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Introduction

The cutting problem of meanders has been introduced by the authors in [START_REF] Panayotopoulos | Meandric polygons[END_REF]. Using meandric polygons, we have also enumerated the set of meanders with given numbers of cuttings, i.e., the numbers of arcs of the meandric curve lying above and below the horizontal line at a given point.

In the present paper, we complete the cutting problem of meanders. At first, we represent a meander or meandric system using Motzkin words, and we specify the subset of meandric Motzkin words, through a necessary and sufficient condition. Additionally, we determine the matching nested sets of a meandric Motzkin word. Afterwards, we establish a bijection between meandric Motzkin words and elevated peakless Motzkin paths. We calculate the cardinality of this class, as well as the number of these paths, passing through a given point. Finally, we confront the two main cutting problems of meanders, as we determine the set of meanders with a given sequence of cutting degrees, or with a given cutting degree.

The two cutting problems can be considered as data-mining problems, since we extract the subset of Motzkin words which are meandric, or the subset of Motzkin paths which are peakless and elevated. Specifically in the field of Bioinformatics, the already mentioned problems have many facets in relation with the M-folding problem and RNA prediction problem, based on the fact that closed RNA structures can be viewed as mathematical objects obtained by abstracting topologically non-relevant properties of planar folding of single-stranded nucleic acids. In the literature, many approximation data-mining algorithms had been constructed, concerning the enumeration of sequential terms of RNA secondary structures, through the bijection with alternative representations such as energy models, plane trees and Motzkin numbers [START_REF] Stein | On some new sequences generalizing the Catalan and Motzkin numbers[END_REF], k-noncrossing set of partitions [START_REF] Jiang | A general edit distance between RNA structures[END_REF], set of nested arcs [START_REF] Jiang | A general edit distance between RNA structures[END_REF], Motzkin paths and Dyck paths [START_REF] Nebel | Combinatorial Properties of RNA Secondary Structures[END_REF].

The following definitions and notation refer to notions that are necessary for the development of the paper. A set S of disjoint pairs of [2n] such that {a,b}∈S {a, b} = [2n] and for any {a, b}, {c, d} we never have a < c < b < d, is called nested set of pairs on [2n]. We denote the set of all nested sets of pairs on 

[2n] by N 2n . Two nested sets S 1 , S 2 ∈ N 2n define a permutation σ on [2n], such that σ(2i -1) = j iff {2i -1, j} ∈ S 1 and σ(2i) = j iff {2i, j} ∈ S 2 , for every i ∈ [n].

Meanders

A (closed) meander of order n is a closed self avoiding curve, crossing a horizontal line 2n times [START_REF] Lando | Plane and projective meanders[END_REF]. We denote by M 2n the set of meanders of order n [START_REF] Panayotopoulos | Properties of meanders[END_REF].

We can extend the definition of meanders to meandric systems with k components, by allowing configurations with k disconnected meanders [START_REF] Lando | Plane and projective meanders[END_REF].

In this paper, every meander of M 2n is represented by a word w ∈ {a, ā, b, b} * , which is called meandric Motzkin word [START_REF] Panayotopoulos | Meanders and Motzkin words[END_REF]. For example, the meander of In order to formally introduce the meandric Motzkin words, following [START_REF] Panayotopoulos | Meanders and Motzkin words[END_REF], we recall that for every pair

v = v 1 v 2 • • • v ℓ and v ′ = v ′ 1 v ′ 2 • • • v ′ ℓ of words in {a, ā} * of length ℓ, we define v • v ′ to be the word w = w 1 w 2 • • • w ℓ ∈ {a, ā, b, b} * , with w i = v i • v ′ i , i ∈ [ℓ], where a • a = a, ā • ā = ā, a • ā = b, ā • a = b.
Note that the words v and v ′ can be uniquely recovered from w using the following relations

v i = a, if w i = a or b, ā, if w i = ā or b, and v ′ i = a, if w i = a or b, ā, if w i = ā or b, for i ∈ [ℓ]
, and we call v, v ′ associates of w.

We define the set of the meandric Motzkin words of length 2n as the set

Ŵ2n = {w : w = v • v ′ , v, v ′ ∈ D 2n }.
Notice that from the word v • v ′ we immediately obtain the word v ′ • v, by interchanging the letters b and b. So, in order to generate the set Ŵ2n it is actually enough to construct half of its elements.

