
HAL Id: hal-01523096
https://hal.science/hal-01523096

Submitted on 16 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Online Detection of Anomalous Sub-trajectories: A
Sliding Window Approach Based on Conformal

Anomaly Detection and Local Outlier Factor
Rikard Laxhammar, Göran Falkman

To cite this version:
Rikard Laxhammar, Göran Falkman. Online Detection of Anomalous Sub-trajectories: A Sliding
Window Approach Based on Conformal Anomaly Detection and Local Outlier Factor. 8th Interna-
tional Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki,
Greece. pp.192-202, �10.1007/978-3-642-33412-2_20�. �hal-01523096�

https://hal.science/hal-01523096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Online Detection of Anomalous Sub-Trajectories -
A Sliding Window Approach based on Conformal

Anomaly Detection and Local Outlier Factor

Rikard Laxhammar1,2 and Göran Falkman1

1 University of Skövde, Sweden
2 Saab Security and Defence Solutions, Järfälla, Sweden

firstname.lastname@his.se

Abstract Automated detection of anomalous trajectories is an import-
ant problem in the surveillance domain. Various algorithms based on
learning of normal trajectory patterns have been proposed for this prob-
lem. Yet, these algorithms suffer from one or more of the following limit-
ations: First, they are essentially designed for offline anomaly detection
in databases. Second, they are insensitive to local sub-trajectory anom-
alies. Third, they involve tuning of many parameters and may suffer
from high false alarm rates. The main contribution of this paper is the
proposal and discussion of the Sliding Window Local Outlier Conformal
Anomaly Detector (SWLO-CAD), which is an algorithm for online de-
tection of local sub-trajectory anomalies. It is an instance of the previ-
ously proposed Conformal anomaly detector and, hence, operates online
with well-calibrated false alarm rate. Moreover, SWLO-CAD is based on
Local outlier factor, which is a previously proposed outlier measure that
is sensitive to local anomalies. Thus, SWLO-CAD has a unique set of
properties that address the issues above.

1 Introduction

Anomalous behaviour may indicate objects or events of interest in a wide variety
of domains. One such domain is surveillance, where there is a clear trend towards
more and more advanced sensor systems producing huge amounts of trajectory
data from moving objects, such as people, vehicles, vessels and aircraft. In the
maritime domain, for example, anomalous vessel behaviour, such as unexpec-
ted stops, deviations from standard routes, speeding, traffic direction violations
etc., may indicate threats and dangers related to smuggling, sea drunkenness,
collisions, grounding, hijacking, piracy etc. Timely detection of these relatively
infrequent events, which is critical for enabling pro-active measures, requires
constant analysis of all trajectories. This is typically a great challenge to human
analysts due to information overload, fatigue and inattention.

This paper is concerned with algorithms for automated detection of anom-
alous trajectories. A large number of algorithms based on learning of normal
trajectory patterns have been proposed for this problem [11]. However, these



algorithms typically suffer from one or more of the following limitations: First,
they are essentially designed for offline anomaly detection in databases, i.e. they
are not appropriate for online anomaly detection where trajectories are pro-
cessed sequentially in the order they are observed. Second, they are insensitive
to local sub-trajectory anomalies. Third, they are parameter-laden [7] and their
performance may suffer from high false alarm rates [1].

Motivated by the above limitations, we propose and discuss a new algorithm
for online detection of anomalous sub-trajectories, known as the Sliding Window
Local Outlier Conformal Anomaly Detector (SWLO-CAD). This algorithm is
an instance of the previously proposed Conformal Anomaly Detector (CAD) [9],
which is a general and parameter-light algorithm for online anomaly detection
with well-calibrated false alarm rate. The key idea in CAD is to estimate p-
values for new data based on a Non-Conformity Measure (NCM) as defined
in the Conformal prediction (CP) framework [4]. The NCM is the only design
parameter of CAD. In this paper, we propose a novel NCM for trajectory data,
known as the Sliding Window Local Outlier Trajectory Non-conformity Measure
(SWLO-TNM). This NCM is based on Local Outlier Factor (LOF) [2] and is
therefore sensitive to local sub-trajectory anomalies.

