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Abstract. Indoor localisation is the state-of-the-art to identify and ob-
serve a moving human or object inside a building. Location Fingerprint-
ing 1s a cost-effective software-based solution utilising the built-in wire-
less signal of the building to estimate the most probable position of a
real-time signal data. In this paper, we apply the Conformal Prediction
(CP) algorithm to further enhance the Fingerprinting method. We de-
sign a new nonconformity measure with the Weighted K-nearest neigh-
bours (W-KNN) as the underlying algorithm. Empirical results show good
performance of the CP algorithm.
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1 Introduction

The purpose of indoor localisation is to identify and observe a user inside a
building. Global Positioning System (GPS) has long been an optimal solution
for outdoor localisation, yet the indoor counterpart remains an open research
problem, because the complex building infrastructure hinders the GPS signal.
In this paper, we applied the Conformal Prediction (CP) algorithm to enhance
an effective indoor tracking solution known as “Fingerprinting method” [1]. We
designed a new nonconformity measure with the W-KNN as the underlying al-
gorithm. To the best of our knowledge, we are the first to apply CP for the
Localisation purpose in general, and for the Indoor Localisation context in par-
ticular. The logical progression of the paper is graphically depicted in Figure 1.
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2 Indoor Localisation Problem

A user can be coarsely identified at room-level or precisely localised at sub-room
level. The finest-grained systems offer up to 3cm accuracy, 95% of the time,
using intensive hardware implementation [9, 10]. However, they demand massive
investment to install and maintain. Balancing between fine-grained tracking and
affordable deployment is desirable for recent approaches, which concentrates
purely on software solutions. This section outlines the recent approaches with
the indoor localisation, as a background to apply Conformal Prediction (CP) in
the next section.

2.1 Coarse-grained Tracking

The most basic indoor localisation comes from the proximity-based tracking
idea. Whenever a user and a base station can communicate, the user’s location
is determined as the location of the station. This method is further enhanced
by dividing the tracking space into grids. The stations are strategically placed
in such a way that each grid block is overlapped by the signal from as many
different stations as possible (Figure 2). Thus, instead of coarsely predicting the
user’s location to be somewhere within the station’s broadcasting range, the
accuracy is improved by interpreting the user’s location to be the overlapped
portion of the stations the user sees. However, many stations must be deployed
to have good signal coverage.

Fig. 2. Overlapping signal of 3 stations

Overall, coarse-grained tracking idea is great for localising user at the room-
level resolution. The next section discusses how to identify the user at much
finer-grained sub-room resolution.

2.2 Location Fingerprinting

Coarse-grained tracking is improved further by analysing the wireless signal
strength, based on the fact that the radio signal attenuates and gets weaker
as it travels in the air. There are two popular measurements to roughly repre-
sent the distance between a user and a station: the Received Signal Strength
Indication (RSSI) and the Link Quality (LQ). However, two distinct locations
might not have a linear relationship in terms of RSSI/LQ and the distance be-
tween them. This phenomenon is caused by the signal being blocked by the
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indoor objects, known as the multipath issue. An elegant solution - the “Lo-
cation Fingerprinting” method has been widely adopted for its simplicity and
efficiency [1]. This method utilises the built-in wireless signal of the building to
survey a signal-to-position mapping database beforehand, which is known as the
off-line stage. By surveying the whole signal variation at each position, Location
Fingerprinting does not calculate the distance from the user to the station based
on the signal strength. Instead, the system applies pattern-matching algorithms
of the real-time signal and the database record to estimate the most probable
position during the on-line stage.

In comparison to proximity-based tracking, this solution offers much higher
fine-grained tracking even with a few stations. The overall accuracy of the system
relies on two factors. First, if the database is poorly constructed during the off-
line stage, the correct estimation will degrade. Second, the prediction algorithm
chosen in the on-line stage will determine how good the estimated position is.
The Fingerprinting method is depicted in Figure 3.
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Fig. 3. Location Fingerprinting Method

2.3 Modelling the Indoor Localisation Problem

Without any loss of generality, let us formally model the Location Fingerprinting
method. A general example scheme can be found in Figure 4, where there are
N = 6 base stations (A-F) deployed in a tracking zone. A single location L
is modelled in a 3-dimensional space as L = (d},dY,d3). The signal strength
RSSI between the user at this location L and all N stations is modelled as an
N-tuple RSSIy, = (s1, $2,...,8n), where s; is the signal strength received from
the station ¢ (1 <7 < N).
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Fig. 4. Location fingerprinting deployment example
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A database B organises the surveyed locations in terms of RSSI and the
corresponding physical co-ordinate as shown in Table 1.

Table 1. Off-line database snapshot

3-D location (Y)| RSSI measurement (X)

(51, 136, 70) |(-57, -41, -62, -5, -86, -81)
(51, 146, 70)  |(-59, -36, -65, -58, -82, -75)
(51, 156, 70) |(-56, -38, -69, -58, -84, -73)
(51, 166, 70) |(-63, -32, -73, -57, -87, -68)
(51, 176, 70) |(-67, -33, -68, -60, -91, -69)

The task is: given an RSSI tuple RSSTinknown = (51, 82,...,8n) of an un-
known location inside the tracking zone, the system compares this tuple with
all recorded fingerprints in the database B to estimate a closest match, which
will tell the correct co-ordinate (d*,d¥,d*) of the unknown location. The main
challenge is that RSSI measurement at the same location can vary from time
to time, and distinct locations might have a similar RSSI combination due to
human movements, humidity, furniture re-arrangement, as well as the multipath
fading of the indoor environment.

3 Conformal Prediction for Indoor Localisation

Having discussed the problem of Indoor Localisation, this section explains and
applies the Conformal Prediction (CP) algorithm to address the specific indoor
problems outlined previously. Particularly, we show why CP is a suitable algo-
rithm for our purpose. The next section will compare its performance with other
traditional algorithms.

3.1 Conformal Prediction

Conformal Prediction is a recently developed machine learning algorithm, which
uses experiences in the past to confidently and precisely predict the outcome of
a new sample [8, 7]. However, what differentiates CP from other similar machine
learning algorithms is the ability to produce prediction region for the given con-
fidence level parameter. It has been mathematically proved that the prediction
region generated by CP is valid in online setting [8]. In other words, for a confi-
dence level at 95%, the correct estimated position is expected to be included in
the prediction region at least 95% of the time. Achieving the prediction result in
such a powerful sense, however, CP demands a relatively weak assumption that
the training database and the new sample to be classified are generated from
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the same distribution independently. CP has been successfully used in many
applications such as medical diagnosis and network traffic classification [2, 3].

In general, CP is determined by some nonconformity measure [8]. The non-
conformity measure is a real-valued function A(B, z) measuring how different a
sample z is to the training database B. Whenever a new sample needs to be
classified, we exhaustedly test every possible label recorded in the training data,
and CP tells us whether to accept that label or not by a test of randomness
for a given significance level. CP uses existing machine learning algorithms such
as nearest neighbours, SVM and neural network as the underling algorithms to
compute a “nonconformity measure” and generate the prediction region [8]. Re-
gardless of the chosen nonconformity measure, the set of locations predicted by
CP is always valid in the online setting. However, the efficiency, in other words,
the tightness of the prediction region is affected. Ideally, it is more preferred to
have as few predictions in the prediction region as possible, without sacrificing
the confidence level too much. Each problem requires a customised nonconfor-
mity measure to fit the purpose, thus opening more research opportunities. In
the next part, we design a new nonconformity measure for the indoor localisation
problem.

3.2 Applying Conformal Prediction into Fingerprinting method

Giving a training database B mapping physical location co-ordinate to correct
Bluetooth signal pattern, and a signal fingerprint at an unknown location, CP
precisely predicts a set of locations in the database, which likely matches this new
signal fingerprint. This can be formulated as a classification problem, because
we divide the physical location into grid points, and the label set is finite. The
signal strengths are regarded as the object set X, and the physical locations are
regarded as the label set Y. We will apply CP using both the old examples -
the training database B = (21, 22,...,2n—-1), and the signal fingerprint of the
unknown location (as a new object for z,). Each sample z; is a combination of the
signal strength RSSI; = (s, s},...,s%) and the co-ordinate L; = (d?,d?,d?).
A prediction region of K examples is R*(Ly, La,...,Lg) C Y.