The set Ŵ2n can be partitioned into the classes

W k 2n , k ∈ [n]
, where W 2n = W 1 2n . Each class W k 2n contains the meandric Motzkin words with v, v ′ ∈ D 2n , such that their corresponding nested sets are k-matching.

It has been proved in [START_REF] Panayotopoulos | Meanders and Motzkin words[END_REF] that there exists a bijection between the sets M 2n and W 2n . According to this bijection, every meander µ can be considered as an ordered pair (U, L) of nested sets of pairs, where U (resp. L) is defined by the arcs of the meandric curve above (resp. below) the horizontal line. Since U, L are encoded by two Dyck words, say v and v ′ , then the meandric Motzkin word w = v • v ′ encodes the meander µ.

In [START_REF] Panayotopoulos | Meanders and Motzkin words[END_REF], it was also proved (see Proposition Proof. Let w ∈ {a, ā, b, b} * and let w = pq be a factorization of w. Then, the associates v, v ′ of w, such that w = v • v ′ , are uniquely defined and, furthermore, the factorization of w uniquely defines the factorizations v = rs and v ′ = r ′ s ′ , such that p = r • r ′ and q = s • s ′ . By definition, we have the following relations

|r| a = |p| a + |p| b , |r| ā = |p| ā + |p|b, |r ′ | a = |p| a + |p|b, |r ′ | ā = |p| ā + |p| b , which lead to |r| a -|r| ā = |p| a -|p| ā+|p| b -|p|b and |r ′ | a -|r ′ | ā = |p| a -|p| ā-(|p| b -|p|b). (1)
Note that the above relations also hold, when we set p = w, and in this case we have r = v and r 

′ = v ′ . If w ∈ Ŵ2n , then v, v ′ ∈ D 2n , so that |r| a -|r| ā ≥ 0, |r ′ | a -|r ′ | ā ≥ 0 and |v| a -|v| ā = |v ′ | a -|v ′ | ā = 0.
-|v| ā = |v ′ | a -|v ′ | ā = 0. From the above, we deduce that v, v ′ ∈ D 2n , so that w ∈ Ŵ2n .
The process of determining the matching nested sets U, L that correspond to a meander w ∈ W 2n can be simplified by the following easily verified proposition: Proposition 2 Let U, L be the matching nested sets that correspond to a meander w ∈ W 2n . Then, every pair of U (resp. L) corresponds to a subsequence of w having one of the following forms: aā, a b, bā, b b (resp. aā, ab, bā, bb).

According to Proposition 2, the short pairs of U (i.e., pairs of the form {i, i + 1}) are immediately determined by identifying the positions of the occurrences of the digrams aā, a b, bā, b b in w. Then, by deleting these digrams from w, we obtain a new word w ′ ∈ {a, ā, b, b} * . We repeat the same procedure for w ′ , until all pairs are determined. The pairs of L are obtained analogously.

For example, for the meander w = aa bbabāā bā of Fig. 1, the nested set U is obtained as follows: and by the fact that its corresponding nested sets

U = {{1, 10}, {2, 7}, {3, 6}, {4, 5}, {8, 9}}, L = {{1, 4}, {2, 3}, {5, 8}, {6, 7}, {9, 10}},
which are obtained using Proposition 2, are 2-matching.

Motzkin paths

We recall that a Motzkin path (resp. ). An elevated peakless Motzkin path, is a Motzkin path that never touches the x-axis except at its first and last points and it has no peaks (i.e., no occurrences aā). For example, the path of Fig. 2 peakless Motzkin paths of length 2n.

Given that (see [START_REF] Sloane | The Online-Encyclopedia of Integer Sequences[END_REF], A004148) the number of peakless Motzkin paths of length n is equal to a

(n) = k≥⌈ n+1 2 ⌉ 1 k k n-k k n-k+1
, we easily deduce that the number of paths of P 2n is equal to a(2n -2). Thus, we have the following result.

(i) if a vertex labeled by ξ belongs to the e th level, then ξ ≤ min{e, 2n-e}, (ii) to every vertex with label ξ correspond at most three children, with labels ξ -1, ξ, ξ + 1, on [n]. (iii) at every path of the tree, we can not find three consecutive vertices with labels ξ, ξ + 1, ξ on [n].

