)

[
a3

(
1

s2
2
− 1

2

)3

−
(

zv
2(1 − s2

2)
s2

2
+

a2

4

)3/2
]}

.

VI. HYPERBOLIC LEMNISCATOIDS (CASSINIAN OVALOIDS)

The scission configuration of a physical object depends strongly on its viscosity and the mean free path of its consti-
tuants. The elliptic lemniscatoids describe rather compact and creviced shapes but often the scission is a long process,
occuring through elongated and little creviced shapes. This decay path can be described using hyperbolic lemnisca-
toids (Cassinian ovaloids) [24, 25]. In cartesian coordinates and for one-body shapes the hyperbolic lemniscatoids are
defined as

x2 = −z2 + 0.5c2(s2 − 1) + 0.5c
√

8(1 − s2)z2 + c2(1 + s2)2. (38)
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For the two-body configurations the equation of the ovals is

x2 = −z2 − 0.5c2(s2 + 1) + 0.5c
√

8(1 + s2)z2 + c2(1 − s2)2. (39)

Assuming volume conservation during the deformation, these shapes are one-parameter dependent. For the one-body
configurations, the dimensionless ratio of the minor and major axes s = a/c can still be chosen while, for the two-body
configurations, the parameter s is the opposite of the ratio of the distance between the tips of the fragments and the
system elongation. (see Fig. 6 and [24]). When s varies from 1 to -1 the shapes vary continuously from a sphere to
two infinitely separated spheres. The volume of the system is, for the one-body configuration

FIG. 6: Evolution of the Cassinian ovals as a function of the parameter s, assuming volume conservation. The configuration
at the separation is the Bernoulli lemniscate. The shapes have a symmetry plane and a z axis of revolution. A neck appears
when s <

√
3/3.

V =
πc3

12

[
−2 + 6s2 +

3(1 + s2)2√
2(1 − s2)

sinh−1

(
2
√

2(1 − s2)
1 + s2

)]
, (40)

and for the two-body configuration

V =
πc3

12

[
−2(1 + s)3 +

3(1 − s2)2√
2(1 + s2)

sinh−1

(
2(1 + s)

√
2(1 + s2)

(1 − s)2

)]
. (41)

The relative surface function for the one-body configuration is

Bs =
c2

4R0
2 ×

[
4(1 + s2) + 2

√
2(1 + s2)
1 − s2

s2F

(
sin−1

√
1 − s2,

1√
1 + s2

)
(42)

− 2(1 + s2)

√
2(1 + s2)
1 − s2

E

(
sin−1

√
1 − s2,

1√
1 + s2

)]
,

where E and F are the incomplete elliptic integrals. For the two-body configuration, Bs is calculated numerically.
The distance r between the mass centre of each part is respectively for the one and two-body configurations

r =
c4

8R0
3 × (1 + 4s2 + s4), (43)

r =
c4

8R0
3 × (1 − s2)3

1 + s2
. (44)

The relative parallel moment of inertia is given for the one body shape by the formula

I‖ =
c5

512(1 − s2)R0
5 × (45)[

147 − 27s2 − 15s4 − 225s6 − 15(1+s2)2(15−34s2+15s4)

2
√

2(1−s2)
sinh−1

(
2
√

2(1−s2)

1+s2

)]
,
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and the relative perpendicular moment of inertia by

I⊥ =
c5

1024(1− s2)R0
5 × (46)[

269 + 251s2 − 145s4 − 255s6 − 15(1+s2)2(17−30s2+17s4)

2
√

2(1−s2)
sinh−1

(
2
√

2(1−s2)

1+s2

)]
.

The quadrupole moment is defined by

Q =
πc5

192(1 − s2)R0
5 × (47)[

−5 + 61s2 − 23s4 + 39s6 +
3(1 + s2)2(13 − 38s2 + 13s4)

2
√

2(1 − s2)
sinh−1

(
2
√

2(1 − s2)
1 + s2

)]
.