First, CP demands that the training database and the new real-time sample
must be generated from the same distribution. This assumption holds because
all signals are generated by the same set of base stations independently. Sec-
ond, to evaluate the difference amongst the samples, the ‘Weighted K-nearest
neighbours’ (W-KNN) [4] is chosen as the underlying algorithm to compute the
‘nonconformity score’ . The reason we opted for the ‘Weighted version’ of the
traditional K-nearest neighbours algorithm is because of the multipath problem
of the indoor signals, which cause many locations further apart to have a similar
combination of signal strength. If we treat each of the K neighbours equally, the
final estimated position is shifted towards the wrong neighbours further away. By
considering the “weight”, corresponding to the inverse “signal distance” between
each neighbour and the unknown position, the closer neighbours are prioritised
over further away ones. The outline of the Conformal Prediction algorithm with
W-KNN is presented in Algorithm 1.
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Algorithm 1 Conformal Predictor with W-KNN

Input: Training database B= {z1,...,2 }, significance level €, the new example
zi+1 with known RSSI and N is the number of stations.
Output: Prediction region R.
function DIST_RSSI(P, Q)

fori=1— N do

distance = distance + (s — s5)*

end for

return distance
end function

function WEIGHTED_LOCATION( Ket, 2)
fori=1— K do
weightl = 1/dist_RSST(RSSI;, RSSI.) % Kaet(d2)
weight2 = 1/dist_RSSI(RSSI;, RSSI.)
end for
return weightl/weight2
end function

function NONCONFORM(B, z)
fori=1— N do
if (L; = L.)&dist_RSSI(B;, z) is the smallest then
Ksame = Ksame + 2;
end if
end for
fori=1— N do
if (L; # L.)&dist_RSSI(B;, z) is the smallest then
Kaisp = Kaigp + 2
end if
end for
esame = weighted_location(Ksame, 2)
eqiff = weighted_location(Kaify,z)
return sqrt(esame — €difs)
end function

for y €Y do
zi41 = (RSSI,,y) and include it in B
for z; in B do
a; = noncon form(B, z;)

end for . )
#{j=1,...,l+1l:a; >«
p(y) = 2 T+1 e
end for

Predictive set R = {y : p(y) > €}
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Given a training database B, and a new example with a known signal strength
pattern but unknown co-ordinate, CP assumes the correct position to be each of
the recorded locations in Y. First, we use the Euclidean approach to calculate
the “distance” between two signal strength sequences RSSIp and RSS1g.

dist(RSSTp, RSSIG) = \/(sV — s2)2 4 ... + (s5 — s2)” . (1)

Using Equation (1), we can find K entries (z1,...,2x) in the database B
which have the smallest distances dist(RSSI;, RSSI,) to the unknown location
U, as well as having the same co-ordinate label L; = (d¥,d},d?) with U (1 <14 <
K). Then, a weighted average location is calculated from these K entries, giving
an estimated position esgme = (d%,dY,d?). The below equation is repeated for
each co-ordinate of egqy,e, Where § is a very small constant to prevent division
by zero.

K 1 .
,Z dist(RSSI;, RSST,) +6
di = = : (2)
1

; dist(RSST;, RSST,) + 0

Similarly, using Equation (1), we find another K entries (z1,...,zx) in the
database B which have smallest distances dist(RSSI;, RSSI,) to the unknown
location U, but having different co-ordinate label L; = (d¥,d?,d?) to U (1 < i <
K). Then, another weighted average location is calculated from these K entries,
giving an estimated position eq;rr = (d%,dY, d3).

Our nonconformity measure is the normal Euclidean distance of the two
physical 3-Dimensional locations egqme and eq;f s

0 = dist(€aamer eaigs) = /(A2 — d)2 + (@Y — d4)? + (dz — d3)* . (3)

Using Equation (3), we calculate the nonconformity score «; for every entry
in the database B. Then, we count the number of «; which is larger than the
nonconformity score a, of the new sample location U, and divide the total
number of entries in the database B to have the p-value number [8]. Given
a significance level e beforehand (such as € = 0.05), the current assumed co-
ordinate label is accepted as the label for the new sample, if and only if the
p-value > e.

4 Performance Evaluation

Having shown how to apply CP into the Indoor Localisation context, we perform
experiments to evaluate the performance of CP with K-NN, and that of the W-
KNN alone.



8 Conformal Prediction for Indoor Localisation with Fingerprinting Method

4.1 Conformal Prediction with W-KNN

For off-line evaluation of CP with W-KNN, we use the Bluetooth signal location
database described in [5]. There are 1,052 examples in the training database,
and 260 examples in the testing set. Figure 5(a) shows that CP using W-KNN
as the underlying algorithm outperforms the W-KNN algorithm alone by 8%-
13%. Since CP returns a set of locations, while traditional W-KNN returns
just one estimated location for each test sample, we averaged the prediction
region returned by CP as a single location for comparison. We compared the
performances of CP with the W-KNN algorithm using a Cumulative Distribution
Function (CDF) plot (Figure 5(a)). At a significance level ¢ = 0.13 and K = 16,
the CP with W-KNN has fewer than 1.5m location error in more than 90% of the
time; or it has fewer than 1m location error, 40% of the time. Comparing to the
un-Weighted version of K-NN, CP with W-KNN outperforms CP with K-NN by
25% (Figure 5(b)). This enhancement is similar to what reported for W-KNN
and K-NN without CP [5]. Varying the ¢ and K does affect the accuracy, as
explained separately in the next parts.

