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Abstract. Pattern recognition is becoming an increasingly important
tool for making inferences from the massive amounts of data produced
in magnetic confinement fusion experiments. However, the measurements
obtained from the various plasma diagnostics are typically affected by
a considerable statistical uncertainty. In this work, we consider the in-
herent stochastic nature of the data by modeling the measurements by
probability distributions in a metric space. Information geometry per-
mits the calculation of the geodesic distances on such manifolds, which
we apply to the important problem of the classification of plasma con-
finement regimes. We use a distance-based conformal predictor, which
we first apply to a synthetic data set. Next, the method yields an excel-
lent classification performance with measurements from an international
database. The conformal predictor also returns confidence and credibility
measures, which are particularly important for interpretation of pattern
recognition results in stochastic fusion data.

Keywords: Magnetic confinement fusion, probabilistic manifold, con-
formal predictor

1 Introduction

Controlled nuclear fusion research aims at the development of a clean, safe and
virtually inexhaustible source of energy. One promising route towards the re-
alization of this objective involves the confinement of a hot hydrogen isotope
plasma using an appropriate magnetic field configuration in a so-called tokamak
device. Different regimes of plasma confinement have been established, primar-
ily the low-confinement mode, or ‘L-mode’ and the high-confinement mode or
‘H-mode’. The H-mode is characterized by an enhanced plasma temperature,
density and average confinement time of the plasma energy and particles, and
it has been shown to result from a so-called ‘transport barrier’ near the plasma
boundary. The H-mode has become the basis of the reference plasma scenario
for next-step devices such as ITER, which is presently under construction in
Southern France.
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The actual physical mechanism responsible for the transition of a plasma into
H-mode is still a subject of active research. However, from a practical point of
view, it is possible to identify the confinement mode from a set of conventional
plasma diagnostic signals. On the one hand, this represents an important tool for
real-time plasma control, e.g. in ITER, in order to stabilize the complex plasma
and magnetic configurations and maximize the performance [8, 5, 7]. On the other
hand, a data-driven study of the primary physical variables that determine the
confinement regime can contribute substantially to the physical understanding
of plasma confinement.

Recently, machine learning and pattern recognition methods have shown a
substantial value for such data-driven investigations by extracting patterns of
interest from fusion data; see e.g. [9] for a recent overview at the JET tokamak.
However, pattern recognition for fusion data is a veritable challenge, for several
reasons that are discussed in this paper. In this work, we present a novel inte-
grated framework that tackles the various pattern recognition challenges related
to fusion data and we apply this to the conformal prediction of plasma confine-
ment regimes. The application of conformal predictors in fusion data analysis
was considered before, e.g. in [10]. Our framework involves a representation of
complex stochastic data sets that allows an efficient recognition of interesting
data patterns and to adapt pattern recognition methods to maximally profit
from this representation. Adopting a probabilistic approach, the framework is
especially suitable for analyzing measurements that are subject to a great deal
of uncertainty, such as it can be the case in fusion devices. Hence, we respect
the inherent probabilistic nature of the data by developing pattern recognition
methods that are able to deal with probability distributions.

Pattern recognition essentially relies on geometric concepts such as distance,
dispersion and projection. Therefore, our proposed method is based on infor-
mation geometry, which provides a natural geometric structure to probability
spaces. In information geometry a metric tensor on probabilistic manifolds is
defined, allowing the calculation of a geodesic distance between probability dis-
tributions.

In this paper, we present results from classification experiments using a con-
formal predictor based on the geodesic distance geometry of the data and we
compare to the Euclidean distance. We first demonstrate the main principles on
a synthetic data set and then apply this to confinement mode classification in
an international database. A key observation in this work is that, in addition
to being the proper formalism for treating uncertainty, the probabilistic descrip-
tion of data actually improves the performance of classification and visualization
techniques. Furthermore, the concept of regime identification is closely related
to the establishment of scaling laws for the L to H transition power threshold
and the energy confinement time. This, in turn, is essential for extrapolating
present design characteristics and aspects of plasma performance to next-step
devices such as ITER and fusion reactors.

This paper is organized as follows. In Section 2 we present the motivation for
our probabilistic-geometric framework and the details of the approach. Section 3
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discusses the application of conformal predictors in relation to our modeling
framework, to confinement mode discrimination. Section 4 concludes the paper.