For the two-body configuration these shape-dependent functions are given by

I‖ =
c5

512(1 + s2)R0
5 × [147 + 225s + 27s2 − 15s3 − 15s4 + 27s5 + 225s6 + 147s7 (48)

−15(1 − s2)2(15 + 34s2 + 15s4)
2
√

2(1 + s2)
sinh−1

(
2(1 + s)

√
2(1 + s2)

(1 − s)2

)]
,

I⊥ =
c5

1024(1 + s2)R0
5 × [269 + 255s− 251s2 − 145s3 − 145s4 − 251s5 + 255s6 (49)

+269s7 − 15(1 − s2)2(17 + 30s2 + 17s4)
2
√

2(1 + s2)
sinh−1

(
2(1 + s)

√
2(1 + s2)

(1 − s)2

)]
,

Q =
πc5

192(1 − s2)R0
5 × [−5 − 39s− 61s2 − 23s3 − 23s4 − 61s5 − 39s6 − 5s7 (50)

+
3(1 − s2)2(13 + 38s2 + 13s4)

2
√

2(1 + s2)
sinh−1

(
2(1 + s)

√
2(1 + s2)

(1 − s)2

)]
.

VII. SYMMETRIC AND PROLATE TERNARY SHAPES

From the elliptic lemniscatoids, it is possible to generate symmetric prolate ternary shapes varying from one sphere
to three aligned tangent identical spheres, assuming volume conservation. Such configurations may correspond, for
example, to some excited quasimolecular states of 12C formed of three aligned α particles [15].

While polar coordinates are very convenient in the binary case, the cartesian coordinates are more suitable to define
the ternary shape sequence since the symmetry plane is no more in the necks.

The shape is defined in the first quadrant by (see Figures 7 and 8 and [26])

x2 = 0.5
[
a2 − 2(z − d)2 +

√
a4 + 4(z − d)2(c2 − a2)

]
, (51)

where a is the neck radius and c is half the elongation of the generating binary case. The unique dimensionless
parameter s = a/c is sufficient to completely define the shape. d indicates the distance between the position of the
crevice and the transverse x axis, namely

d =

{
0.5c

√
1−2s2

1−s2 for 0 ≤ s < 0.5
√

2
0 for 0.5

√
2 ≤ s ≤ 1.

(52)

The maximum transverse radial distance is

hmax =
{

0.5c/(1 − s2)1/2 for 0 ≤ s < 0.5
√

2
a for 0.5

√
2 ≤ s ≤ 1.

(53)
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FIG. 7: Evolution of the prolate and symmetric ternary shapes as a function of the parameter s. The body has a symmetry
plane and an axis of revolution. The shape varies continuously from one sphere (s = 1) to three aligned and touching identical
spheres (s = 0) with the formation of two deep necks, assuming volume conservation. The neck appears when s < 0.5

√
2.

FIG. 8: 3D figure for s = 0.2.

The volume is given by

V =
4
3
πR0

3 =
πc3

12

[
4 + 6s2 + g(α) +

3s4

√
1 − s2

ln

(
2 − s2 + 2

√
1 − s2

h(α)

)]
, (54)

where R0 is the radius of the original sphere, α = d/c and

g(α) =
{

6α + 6αs2 − 8α3 for 0 ≤ s < 0.5
√

2
0 for 0.5

√
2 ≤ s ≤ 1,

(55)

and

h(α) =
{ −2α

√
1 − s2 + 1 − s2 for 0 ≤ s ≤ 0.5

√
2

s2 for 0.5
√

2 ≤ s ≤ 1.
(56)

The relative surface function is given by

Bs =

⎧⎪⎨
⎪⎩

c2

2R2
0

[
1 +

√
1−2s2

2 + s4√
1−s4 ln

( √
2(1+

√
1−s4)√

1−s2−
√

(1+s2)(1−2s2)

)]
for 0 ≤ s ≤ 0.5

√
2

c2

2R2
0

[
1 + s4√

1−s4 ln
(

1+
√

1−s4

s2

)]
for 0.5

√
2 ≤ s < 1.

(57)

The distance between the two halves of the system is equal to

r =

{
c
(
2α + πc3(11−8s2)

48V (1−s2)2

)
for 0 ≤ s < 0.5

√
2

πc4

3V (1 + s2 + s4) for 0.5
√

2 ≤ s ≤ 1.
(58)

The total elongation of the system, when the three spheres are separated, is given by

l = 1.5r + 1.625R1, (59)

where the radius of one small sphere is: R1 = 3−1/3R0. The distance between the surfaces of two fragments is then
given by

dfrag = 0.5l − 3R1. (60)
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VIII. ASYMMETRIC AND PROLATE TERNARY SHAPES

Ternary fission is much less probable than binary fission but this phenomenon has been observed, mainly via the
detection of a light alpha particle and two heavier fragments. As for the elliptic lemniscatoids, the symmetric prolate
ternary shapes can be generalized to describe more asymmetric shapes (see Figures 9 and 10 and [13, 19]).