Our next effort concerns the number a i,k of paths of P 2n passing through the point (i, k). We already know (see [START_REF] Sloane | The Online-Encyclopedia of Integer Sequences[END_REF], A097724) that the number of left factors of peakless Motzkin paths, having length n and endpoint height k is equal to

T (n, k) = (k + 1) j≥⌈ n-k+1 2 ⌉ 1 j j n-k-j j+k n+1-j .
The number of left factors for the paths of P 2n starting from (0, 0) and ending at (i, k) is given by

T (i -1, k -1) = k j≥⌈ i-k+1 2 ⌉ 1 j j i-k-j j+k-1 i-j
. Furthermore, the number of right factors for the paths of P 2n starting from (i, k) and ending at (2n, 0) is equal to the number of left factors for the paths of P 2n starting from (0, 0) and ending at (2ni, k), i.e., T (2n

-i -1, k -1) = k j≥⌈ 2n-i-k+1 2 ⌉ 1 j j 2n-i-k-j j+k-1
2n-i-j . Thus, we have the following result.

Proposition 5

The number of paths of P 2n passing through the point (i, k) is given by the product k 2

j≥⌈ i-k+1 2 ⌉ 1 j j i-k-j j+k-1 i-j j≥⌈ 2n-i-k+1 2 ⌉ 1 j j 2n-i-k-j j+k-1 2n-i-j .
The paths of P 2n passing through the point (i, k) are obtained by the subtree of the tree of H 2n-1 with η(i) = k.

We denote by P

2n the set of elevated peakless 2-Motzkin paths y of length 2n, with |y| b = |y|b. Since the length of every path w ∈ P 2n and the number |w| a + |w| ā are even, we conclude that |w| b is also even. Therefore, every path y ∈ P Furthermore, the number of peakless Motzkin paths of length 2n with k a steps and 2ν horizontal steps is given by the formula (sequence A089732 in [START_REF] Sloane | The Online-Encyclopedia of Integer Sequences[END_REF])

T (2n, n -ν) = 2n-k k 2n-k k+1 1 2n-k = n+ν 2ν n+ν 2ν-1 1
n+ν , where T (2n, nν) is also the number of paths in P 2n with 2ν horizontal steps, for n, ν > 0.

Finally, since P 2n is partitioned with respect to the number 2ν of b steps, where 1 ≤ ν ≤ n, using the previous formula, we have the following result. 

Cutting problem

For every meander of M 2n and for any i ∈ [2n -1] we consider the vertical line passing through the middle point of the segment (i, i + 1), which we call as the i-line [START_REF] Panayotopoulos | Meandric polygons[END_REF]. The number of arcs of the meandric curve, which are intersected by the i-line is called cutting degree ǫ(i) of the meander at i. For example, for the meander of Fig. 1, we have ǫ = 244466422 (see Fig. 3).

The cutting degrees for a meander w ∈ W 2n are obviously deduced by

ǫ(1) = ǫ(2n -1) = 2 and ǫ(i) =      ǫ(i -1) + 2, if w i = a, ǫ(i -1), if w i = b or b, ǫ(i -1) -2, , if w i = ā, for i = 2, 3, . . . , 2n -2.
We denote by E 2n-1 the set of the sequences ǫ = (ǫ(i)

) i∈[2n-1] satisfying ǫ(1) = ǫ(2n -1) = 2 and |ǫ(i) -ǫ(i + 1)| ∈ {0, 2, -2}, i ∈ [2n -2].
From the previous, we have that 1. To every meander w ∈ W 2n corresponds a unique finite sequence ǫ ∈ E 2n-1 but obviously, the converse does not hold. 2. The sequences ǫ and η, corresponding to a meander of M 2n , satisfy ǫ(i) = 2η(i), i ∈ [2n -1]. 3. For the cutting degree, the following properties hold

(i) 2 ≤ ǫ(i) ≤ 2 min{i, 2n -i}, i ∈ [2n -1]. (ii) |ǫ(i + 1) -ǫ(i)| ∈ {0, 2}, i ∈ [2n -1]. (iii) There exists no i ∈ [2n -2], such that ǫ(i) = ǫ(i + 2) = ǫ(i + 1) -2.
The main cutting problems of meanders are to determine:

a) The subset M 2n (ǫ) of M 2n with given sequence of cutting degrees ǫ.

b) The subset M 2n (i, ǫ(i)) of M 2n with given cutting degree ǫ(i) at i.