To summarise, the contribution of this paper concerns the proposal and dis-
cussion of SWLO-CAD for online detection of local sub-trajectory anomalies.
In particular, the main contribution is the proposal of SWLO-TNM, which is
a novel NCM with unique properties, designed for trajectory data. The outline
of the remaining part of this paper is as follows: In Section 2, we first discuss
in more detail limitations of previous algorithms for anomaly detection in tra-
jectories. This is followed by a review of CAD and LOF, since they underpin
SWLO-CAD and SWLO-TNM, respectively. In Section 3, we will first define
more precisely what we mean by trajectories and what properties that should
be fulfilled by a NCM for detecting local sub-trajectory anomalies. We will then
present SWLO-NCM and discuss its theoretical properties and how it can be im-
plemented. The section will be concluded with a brief discussion of limitations
and future work. Finally, Section 4 will present the conclusions of the paper.

2 Background

2.1 Limitations of Previous Algorithms for Trajectory Anomaly
Detection

Previous algorithms are typically designed for offline anomaly detection in tra-
jectory databases in a one-step or two-step fashion, depending on whether learn-
ing is unsupervised or supervised, respectively. In the supervised case, a one-class
model is first learnt from a batch of training trajectories labelled normal. This
normalcy model is then used repeatedly for classifying new trajectories in a test
set. In the unsupervised case, all data is assumed to be unlabelled and learning
and anomaly detection are blended, i.e. the training set and the test set are equi-
valent. But regardless of whether learning is supervised or unsupervised, a fairly
large training (test) set that is representative of all possible normal behaviour



may be required in order to accurately detect new anomalous trajectories. In
some applications, such a data set might not be available from the outset. Yet,
it may still be desirable or necessary to be able to classify each new trajectory
based on the training set accumulated so far. Moreover, “in many domains normal
behaviour keeps evolving and a current notion of normal behaviour might not be
sufficiently representative in the future” [3]. The need for algorithms capable of
efficient online anomaly detection in trajectories, i.e. when trajectories are ana-
lysed in sequence and model parameters updated incrementally, was highlighted
by Piciarelli and Foresti [12].

Another limitation of previously proposed algorithms is their insensitivity to
local anomalous sub-trajectories. To illustrate this point, consider Figure 1 which
highlights two trajectories (Tr1 and Tr2) that are anomalous at different scales.
The first trajectory (Tr1) corresponds to a global anomaly that is anomalous in

Figure 1. Illustration of a global trajectory anomaly (Tr1), which is all red, vs. a local
sub-trajectory anomaly (Tr2), where red and green correspond to the anomalous and
normal part of the trajectory, respectively.

its entirety, since trajectories originating from Start1 are expected to go to End1
rather than End2. Such anomalies are typically detectable by previously pro-
posed algorithms for trajectory anomaly detection. The second trajectory (Tr2)
corresponds to a local anomaly: while the overall route of Tr2 is consistent with
other trajectories, the initial sub-trajectory (red) deviates significantly from the
other local sub-trajectories in the area. Yet, most trajectory-based algorithms
would probably miss this anomaly, since the distance between the anomalous
sub-trajectory and its nearby sub-trajectories is less than the distance between
neighbouring sub-trajectories in other less dense areas, such as the central cross-
ing area in Figure 1. The underlying models and similarity measures of previous
algorithms, including our previously proposed algorithm for sequential anom-
aly detection in incomplete trajectories [9], essentially consider trajectories as a
whole and do not consider local variations in density. Therefore, local anomalous
sub-trajectories of the type in Figure 1 are “smoothed out”. In fact, this limit-



Algorithm 1 The Conformal Anomaly Detector (CAD)
Input: NCM A, anomaly threshold ϵ, old examples z1, . . . , zn−1 and new example zn.
Output: Boolean variable Anomaly.
1: D = {z1, . . . , zn}
2: for i← 1 to n do
3: αi ← A (D\zi, zi)
4: end for
5: τ ← U (0, 1)

6: pn ← |{i:αi>αn}|+τ |{i:αi=αn}|
n

7: if pn < ϵ then
8: Anomaly ← true
9: else

10: Anomaly ← false
11: end if

ation was previously identified by Lee et al. [10] who argued that “a trajectory
may have a long and complicated path” and that “even though some portions
of a trajectory show an unusual behaviour, these differences might be averaged
out over the whole trajectory”. Motivated by this problem, they proposed an al-
gorithm for detecting anomalous sub-trajectories, which considers the local data
density [10]. Yet, similar to most other algorithms, their algorithm is designed
for offline detection of anomalies in a trajectory database; they do not discuss
the possibility for online anomaly detection.

2.2 Conformal Anomaly Detection

The Conformal Anomaly Detector (CAD) (Algorithm 1) is a parameter-light al-
gorithm for online anomaly detection with well-calibrate false alarm rate [9]. It is
based on estimating p-values for new data based on a NCM as defined in the CP
framework [4]: Assume that we are observing a stream of examples correspond-
ing to observed behaviour in some domain of interest. For each new example, zn,
CAD estimates its smoothed p-value, pn ∈ (0, 1), relative the training set of pre-
viously observed examples, {z1, . . . , zn−1}. This is done by first calculating the
non-conformity score, αi ∈ R, for each example, zi : i = 1, . . . , n, based on the
specified NCM, A ({z1, . . . , zn} \zi, zi) → αi (lines 2–4 of Algorithm 1). Next, pn
is estimated as the sum of 1) the ratio of examples that have a nonconformity
score larger than αn and 2) the ratio of examples that have a nonconformity score
equal to αn multiplied by a random number, τ , from the unit interval (lines 5–6).
If pn is below the specified anomaly threshold, ϵ ∈ (0, 1), zn is classified as a
conformal anomaly at significance level ϵ.

The definition of a conformal anomaly is consistent with the statistical defin-
ition of an outlier given by Hawkins [5]. That is, a conformal anomaly corres-
ponds to an example that deviates so much from training data as to arouse
suspicion that it was generated by a different stochastic process. The value pn
can be interpreted as the probability of erroneously rejecting the null hypothesis



that zn was independently generated from the same distribution as the previous
examples [13]. In other words, pn corresponds to the probability of classifying
zn as anomalous when it is in fact not; this is known as a false alarm. In case
of online anomaly detection with an accumulating training set of independent
and identically distributed examples corresponding to normalcy, the false alarm
rate, i.e., the frequency of normal examples erroneously classified as anomalous,
is expected to be close to ϵ over time. This property of CAD is referred to as
well-calibrated false alarm rate [9]. The parameter ϵ regulates the sensitivity to
true anomalies and should be set depending on the rate of false alarms that is
acceptable in the current application. A higher value of ϵ increases probability
of detecting true anomalies but also the frequency of false alarms.

Ideally, the true label for each new example would be revealed to CAD after
classification, i.e. online supervised anomaly detection. In applications such as
surveillance, this would imply that a human has to validate the classification of
each new example; obviously, this is not feasible since the purpose of the anomaly
detector is to reduce human workload. On the other hand, a fully unsupervised
approach, where either all examples or only those examples classified as normal
are added to the training set, will likely result in decreased classification perform-
ance due to a corrupt or biased training set. A compromise between supervised
and unsupervised learning is to adopt a semi-supervised learning strategy where
only a subset of the examples are labelled. For example, the true label may be
provided by a human only for those examples classified as anomalous by CAD,
and all new examples except those that are detected and confirmed to be anom-
alous may be added to the training set [9].

Analogously to supervised CP [4], the choice of NCM is of central importance
since it determines the character of the detectable anomalies. A poorly chosen
NCM may result in that subtle, yet important, anomalies may not be detected.
In our previous work, we investigated different NCMs based on the k-nearest
neighbour algorithm [8,9]. Advantages of nearest neighbour methods include
that they are relatively easy to implement, involve few parameters and are well-
suited for online learning since they do not require extensive model update as
new training data is added.

2.3 Local Outlier Factor

Local Outlier Factor (LOF) [2] is a powerful density-based outlier measure that
has shown good results in wide range of anomaly detection applications [3]. The
main advantage of LOF is that it does not suffer from the local density problem
[6] as illustrated in Figure 2: Assume that C1 and C2 are two clusters with low
and high densities, respectively, and that x1 and x2 are two anomalous examples
located in low and high density areas, respectively. Clearly, x1 is easily detected
by, e.g., a standard nearest-neighbour method, since it has the largest nearest-
neighbour distance among all examples. However, this is not true for x2, since
its nearest-neighbour distance is approximately equal or less than most of the
normal examples belonging to C1. LOF addresses this problem by considering
the neighbourhood density of x2 in relation to the neighbourhood densities of
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Figure 2. Illustration of the local density problem where C1 and C2 correspond to two
clusters with different densities, and z1 and z2 correspond to anomalous data points in
low and high density areas, respectively.

the k-nearest neighbours to x2. Following Janssens and Postma [6], we describe
the three steps involved when calculating LOF for each example xi ∈ D of a
dataset D:

1. The first step involves determining the neighbourhood of each example: As-
sume that neighbourhood border distance of xi is defined as:

dborder (xi, k) = d (xi,NN (xi, k)) , (1)

where d is a distance function and NN (xi, k) corresponds to the k-nearest
neighbour to xi. Then, the neighbourhood of xi is constructed as:

N (xi, k) = {xj ∈ D ∖ {xi} : d (xi, xj) ≤ dborder (xi, k)} . (2)

2. The second step involves estimating the neighbourhood density of each ex-
ample based on the concept reachability distance: Assume that the reachab-
ility distance from xi to xj is given by:

dreach (xi, xj , k) = max {dborder (xj , k) , d (xj , xi)} . (3)

Then, the neighbourhood density of xi is defined as:

ρ (xi, k) =
|N (xi, k)|∑

xj∈N (xi,k)

dreach (xi, xj , k)
. (4)

The use of dreach instead of d in Eq. 4 has a smoothening effect on the
neighbourhood density, which is illustrated in Figure 3: the larger the value
of k, the larger is the smoothening effect.

3. In the third and final step, the local outlier factor for each example is cal-
culated by comparing its neighbourhood density with the neighbourhood
densities of its neighbouring examples:



Figure 3. The use of the reachability distance dreach has a smoothening effect. Density
plots without (left) and with (right) reachability distance where k = 3. The shades of
grey represent the density as indicated by the bar on the right. Reproduced from [6]
with permission.

LOF (xi, k) =

∑
xj∈N (xi,k)

ρ (xj , k)

ρ (xi, k) |N (xi, k)|
. (5)

Generally, an example which lies deep inside a cluster will have a local outlier
factor close to 1, while an example that lies far from a cluster will have relatively
high local outlier factor [2].

3 Sliding Window Local Outlier Conformal Anomaly
Detector

This section describes the details of SWLO-CAD, which is proposed for on-
line detection of anomalous sub-trajectories. We start by defining more precisely
what trajectories are and discuss the requirements of a NCM aimed for detecting
anomalous sub-trajectories in the CAD framework. Next, SWLO-TNM is de-
scribed, which in combination with CAD constitutes SWLO-CAD. The section
is concluded with discussion regarding theoretical properties of SWLO-TNM,
how it can implemented and future work.

3.1 Trajectory Representation

Generally, a trajectory of an object moving in the plane can be considered as
a continuos curve in 3D, where the third dimension corresponds to time. In
this paper, however, we will consider a simplified model where a trajectory is
represented as a continuous curve in 2D:

Definition 1. A trajectory is a continuos parameterised curve in 2D:

Tr (t) → ⟨x, y⟩ : t ∈ [0, L] ,

where x and y correspond to the spatial location in the plane and L corresponds
to the arc length of the curve.

Note that while this representation does not capture the speed at which the
object moves, it does impose an ordering of different locations along the curve



and, thus, captures the direction of travel. Similar representations have previ-
ously been proposed by other authors and have shown to be useful for detecting
trajectory anomalies [11,9]. Following Definition 1, let us formalise the concept
of a sub-trajectory:

Definition 2. A sub-trajectory of Tr (t) is defined as:

Tr∗ (t, s, w) → ⟨x, y⟩ : t ∈ [s, s+ w] , 0 ≤ s ≤ L− w,

where s and w correspond to the start point and the arc length, respectively, of
the sub-trajectory and L is the length of the complete trajectory Tr (t).

For the remainder of this paper we will, for simplicity, drop the parameters t, s, w
from the notation whenever they are not explicitly needed.

3.2 A Sliding Window Non-conformity Measure Based on Local
Outlier Factor

Now, adopting the framework of CAD where each example z corresponds to a
trajectory, we are interested in a NCM, A (Tr,Tr), that calculates the noncon-
formity score for a possibly incomplete trajectory Tr relative a set of traject-
ories Tr ∈ {Tr1, . . . , T rn}. In addition to accurately discriminating anomalous
trajectories from normal trajectories, we argue that the NCM should have the
following properties:

1. It should be sensitive to local features of the trajectory at different scales.
That is, it should be able to discriminate anomalous sub-trajectories that
may be smoothed out if the trajectory is considered as a whole (cf. [10]).

2. It should consider the local density and variance of the neighbourhood of sub-
trajectories. For example, it should account for that the distance between
sub-trajectories in some areas, e.g. harbours, is relatively small compared to
other less trafficked areas.

3. As discussed in our previous work [9], the NCM should support sequen-
tial anomaly detection in order to reduce detection delay. In particular,
it should support calculation of an intermittent nonconformity score that
monotonically increases as the trajectory extends, i.e. A (Tr∗ (t, s, w) ,Tr) ≤
A (Tr∗ (t, s, w′) ,Tr) if w ≤ w′. This property ensures that the probability
of false alarm for CAD will still be equal to ϵ during sequential anomaly
detection in incomplete trajectories.

We argue that SWLOF-TNM addresses all of the above properties. But before
we present SWLOF-TNM, let us introduce some key concepts:

Definition 3. Let subdist
⟨
Tr∗i (s, w) , T r

∗
j (s

′, w)
⟩
∈ R+ be a distance measure

for comparing two sub-trajectories, Tr∗i (s, w) and Tr∗j (s
′, w), having the same

arc length w.



One such distance measure is the maximum of the squared Euclidean distance
between each pair of corresponding points along the two sub-trajectories:

subdistmaxSED
⟨
Tr∗i (s, w) , T r

∗
j (s

′, w)
⟩
=

max
τ∈[0,w]

{
⟨xi (s+ τ)− xj (s

′ + τ)⟩2 + ⟨yi (s+ τ)− yj (s
′ + τ)⟩2

}
, (6)

where x (t) ∈ R and y (t) ∈ R are the continuous parameterisations of the x and
y components of the corresponding trajectory.

Definition 4. Let:

align (Tr∗i (s, w) , T rj) → Tr∗j (s
′, w) :

argmin
s′∈[0,L−w]

{
subdist

⟨
Tr∗i (s, w) , T r

∗
j (s

′, w)
⟩}

, (7)

be an alignment function that returns the sub-trajectory Tr∗j (s
′, w) from Trj that

minimises the distance to Tr∗i (s, w) according to subdist.

Now, let us go on and re-define the LOF-concepts from Section 2.3 where each
example x now corresponds to a sub-trajectory:

– NN (Tr∗i , k) ∈ {align (Tr∗i , T rj) : Trj ∈ Tr} as the k-nearest neighbour to
Tr∗i among the aligned sub-trajectories, one for each trajectory in Tr.

– dborder (Tr
∗
i , k) = subdist ⟨Tr∗i ,NN (Tr∗i , k)⟩ as the neighbourhood border

distance of Tr∗i .
– N (Tr∗i , k) ⊆ {align (Tr∗i , T rj) : Trj ∈ Tr} as the corresponding k-neighbour-

hood of Tr∗i , i.e. the set of aligned sub-trajectories that are at distance at
most dborder (Tr

∗
i , k) from Tr∗i .

– dreach
(
Tr∗i , T r

∗
j , k

)
= max

{
dborder (Tr

∗
i , k) , subdist

⟨
Tr∗j , T r

∗
i

⟩}
as the reach-

ability distance from Tr∗j to Tr∗i .
– ρ (Tr∗i , k) = |N (Tr∗i , k)| /

∑
Tr∗j∈N(Tr∗i ,k)

dreach
(
Tr∗i , T r

∗
j , k

)
as the neighbour-

hood density of Tr∗i .