FIG. 9: Evolution of the shape from the sphere to three touching spheres. The final ratio between the radii is 0.5.

FIG. 10: 3D figure when s2 = 0.2.

From these asymmetric quasimolecular shapes (see section 5), it is sufficient to introduce a symmetry plane cutting
the smallest fragment along its maximal orthogonal distance and the two dimensionless parameters s1 = a/c1 and
s2 = a/c2 are sufficient to define the shape completely. a stays the neck radius and c1 and c2 are respectively the
elongations of the external fragment and the central fragment. For s1 = s2 = 1 the shape is only one sphere while
for s1 = s2 = 0 two spheres of radius R1 are aligned and in contact with a central smaller sphere of radius R2

(R2/R1 ≤ 1). To connect s1 and s2 with the asymmetry between the central fragment and the two other external
identical fragments, s1 and s2 may be linked by the expression

s2
2 =

s1
2

s1
2 + (1 − s1

2)(R2/R1)2
, (61)

and in the same way c1 and c2 are linked by

c2
2 = c1

2[s1
2 + (1 − s1

2)(R2/R1)2]. (62)

In the first quadrant the shape reads

x2 = −(z − d)2 + 0.5si
2ci

2 + 0.5ci

√
4(1 − si

2)(z − d)2 + si
4ci

2 (63)

(i = 1 for z > d and i = 2 for z < d).
The volume is now given by

V =
πc1

3

12

[
4 + 6s1

2 +
3s1

4

√
1 − s1

2
sinh−1

(
2
√

1 − s1
2

s1
2

)]
(64)

+
πc2

3

12

[
6α + 6αs2

2 − 8α3 +
3s2

4

√
1 − s2

2
sinh−1

(
2α

√
1 − s2

2

s2
2

)]
,

where α = d/c2.
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The surface S = 4πR2
0Bs is given by

S = 2πc1
2

[
1 +

s1
4

√
1 − s1

4
sinh−1

(√
1 − s1

4

s1
2

)]
(65)

+2πc2
2

[
α
√

1 − s2
2 +

s2
4

√
1 − s2

4
sinh−1

(
α
√

2(1 − s2
4)

s2
2

)]
.

The distance between the centres of mass of the two halves of the system is

r =
πc1

4

3V
(1 + s1

2 + s1
4) + c2

[
2α +

πc2
3α4

3V
.
−5 + 8s2

2 + 16s2
6 − 16s2

8

(1 − 2s2
2)2

]
. (66)

When the three aligned spherical fragments are separated :

Bs =
2 + (R2/R1)2

(2 + (R2/R1)3)2/3
, (67)

r =
3

2 + (R2/R1)3

(
(R2/R1)4R1

4
+

4
3
D

)
, (68)

where 2D is the distance between the centres of the two external spheres.

IX. TWO SEPARATED ELLIPSOIDS

For separated nuclei or fragments it is often necessary to go beyond the spherical approximation and to take into
account the ellipsoidal deformations (see Fig. 11).

FIG. 11: Shape sequence describing the possible shape evolution of two coaxial ellipsoid configurations.

While the formulas for the volume and the surface of the binary ellipsoidal system derive directly from the formulas
for one ellipsoid, the Coulomb (or gravitational) interaction energy between two coaxial ellipsoids must be calculated
as [21, 27, 28]

EC,int(r) =
Q1Q2

r
[s(λ1) + s(λ2) − 1 + S(λ1, λ2)] λi

2 =
ci

2 − ai
2

r2
. (69)

In the prolate case, s(λi) is expressed as

s(λi) =
3
4

(
1
λi

− 1
λi

3

)
ln
(

1 + λi

1 − λi

)
+

3
2λi

2 , (70)

while, for the oblate shapes,

s(λi) =
3
2

(
1
ωi

+
1

ωi
3

)
tan−1 ωi − 3

2ωi
2

ωi
2 = −λi

2. (71)

S(λ1, λ2) can be calculated within a two-fold summation

S(λ1, λ2) =
∞∑

j=1

∞∑
k=1

3
(2j + 1)(2j + 3)

× 3
(2k + 1)(2k + 3)

× (2j + 2k)!
(2j)!(2k)!