For the first problem, i.e. to determine the set W 2n (ǫ) we have that if ǫ is deduced by a given meander then W 2n (ǫ) = ∅, while if ǫ is deduced by a given η ∈ H 2n-1 then W 2n (ǫ) could be empty.

So we start by finding the Motzkin word y ∈ P 2n which corresponds to the sequence η ∈ H 2n-1 , where According to the above, the problem can be confronted by the following procedure:

η(i) = ǫ(i) 2 , for i ∈ [2n - 
Step 1. Find the Motzkin word y which corresponds to a given sequence η ∈ H 2n-1 .

Step 2. Find the tree B 2ν , where ν = 1 2 |y| b . Step 3. Find, using y and B 2ν , the 2-Motzkin words

ω = ω 1 ω 2 • • • ω 2n of {a, ā, b, b} *
for which:

(i) ω i =      a, if y i = u, b or b, if y i = h, ā, if y i = d, for i ∈ [2n]. (ii) |ω| b = |ω|b = ν.
Step 4. Find the associate words r, r ′ for each ω and check if there are Dyck words.

Step 5. Find from the remaining ω, the ones that satisfy the matching property for the corresponding nested sets.

Examples.

The following examples illustrate the above procedure. We will now solve the second problem, i.e., we will determine the elements of the set W 2n (i, ǫ(i)).

For the existence of such meanders, the conditions that ǫ(i) is even and 2 ≤ ǫ(i) ≤ 2 min{i, 2n -i}, for i = 2, 3, . . . , 2n -2, must hold.

If the cutting degree at i for a meander is ǫ(i), then its corresponding path of P 2n passes through the point (i, η(i)) = i, ǫ(i)

2

. It is natural to find the paths of P 2n passing through the point (i, η(i)) and to check which of them satisfy the matching property.

From Proposition 5 we know the number of paths of P 2n passing through the point (i, η(i)) = i, ǫ(i)

2

. These paths of P 2n can be determined by the subtree of the tree of H 2n-1 presented in Section 2.

For example, for n = 3 and ǫ(4) = 2 the number of paths of P 6 passing through the point (4, 1) is equal to 2. Using the corresponding subtree, we obtain the sequences 1 1 1 1 1 and 1 2 2 1 1 hence, Using the above algorithms, we have obtained the following enumeration results: A192927, A207851, A203019, A208357, A208358 in [START_REF] Sloane | The Online-Encyclopedia of Integer Sequences[END_REF].

  Fig. 1 corresponds to the word w = a a b b a b ā ā b ā.

Fig. 1 .

 1 Fig. 1. A meander with w = a a b b a b ā ā b ā.

2 . 1 )Proposition 1

 211 that every word w of Ŵ2n is a 2-Motzkin word of {a, ā, b, b} * , with |w| b = |w|b. More specifically, if w ∈ Ŵ2n , then by deleting the letters b, b (resp. a, ā) in w, a Dyck word (resp. Grand Dyck word) is obtained, or equivalently, we have that |w| a = |w| ā, |w| b = |w|b and |p| a ≥ |p| ā, for every factorization w = pq. Consequently, every word w ∈ Ŵ2n can be considered as the shuffle of a Dyck word in {a, ā} * and a Grand Dyck word in {b, b} * , where the first and last letter of w are a and ā respectively. Obviously, not every word w satisfying the above conditions encodes a meander, or a meandric system. As an example, consider the word a b b b b ā. The next result states the necessary and sufficient condition for a word to be a meandric Motzkin word. For a word w ∈ {a, ā, b, b} * of length 2n, we have that w ∈ Ŵ2n if and only if |w| a -|w| ā = |w| b -|w|b = 0 and |p| a -|p| ā ≥ |p| b -|p|b , for every factorization w = pq.