Based on LOF-concepts above, we define the Sub-Trajectory Local Outlier Factor
(ST-LOF) as:

ST-LOF (Tr∗i , k) =

∑
Tr∗j∈N(Tr∗i ,k)

ρ(Tr∗j ,k)
ρ(Tr∗i ,k)

|N (Tr∗i , k)|
. (8)

Finally, we are ready to introduce the Sliding Window Local Outlier Trajectory
Nonconformity Measure (SWLO-TNM):

SWLO-TNM {Tri,Tr, w, k} = max
s∈[0,Li−w]

{ST-LOF (Tr∗i (s, w) , k)} , (9)

where Li corresponds to the length of Tri.



3.3 Discussion

SWLO-TNM considers all sub-trajectories of length w and will assign a rel-
atively high non-conformity score to Tri whenever any of its sub-trajectories
has a sufficiently high outlier score, i.e. regardless of whether the remaining
part of the trajectory is perfectly normal. The parameter w corresponds to the
scale/resolution of the anomalous sub-trajectories and, depending on the ap-
plication, it may be appropriate to run multiple anomaly detectors in parallel
using different values of w. Hence, SWLO-TNM meets requirement 1 in Sec-
tion 3.2. Furthermore, by considering the local density of each sub-trajectory
using ST-LOF, SWLO-TNM also meets requirement 2. Finally, requirement 3
is also met: SWLO-TNM is based on the maximum of the outlier scores of all
sub-trajectories and, hence, it monotonically increases as the trajectory extends.
In principle, by plugging SWLO-NCM into CAD we get SWLO-CAD, which is a
parameter-light algorithm for online detection of local sub-trajectory anomalies
with well-calibrated false alarm rate.

In practice, a family of parameterised curves need to be chosen that is able
to approximate the true trajectories fairly well, while still allowing for efficient
calculation of SWLO-TNM. Assuming that we are monitoring vessel trajector-
ies, it makes sense to adopt a polyline representation since vessel traffic typically
follow straight line segments, such as sea lanes. That is, each trajectory would
be represented by m vertices where t1 = 0 and tm = L correspond the first and
last point of the trajectory, respectively, and where t2, . . . , tm−1 correspond to
the intermediate vertices, i.e. the end points of the line segments. The polyline
representation is practical from a computational perspective and allows for ef-
ficient compression using a line simplification algorithm. Yet, implementing an
algorithm for exact calculation of SWLO-TNM seems difficult, if not impossible.
More specifically, finding the optimal values for s in Eq. 9 and each s′ in Eq. 7
is not trivial. Hence, it may be appropriate to discretisize the range of τ , s′ and
s and perform a linear parameter search during the minimisation and maxim-
isation in Eq. 6, 7 and 9. Moreover, an efficient indexing of sub-trajectories may
be appropriate in order to suppress computational complexity.

Because of limited space, this paper does not cover any empirical investiga-
tions of SWLO-CAD. However, we have implemented SWLO-CAD and conduc-
ted preliminary experiments in the maritime domain. These experiments show
promising results and an obvious direction for future work is to investigate clas-
sification performance on labelled data sets with anomalous sub-trajectories.
Moreover, we observe that SWLO-TNM could potentially may applied as NCM
for supervised classification of trajectories in the standard CP framework.

4 Conclusion

Previous algorithms for anomaly detection in trajectories typically suffer from
one or more of the following issues: First, they are essentially designed for off-
line anomaly detection in databases. Second, they are insensitive to local sub-
trajectory anomalies. Third, they are more or less parameter-laden and may have



high false alarm rates. In this paper, we have proposed and discussed SWLO-
CAD for online detection of local sub-trajectory anomalies. SWLO-CAD has a
unique set of properties that follow from the fact that it is based on CAD and
LOF. In particular, SWLO-CAD is parameter-light, operates online, has well-
calibrated false alarm rate and is sensitive to local anomalies. Hence, it addresses
the limitations above. We have also discussed issues related to the implement-
ation of SWLO-CAD in practice. Future work includes empirical investigations
on trajectory data sets that include anomalous sub-trajectories.
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