λ1
2jλ2

2k. (72)
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X. PUMPKIN-LIKE SHAPES AND TORI

Approximately toroidal shapes may be observed in nuclear physics, in astrophysics... Often these configurations
are formed during the decay of a sphere through pumpkin-like shapes and, later, on tori and finally n-spheres emitted
roughly in a plane. A pumpkin-like configuration may be simulated using elliptic lemniscates (see figure 3) and taking
the vertical axis as axis of revolution (see Figures 12 and 13). As for the elliptic lemniscatoid, the ratio s = a/c is
sufficient to define the shape completely. When s decreases from 1 to 0, an hollow progressively appears in this oblate
lemniscatoid, and the shape varies from a sphere to a ring torus for which the upper and lower hollows are just linked.
Later on, the evolution from this initial toroidal shape towards ring torus with large radius rt can be governed by the
dimentionless parameter st [29, 30]

st = (rt − rs)/2rs, (73)

where rs is the sausage radius and rt the torus radius (see Figures 13 and 14).

FIG. 12: Sphere or oblate elliptic lemniscatoid (pumpkin-like configuration) for s = 1.

FIG. 13: Oblate elliptic lemniscatoid (pumpkin-like configuration) when s = 0 or torus for st = 0. The vertical axis is the axis
of revolution. Volume conservation is assumed.

FIG. 14: Torus for st = 1.

A. Oblate elliptic lemniscatoids

The volume, perpendicular moment of inertia, relative mean square radius and surface shape dependent function
are given by

V =
4πR0

3

3
=

4πc3

3

[
s3

4
+

3
8

(
s +

sin−1
(√

1 − s2
)

√
1 − s2

)]
, (74)
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I⊥,rel =
3c5

2R0
5(1 − s2)

(
− s7

24
− s5

16
− 25s3

192
+

35s

128
− 5

16

(
s2 − 7

8

)
sin−1

(√
1 − s2

)
√

1 − s2

)
, (75)

〈r2〉rel =
〈r2〉
3
5R0

2 =
5c5

4R0
5

[
2s5

15
+

s3

6
+

1
4

(
s +

sin−1
(√

1 − s2
)

√
1 − s2

)]
, (76)

Bs =
s

4πR0
2 =

c2

2R0
2

(
s2 +

sin−1
(√

1 − s4
)

√
1 − s4

)
. (77)

B. Ring torus

For an holed torus the same quantities are defined by

V =
4πR0

3

3
= 2π2rtrs

2 =
π2ct

3

4
(1 + 2st), (78)

I⊥,rel =
35
32

(1 + 3st + 3st
2)
(

16
3π(1 + 2st)

)2/3

, (79)

〈r2〉rel =
5
6
(1 + 2st + 2st

2)
(

16
3π(1 + 2st)

)2/3

, (80)

Bs =
4π2rsrt

4πR0
2 =

πct
2

4R0
2 (1 + 2st). (81)

It follows

rs = R0

(
2

3π(1 + 2s)

)1/3

. (82)

XI. BUBBLES

In heavy ion collisions at high energies, sophisticated shapes intermediate between bubbles and toroids have been
formed [31]. The compression, the inhomogeneities and the out of equilibrium effects due to the violence of these
collisions play an important role. Nevertheless calculations within macroscopic bubbles of constant density are railings
for further investigations [30]. Assuming volume conservation, the bubble characteristics can be expressed in terms
of a single parameter, the ratio p = r1/r2 of the inner radius r1 and the outer radius r2.

V =
4πR0

3

3
=

4π

3
(r2

3 − r1
3), (83)

r1 = R0p(1 − p3)−1/3, (84)

r2 = R0(1 − p3)−1/3. (85)

The relative (to the sphere) root mean square radius is given by

〈r2〉rel

1/2
=

〈r2〉1/2√
3/5R0

= (1 − p5)1/2(1 − p3)−5/6. (86)
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The relative surface, Coulomb and moment of inertia functions read

Bs =
1 + p2

(1 − p3)2/3
, (87)

BC =
1 − 2.5p3 + 1.5p5

(1 − p3)5/3
, (88)

I⊥,rel = (1 − p5)(1 − p3)−5/3. (89)

XII. SUMMARY

Different axially symmetric shape sequences are proposed to describe ground or excited states of leptodermous
nuclear matter distributions and to follow their evolution. Particularly, these configurations may simulate the path
from one spherical physical object to several spherical or ellipsoidal objects in the decay and entrance channels of
nuclear or astrophysical reactions (fission, fusion, fragmentation of nuclei, evolution of galaxies,...). These shapes,
except the bubbles, are derived from the very rich generalized lemniscate families. Their definitions and main geometric
characteristics are provided: volume, surface, root mean square radius, moment of inertia, quadrupole moment, shape
dependent Coulomb funtion, ...
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