  In this case, from relations (1), we have that |p| a -|p| ā ≥ |p|b-|p| b and |p| a -|p| ā ≥ |p| b -|p|b, or equivalently |p| a -|p| ā ≥ |p| b -|p|b , while applying relations (1), for p = w, we obtain that |w| a -|w| ā = |w|b -|w| b and |w| a -|w| ā = |w| b -|w|b, or equivalently |w| a -|w| ā = |w| b -|w|b = 0. Conversely, if |w| a -|w| ā = |w| b -|w|b = 0 and |p| a -|p| ā ≥ |p| b -|p|b , then relations (1) imply that |r| a -|r| ā ≥ 0 and |r ′ | a -|r ′ | ā ≥ 0, while applying relations (1) for p = w, we obtain that |v| a

a 1 a 2 b 3 b 4 a 5 b 6 ā 7 ā 8 b 9 ā 10 -→ a 1 b 4 a 5 ā 8 b 9 ā 10 -→ a 1 b 4 b 9 ā 10 -→ a 1 ā 10 Thus,Examples 1 . 1 |p| b -|p|b 0 1 2 2.b b a b ā b b b ā |p| a -|p| ā 1

 145101410110101121 U = {{1, 10}, {2, 3}, {4, 9}, {5, 8}, {6, 7}}. Analogously, we obtain that L = {{1, 8}, {2, 7}, {3, 4}, {5, 6}, {9, 10}}. The meandric Motzkin word w = a b b b b a b ā b ā, does not belong to the set Ŵ10 . This is verified by the following table: a b b b b a b ā b ā |p| a -|p| ā 1 1 The meandric Motzkin word w = a b b a b ā b b b ā, belongs to the set w ∈ W 10 . This is verified by the following table a fact that its corresponding nested sets U = {{1, 10}, {2, 3}, {4, 7}, {5, 6}, {8, 9}}, L = {{1, 2}, {3, 6}, {4, 5}, {7, 8}, {9, 10}}, which are obtained using Proposition 2, are matching. 3. The meandric Motzkin word w = a a b b b b ā b b ā, belongs to the set w ∈ W 2 10 . This is verified by the following table a a b b b b ā b b ā |p| a -|p| ā 1

2 -

 2 Motzkin path) is a lattice path in the first quadrant beginning at the origin, ending at the x-axis and consisting of the steps a = (1, 1) as the up-step, ā = (1, -1) as the down-step and b = (1, 0) as the horizontal step (resp. a, ā and two kinds of horizontal steps denoted by b and b). Every Motzkin path (resp. 2-Motzkin path) is encoded by its sequence of steps, i.e., a word y ∈ {a, ā, b} * (resp. y ∈ {a, ā, b, b} * ). The set of all Motzkin paths (resp. 2-Motzkin paths) of length n is enumerated by the n-th Motzkin number M n = k≥0 n 2k C k[START_REF] Donaghey | Motzkin numbers[END_REF], (resp. the number C n+1[START_REF] Delest | Algebraic languages and polyominoes enumeration[END_REF]

Fig. 2 .

 2 Fig. 2. The elevated peakless Motzkin path with y = a a b b a b ā ā b ā.

  |y| b = |y|b = ν, is uniquely obtained from a path w ∈ P 2n , with |w| b = 2ν, by converting half of the b steps of w into b steps. Conversely, w ∈ P 2n generates 2ν ν paths of P (2) 2n , which cannot be generated by any other path of P 2n .

Proposition 6

 6 The cardinality of P

Fig. 3 .

 3 Fig. 3. A meander with ǫ = 2 4 4 4 6 6 4 2 2.

  1]. From y we determine all the 2-Motzkin words ω ∈ {a, ā, b, b} * with the following properties: The letter h is replaced by the letters b, b such that |ω| b = |ω|b. Obviously, if |y| b = 2ν there exist 2ν ν such words ω. Those words can be obtained, if we properly place the b's and b's in the positions of the b's, with the help of a binary tree B 2ν of height 2ν. In this tree, each left child is labeled by b and each right child is labeled by b, given that the equal number of b's and b's is ν. Thus, the number of possible meanders belongs to the set {0, 2, 4, . . . , 2ν ν }. We notice that the paths of the right subtree of B 2ν can be produced by replacing the b's with b's at the paths of the left subtree. For example, for the Motzkin word y = a a b b a b ā ā b ā of Fig. 2, we have ν = 2 and the following 4 2 = 6 words: a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, which are obtained with the aid of the tree B 4 .