To verify the validity of the proposed nonconformity measure, we performed
leave-out-one on-line cross validation with the above training data only. For
L = 1,052 samples, we used L-1 samples for training and the remaining one
for testing. At the same € = 0.13, the error rate was achieved at 10.8%, which
remains valid.

1.0 1.0 1
0.8 4 0.8
X — — -Un-weighted K-nearest neighbours
coF 0.6 - :gm’: W-KNN coF 0.6 Wexghrzd K-Nearest Neighbours

0.4 0.4+
0.2 0.2

f T T T T T T T

00 05 1.0 15 00 05 10 15

Location error (m) Location error (m)
(a) CP (W-KNN) vs. W-KNN (b) CP (W-KNN) vs. CP (K-NN)

Fig. 5. Performance of CP with W-KNN and K-NN

4.2 Confidence Level vs. Prediction Region

To study the credibility of the prediction region, we evaluate different confidence
levels (see Table 2). The CP Error Rate is the percentage in which CP does not
produce a prediction region containing the exact location. For simplicity, we
considered a 2-dimensional database, where the prediction region is presented as
a set of 2D locations concentrated around a peak position. We observed that the
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size of the prediction region decreases as the significance level ¢ increases. When
the € went past 0.38, the prediction region was empty for all testing points.
We had precisely 1 prediction label when e was around 0.29 for 70% of the test
samples. By dividing the training database into 2 equal sets of samples, and used
the second set as a test set and the first set as a training set, we worked out that
a reasonable confidence level was around 87% with a prediction range of 1.5m
- 2m, which is acceptable for tracking users at sub-room resolution. There was
only 3.5% of samples with more than 3.5m error. Increasing the confidence level
to above 90% allows too many samples getting in the prediction region.

Table 2. System accuracy at different confidence levels

Confidence|Significance|Prediction range|Prediction size| CP Error
level level ¢ (Average) (Average) |(Average)
90% 0.10 >2.1m 62 7.2%
87% 0.13 1.5m 29 11.5%
1% 0.29 3m 1 28.7%
61% 0.39 null 0 null

4.3 Calibrating the K Parameter

Finding an optimal K parameter for the W-KNN is challenging. Each envi-
ronment and each signal property require the K parameter to be calibrated
exclusively. In our system, we experimentally found K = 16 to be an optimal
value across all testing points. However, some locations had smaller location er-
ror with different K value. Generally, starting from K = 1, which is equivalent
to 1-nearest neighbour only, the accuracy tends to increase as K increases, up
to a certain threshold (K = 16 in our case). Then, it begins to decrease as K
continues to increase. In our experience, from K = 16 onwards, the performance
is only 7%-10% affected by increasing K.

5 Conclusion and Further Work

This section outlines the main contributions of this paper, and the scheme to
apply CP for tracking a mobile user.

5.1 Contributions

We have demonstrated the application of Conformal Prediction into the Indoor
Localisation context. To the best of our knowledge, we are the first to implement
Conformal Prediction algorithm into the Localisation problem in general, and
the Indoor Localisation in particular. We also designed a new nonconformity
measure with the Weighted K-nearest neighbours as the underlying algorithm.
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Our initial results showed very promising location accuracy, compared to other
traditional algorithms such as KNN and W-KNN algorithms.

5.2 Tracking a Mobile User

Another advantage of CP is that it can work at the on-line learning setting, in
which CP learns from its previous predictions and updates its training database
to improve the accuracy of the next prediction. This scheme perfectly fits the
purpose of tracking an indoor mobile user, since the user cannot jump a long
distance in a short period of time, his next movement is within a certain radius
of his current position.

A challenge to apply CP, however, is the low latency of many tracking sys-
tems. The environment does not always response immediately. Especially with
Bluetooth tracking, the expected delay can be as high as 1.28 seconds, and the
user might have moved away within that time-frame. This is the case of slow
teacher, where immediate feedback cannot be guaranteed. A possible solution is
to evaluate the trustworthy of the received signal at a particular moment. For
example, a signal received in less than 0.5 second would have higher reliability
than that of 2 seconds. We only add the samples with reliable signal measure-
ment into the training database, and discard the others. It is our on-going work
to inspect the improvement of CP for tracking a mobile user, considering the
user movement speeds.
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