2 A geometric-probabilistic pattern recognition
framework

2.1 Pattern recognition for fusion data

Pattern recognition for fusion data is hampered by several data characteristics.
First, the databases are vast and learning patterns from large data amounts of-
ten requires considerable computational resources. Second, fusion plasmas are
described by tens to hundreds of variables. Therefore, it is essential to reduce the
data dimensionality, for instance by projecting the data into a lower-dimensional
space, preferably with a minimum of distortion. Third, there is a considerable re-
dundancy between measured quantities due to complex, nonlinear interactions.
Fourth, measurements in fusion devices are often affected by substantial uncer-
tainties, both stochastic and systematic. These may be introduced at various
levels, from the measurement hardware to the calibration, incomplete or inaccu-
rate physical modeling assumptions and inherently stochastic plasma behavior.
Classic pattern recognition or statistical methods deal with this uncertainty in
a way that somewhat decouples the measurement value from its fundamental
uncertainty property. That is, the primary object of interest is usually consid-
ered to be the measurement value itself, while its associated error bar or, more
comprehensively, its probability distribution, is treated as a side-effect of the
measurement process, which ultimately influences the reliability of inferences.
In contrast, in the approach presented in the present work, the fundamental
object is the probability distribution itself, taking full advantage of the extra in-
formation that it contains over the measurement value alone. Information on the
probability distribution that underlies a measurement can be obtained by fitting
a distribution to a set of repeated measurements. Alternatively, error analysis
can be applied to derive a measure for the dispersion of the underlying proba-
bility distribution. In some cases Gaussian error propagation suffices, but if the
forward model is complicated, possibly involving multiple diagnostics, a more
advanced error analysis may be appropriate. A suitable framework to do this is
integrated data analysis (IDA) using Bayesian probability theory [3, 11], which
has become a well-trusted tools in fusion data analysis. Dependencies between
physical variables can be captured in a multivariate distribution, although many
nonlinear relations are too complex to be efficiently described by tractable prob-
ability models. Such relations are better characterized by a dedicated regression
analysis.

Finally, in view of the stochastic character of fusion data and data patterns,
it is important to associate reliable estimates of confidence or reliability to the
results of pattern recognition tasks, such as classification and regression. This
requirement can be adequately fulfilled by conformal predictors, which provide
a natural measure of confidence and credibility and are based on the straight-
forward and informative concept of a nonconformity measure.
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2.2 The geometry of probability distributions

For the purpose of the classification and visualization methods presented in this
work, a notion of similarity between data points is needed. In a probabilistic
description this translates to a similarity measure between probability distri-
butions. This can be obtained within the field of information geometry, where
probability density families are interpreted as (Riemannian) differentiable man-
ifolds [1]. A point on the manifold corresponds to a specific probability density
function (PDF) within the family and the family parameters provide a coordi-
nate system on the manifold. The Fisher information can be regarded as a metric
tensor (Fisher-Rao metric) on such a manifold. Once the metric is known, one
can establish and solve the geodesic equations, allowing the calculation of the
geodesic distances on the manifold [13, 12]. Thus, the geodesic distance (GD)
is a natural and theoretically motivated similarity measure between probability
distributions. Given a probability model p(x|θ) for a vector-valued variable x,
labeled by an N -dimensional parameter vector θ, the components of the Fisher
information matrix gµν are defined through the relations

gµν(θ) = −E
[

∂2

∂θµ∂θν
ln p(x|θ)

]
, µ, ν = 1 . . . N.

2.3 The geometry of the univariate Gaussian distribution

In this paper we model the data using a simple univariate Gaussian model. The
Fisher-Rao metric for the Gaussian distribution, parameterized by its mean µ
and standard deviation σ, can be given via the quadratic line element [2]:

ds2 =
1

σ2
dµ2 +

1

σ2
dσ2.

A closed-form expression exists for the GD, permitting a fast evaluation. Indeed,
for two univariate Gaussian distributions p1(x|µ1, σ1) and p2(x|µ2, σ2), param-
eterized by their mean µi and standard deviation σi (i = 1, 2), the GD is given
by [2]

GD(p1||p2) =
√

2 ln
1 + δ

1− δ
, δ ≡

[
(µ1 − µ2)2 + 2(σ1 − σ2)2

(µ1 − µ2)2 + 2(σ1 + σ2)2

]1/2
.

For illustration purposes, an (approximately) isometric embedding of the
Gaussian manifold in three-dimensional Euclidean space is shown in Figure 1a.
Every point on this surface represents a Gaussian distribution, characterized by a
mean and a standard deviation. The Euclidean distance in the three-dimensional
Euclidean space between any two points on the surface, equals the true GD
between the corresponding distributions. An example of a geodesic between two
arbitrary Gaussians is drawn on the surface and the evolution of the distribution
along the geodesic is visualized in Figure 1b.

Finally, in the case of multiple independent Gaussian variables it is easy to
prove that the square GD between two sets of products of distributions is given by
the sum of the squared GDs between corresponding individual distributions [2].
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(a) (b)

Fig. 1: (a) Embedding of the univariate Gaussian manifold and geodesic between
two arbitrary Gaussians p1 (µ1 = −4, σ1 = 0.7) and p2 (µ2 = 3, σ2 = 0.2). The
full lines are curves of constant mean, the dashed lines are curves of constant
standard deviation. (b) Visualization of the distributions along the geodesic,
parameterized by t. Each slice along the t-axis shows the distribution at the
corresponding point on the geodesic.

3 Conformal prediction for confinement regime
identification

We now consider the application of a conformal predictor in conjunction with
our geometric-probabilistic modeling framework to the classification of confine-
ment regimes. We are interested in distinguishing between L-mode and H-mode
plasmas, so in this paper we consider a two-class classification problem. A subset
of the data of size n− 1 was used for ‘training’ the classifier, i.e. the class label
of this bag of samples was assumed to be known. In all experiments we used
a conformal predictor with a nonconformity measure based on the distance of
the sample to be classified to its nearest neighbors of both classes in the bag.
Specifically, the nonconformity score αi of a given sample i was calculated as

αi =
Distance to sample i’s nearest neighbor in the bag with the same label

Distance to sample i’s nearest neighbor in the bag with a different label
.

The nonconformity measure for sample i was computed with respect to both
classes, assuming membership of sample i of each of the classes j = 1, 2 in turn.
By doing this for each sample in the bag and for the sample to be classified, a
ranking could be determined of the nonconformity scores. Then, for each class
j a p-value was calculated based on this ranking, namely:

pj =
#{i = 1, . . . , n|αi ≥ αn}

n
.

Here, it is assumed that the index n corresponds to the sample to be classified,
while i < n refers to the samples in the bag used for ‘training’. The sample to be
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classified was assigned to the class with the largest corresponding p-value. The
largest p-value itself is referred to as the credibility, while the complement of the
other p-value is the confidence of the classification task. This mode of classifica-
tion is the conformal predictor equivalent of a k-nearest-neighbor classifier with
k = 1. As a similarity measure we first considered the Euclidean distance be-
tween the sample feature vectors and we compared its performance to that of the
geodesic distance between the feature vectors, this time treated as probabilistic
features.

3.1 ITPA database

In this work for confinement mode identification we employed measurements
from the International Tokamak Physics Activity (ITPA) Global H-mode Con-
finement Database (DB3, version 13f), henceforth referred to as the ‘ITPA
database’ [6, 4]. The ITPA database contains more than 10, 000 validated mea-
surements of various global plasma and engineering variables at one or several
time instants during discharges in 19 tokamaks. The data have been used ex-
tensively for determining scaling laws for the energy confinement time, mainly
as a function of a set of eight plasma and engineering parameters: plasma cur-
rent, vacuum toroidal magnetic field, total power loss from the plasma, central
line-averaged electron density, plasma major radius, plasma minor radius, elon-
gation and effective atomic mass. The objective is then to extrapolate to ITER
conditions. We used the same eight variables to discriminate between, roughly,
L- and H-mode plasmas. Specifically, all database entries with a confinement
mode labeled as H, as well as related high-confinement regimes labeled HGELM,
HSELM, HGELMH, HSELMH and LHLHL, were considered to belong to the
H-mode class. In contrast, discharges labeled with L, OHM and RI were assigned
to the non-H-mode class, or L-mode for brevity.

The ITPA database lists typical error estimates of measurements for the
various plasma and engineering variables. It should be noted that this repre-
sents very limited information on the probability distribution underlying each
quantity. Furthermore, the interpretation of the error estimates is not always
unambiguous and in some cases it is not clear to what extent the estimates
are sufficiently reliable for subsequent analysis. Nevertheless, let us assume for
the moment that the error bars pertain to a statistical uncertainty in the data,
specifically that they represent a single standard deviation. According to the
principle of maximum entropy the underlying probability distribution is Gaus-
sian with mean the measurement itself and standard deviation the error bar. Let
us also suppose that, for stationary plasma conditions, all variables are statis-
tically independent and so the joint distribution factorizes. Put differently, the
joint distribution for the eight variables mentioned above is assumed to be just
the product of the individual univariate Gaussian distributions. Clearly, this is
a strong assumption and it is imposed here mainly for keeping the calculations
tractable. It is also important to note that our formalism has no difficulties with
the heterogeneous sources of the measurements, coming from different tokamaks
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and possibly with different error bars for essentially the same physical quanti-
ties. The reason is that the error estimates are automatically embedded in the
probabilistic data description.

3.2 Data visualization

A first step towards the identification of patterns in the ITPA database con-
sists of the visualization of the data through a scatter plot in the natural two-
dimensional Euclidean space. Since the original data dimensionality is eight, the
data visualization involves a dimensionality reduction procedure. This is done
using metric multidimensional scaling (MDS), searching for a configuration of
points in the Euclidean plane yielding minimal distortion of all pairwise dis-
tances.

Figure 2 shows two approximately isometric projections of the ITPA data
into the Euclidean plane, obtained via MDS. For Figure 2a (and 2b) the mea-
surement uncertainty was not considered and MDS was carried out on the basis
of simple Euclidean distances in the original data space. On the contrary, the
MDS in Figure 2c is based on GDs between Gaussian product distributions. It
can be clearly noticed that the projections obtained with the GD, which take into
account the measurement error, exhibit considerably more structure compared
to the Euclidean case. In particular, it is much easier to visually discriminate
between the L- and H-mode clusters.

 

 

L mode
H mode

(a)

 

 

L mode
H mode

(b)

 

 

L mode
H mode

(c)

Fig. 2: Two-dimensional projections of the ITPA data using MDS, with indicated
L- and H-mode clusters. (a) Using the Euclidean distance without measurement
error and with the L-mode points on top. (b) The same, but with the H-mode
points on top for better visibility. (c) Using the GD with measurement error.

3.3 Confinement mode classification

We next show the results of a series of classification experiments with two classes
(L-mode and H-mode). The first experiment applies the previously discussed
concepts and methods to a synthetic data set. In a second experiment, actual
measurements are used.



8

Synthetic data. The synthetic data set consisted of two clusters of distribu-
tions on a univariate Gaussian probabilistic manifold. Specifically, a first cluster
of 5000 Gaussian distributions was created, each distribution with its mean µ1,i

and standard deviation σ1,i (the subscript 1 refers to the label of the cluster).
The values µ1,i and σ1,i, in turn, were sampled from a bivariate Gaussian distri-
bution N (µ1, Σ1), modeling the distribution of the cluster points. A relatively
strong correlation was assumed between the mean and standard deviation of the
univariate Gaussians, mimicking the situation in the ITPA database. Similarly,
the 5000 univariate Gaussians in the second cluster were drawn from a bivariate
normal distribution N (µ2, Σ2). We used the following parameters:

µ1 =

[
10
3

]
, Σ1 =

[
16 3.2
3.2 1

]
,

µ2 =

[
7
3

]
, Σ2 =

[
9 2.7

2.7 1

]
.

The samples belonging to both clusters are plotted in Figure 3 (necessarily in a
Euclidean space). The classification task is relatively difficult, due to the strong
overlap of the classes in the feature space.
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Fig. 3: (a) Synthetic data points for a classification problem involving two classes.
(b) The same, but with the points belonging to the second class on top, for better
visibility.

A bag of samples was created, consisting of a random part of 5% of the data,
for which the label was assumed to be known (training samples). The remaining
part of the data was used for testing the classifier. The success rates, credibility
and confidence were calculated and are shown in Table 1. The success rates
are given for each confinement mode and their average is also mentioned. For
comparison, we also performed the experiments using regular kNN classification
(k = 1) and the results are given in a similar fashion in Table 1. It can be
observed that higher rates are obtained with the GD, compared to the Euclidean
distance. In addition, the conformal predictor obtains slightly higher success
rates compared to the kNN classifier. The confidence levels are generally high,
but the credibility is relatively low, owing to the considerable overlap of the
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classes in the configuration space. Finally, we observed that higher values of k
slightly deteriorated the results.

Measured data. The classification experiment for the measured data was im-
plemented in a similar way as the experiment using synthetic data. Again, 5% of
the data was used for the bag of training samples and the results are also shown
in Table 1. Similar trends can be observed as in the experiment with synthetic
data.

4 Conclusion

We have indicated the importance for pattern recognition in fusion data of reli-
able estimates of measurement uncertainty and we have highlighted the funda-
mental character of probability distributions for describing the measurement act.
We have shown the appropriateness of information geometry and the geodesic
distance for visualization and classification of probabilistic confinement data in
the ITPA database. A reliable analysis of error propagation is clearly not only
essential for a correct interpretation of measurement results, but is also very
useful for pattern recognition. Conformal predictors provide an excellent means
for, in turn, assessing the reliability of pattern recognition results for fusion data.
It is remarkable that even the approximate and extremely limited information
in the ITPA database on the underlying probability distribution is beneficial to
the classification task. In our experiments this leads to noticeable but relatively
small differences in classification success rates. However, it is important to note
that the experiments indicate that more precise information regarding the nature
of the error bars, as well as the possibly non-Gaussian probability distribution,
could be very useful for optimizing the classification. Hence, future work will
concentrate on obtaining such information in this and other applications in fu-
sion data analysis. Our results also suggest a strong potential of our framework
for regression, which has an important application for establishing scaling laws
in fusion.
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