1 ) 2 6 3 =a b b a b ā b b b ā, a b b a b ā b b b ā}. 3 ) 4 2

 12334 For η = 1 1 1 1 1 2 2 1 1 we have y = a b b b b a b ā b ā and ν = 3. From the left subtree of B 6 , we derive 1 10 words. We can easily observe that none of these words satisfies the condition of the fourth step. Hence, for ǫ = 2 2 2 2 2 4 4 2 2, we have that W 10 (ǫ) = ∅. 2) For η = 1 1 1 2 2 1 1 1 1 we have that y = a b b a b ā b b b ā and ν = 3, hence from the left subtree of B 6 , we derive 10 words, only four of them satisfying the conditions of the fourth and fifth step. Hence, for ǫ = 2 2 2 4 4 2 2 2 2, we have that W 10 (ǫ) = {a b b a b ā b b b ā, a b b a b ā b b b ā, a b b a b ā b b b ā, a b b a b ā b b b ā, a b b a b ā b b b ā, a b b a b ā b b b ā, For the meander of Fig. 1 we have η = 1 2 2 2 3 3 2 1 1, y = a a b b a b ā ā b ā, and ν = 2, hence from the left subtree of B 4 , we derive 1 2 = 3 words. We can easily observe that all these words satisfy the conditions of the fourth and fifth steps. Hence, for ǫ = 2 4 4 4 6 6 4 2 2, we have that W 10 (ǫ) = {a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā, a a b b a b ā ā b ā}.

W 6

 6 (4; 2) = W 6 (2 2 2 2 2) ∪ W 6 (2 4 4 2 2) = = {a b b b b ā, a b b b b ā, a b b b b ā, a b b b b ā} ∪ {a a b ā b ā, a a b ā b ā} = {a b b b b ā, a b b b b ā, a b b b b ā, a b b b b ā, a a b ā b ā, a a b ā b ā}

  The sets S 1 , S 2 are k-matching if and only if σ has k cycles. In the case where k = 1, S 1 , S 2 are simply called matching. A word v ∈ {a, ā} * is called Dyck word if |v| a = |v| ā and for every factorization v = pq we have |p| a ≥ |p| ā where |v| a , |p| a (resp. |v| ā, |p| ā) denote the number of occurrences of a (resp. ā) in the words v and p. A word v ∈ {a, ā} * , such that |v| a = |v| ā is called Grand Dyck word. We denote by D 2n the set of all Dyck words of length 2n and it is well known that the cardinality of D 2n is equal to the n-th Catalan number C n = 1

	n+1	2n n .

Proposition 3 The cardinality of P 2n is given by

A list of terms of the above sequence are presented in [START_REF] Sloane | The Online-Encyclopedia of Integer Sequences[END_REF], A203019.

The set P 2n can also be encoded in {0, 1, 2, . . . , n} by the heights η(i) of the vertices (i, η(i)), i = 0, 1, . . . , 2n of the path. For the heights η(i) we have the following properties:

Indeed, the first property holds since each path of P 2n begins at (0, 0), ends at (2n, 0) and it is elevated. The second property is deduced by the fact that the difference of the number of occurrences of a's and ā's at the i-step is at most i, if i ≤ n or 2ni, if i ≥ n. The third property is obvious since at each step we add +1, -1 or 0 to the height of the previous point. The last property is an immediate consequence of the fact that the path is peakless.

By omitting the initial and final terms η(0) = η(2n) = 0, we introduce the finite sequences η = (η(i)) i∈[2n-1] , and their set will be denoted by H 2n-1 .

For example, for the path of Fig. 2, we obtain the sequence

In general, to every path y ∈ P 2n corresponds a sequence η ∈ H 2n-1 with

The converse also holds, since to every sequence η ∈ H 2n-1 corresponds a path y ∈ P 2n with y 1 = a, y 2n = ā and

So, we have arrived at the following proposition.

Proposition 4 There exists a bijection between the sets P 2n and H 2n-1 .

From the above bijection between the sets P 2n and H 2n-1 , we deduce that the cardinality of the set H 2n-1 is given by the formula of Proposition 3.

The paths of P 2n can be obtained by their corresponding sequences of H 2n-1 following the above properties of the heights η(i).

This is done with the aid of a suitable tree of height 2n -1, in which each vertex is labeled by an integer of [n], so that: