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Abstract. In this work, we study the behavior of a feature selection algorithm 

(backwards selection) using random forests, by fusing multi-modal data from 

different subjects. Two separate datasets related to cutaneous melanoma, ob-

tained from image (dermatoscopy) and non-image (microarray) sources are 

used. Imputations are applied in order to acquire a unified dataset, prior the ef-

fect of machine learning algorithms. The results suggest that application of the 

normal random imputation method acts as an additional variation factor, help-

ing towards stability of potential recommended biomarkers. In addition, micro-

array-derived features where consistently favorably selected as best predictors 

compared to image-derived features. 
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1   Introduction 

Integration of multi-modal and multiscale data is of known importance in the context 

of personalized medicine and the electronic health records. Much effort is being put 

into assessing the appropriate data fusion schemes which could utilize the most of the 

available information contained in these datasets. In the context of Virtual Physiolog-

ical Human (VPH) vision, an integrated framework should make it possible to inter-

connect predictive models defined at different scales, with different methods, and 

with different levels of detail, into systemic networks that solidify systemic hypothe-

ses [1]. 

Information fusing algorithms can be categorized as being either combination of 

data (COD) or combination of interpretations (COI) [2]. COD methods aggregate 

features from each source into a single feature vector before classification, while COI 

methods classify the data from each source independently and then aggregate the 

results. Rohlfing et al compared the two methods to combine information sources in 

different biomedical image analysis applications, while Haapanen and Tuominen [3]  

followed a COD approach for the combination of satellite image and aerial photo-

graph features for forest variable estimation. On the other hand, Jesneck et al [4], on a 

COI path, optimized a decision-fusion technique to combine heterogeneous breast 

cancer data. Lee et al [5], proposed a Generalized Fusion Framework (GFF) for ho-
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mogenous data representation and subsequent fusion in the meta-space using dimen-

sionality reduction techniques. The meta-space is created by projecting the heteroge-

neous data streams into a space where these scale and dimensionality differences are 

alleviated. Such meta-space representation approaches, which transform data into a 

homogeneous space allowing for direct combination of modalities, are embedding 

projections and kernel space projections [6]. 

GFF algorithms assume that we have raw data from sources , 

where   represent the  observations in a study and  represents one of the 

 data sources, . While this could be the case for specific studies or 

electronic patient records, most available databases contain single modal data from 

different patients. The number of observations from each source  differs. Nonethe-

less, the modalities from each source reflect information regarding the same disease, 

and it is an open question how these interconnections could be exploited. 

In this work, we study the behavior of a feature selection algorithm (random for-

ests) as obtained by fusing multi-modal data from different subjects. We refer to these 

data as separate datasets. The integration of separate datasets referring though to the 

same disease, is an innovative approach which can contribute significantly towards 

the extraction of better biomarkers involved in various diseases. 

1.1   Cutaneous Melanoma 

Cutaneous melanoma (CM) is considered a complex multigenic and multifactorial 

disease that involves both environmental and genetic factors. It is the most life-

threatening neoplasm of the skin, and its incidence and mortality have been increasing 

worldwide. CM tumorigenesis is often explained as a progressive transformation of 

normal melanocytes to nevi that subsequently develop into primary cutaneous mela-

nomas (PCM). However, the molecular pathways involved have not been clearly elu-

cidated, although considerable progress has been made [7]. Despite the success of 

genomics in defining genomic markers or gene signatures for other kinds of cancers 

(such as breast cancer), there has been no similar progress related to malignant mela-

noma. 

The microarray studies that have been performed on CM by different groups, used 

different microarray platforms in highly heterogeneous patient cohorts and pathologi-

cal sample collections [8]. These differences make comparisons quite difficult and 

result in a reduced total cohort size and diversity, since independent cohorts from 

different studies are hard to be summed [9]. 

Regarding the clinical diagnostic methods for diagnosis of melanoma, there are 

several standard approaches for analysis and diagnosis of lesions. For example the 

Menzies scale, the Seven-point scale, the Total Dermoscopy Score based on the 

ABCD rule, and the ABCDE rule (Asymmetry, Border, Color, Diameter, Evolution). 

In these methods, digital images can serve as a basis for the medical analysis and 

diagnosis of lesions under consideration. As there is a general lack of precision in 

human interpretation of image content, advanced computerized techniques can assist 

doctors in the diagnostic process [10]. A review of image acquisition and feature ex-

traction methods utilized in the literature regarding existing classification systems can 

be found in [11]. 



1.2   Feature selection 

Feature selection techniques do not alter the original representation of the variables, 

but merely select a subset of them, in contrast to other dimensionality reduction tech-

niques like those based on projection (e.g. principal components analysis) or com-

pression (e.g. using information theory). Thus, they preserve the original semantics of 

the variables, offering the advantage of interpretability by a domain expert [12]. 

The main objectives of feature selection are: a) to avoid overfitting and improve 

model performance, b) to provide faster and more cost-effective models and c) to gain 

a deeper insight into the underlying processes that generated the data. 

Regarding the used feature selection procedure in this study, a wrapper type tech-

nique was applied (sequential backward elimination) using the random forest algo-

rithm [13], which utilizes ensembles of decision trees. In addition, a multivariate filter 

was used as an option to reduce the co-linearity among features of the microarray 

dataset, prior to the application of the wrapper method. This filtering together with the 

imputation procedure, is a departure from a merely COD method, towards a GFF 

approach, although here no further transformation is applied to the feature vectors. 

The random forest algorithm, among other ensemble learning methods, is reported 

to be successful in variance reduction which is associated with overfitting [14]. In 

addition, we utilized the option of stratifying the bootstrapped samples with equal 

number of cases per class [15]. This is compatible with the Balanced Random Forest 

(BRF) approach which is computationally more efficient with large imbalanced data, 

since each tree only uses a small portion of the training set to grow. Additionally is 

less vulnerable to noise (mis-labeled class) than the Weighted Random Forest (WRF) 

were a heavier penalty is placed on misclassifying the minority class [16]. BRF alle-

viated the class imbalance problem which is a common problem in disease diagnosis 

where the disease cases are rare as compared with normal populations. The recogni-

tion goal is to detect people with the disease, thus a favorable classification model in 

one that provides a higher identification rate on the disease category. 

2   Multi-Modal Data Fusion of Separate Datasets 

All the programming of the workflow was implemented in R [17]. 

 

Image data 

The dataset derived from skin lesion images contained 972 instances of nevus skin 

lesions and 69 melanoma cases. Three types of features are analyzed: Border Features 

which cover the A and B parts of the ABCD-rule of dermatology, Color Features 

which correspond to the C rules and Textural Features, which are based on D rules. 

The total number of features assessed was 31 from the initial set of 32 (one feature 

was removed as having zero variation across the samples). The relevant pre-

processing which produced all the features is described in [18]. 



Microarray data 

The dataset regarding microarray data was taken from the Gene Expression Omni-

bus (GEO) [19], GDS1375. In that experiment, total RNA isolated from 45 primary 

melanoma, 18 benign skin nevi, and 7 normal skin tissue specimens were analyzed on 

an Affymetrix Hu133A microarray containing 22,000 probe sets [20]. The dataset 

contains the values of MAS5-calculated signal intensities after global scaling the av-

erage intensity to 600. 

The data retrieval from GEO was performed using GEOquery [21] and processed  

with limma [22] R packages from the Bioconductor project [23], following the main 

steps as listed in the R script produced by the GEO2R tool [24]. The input contrast 

levels were differentially expressed genes between melanoma versus skin and mela-

noma versus nevus. 1701 genes from a linear model fit were extracted setting FDR for 

multiple testing adjustment, p-value 0.001 and 2-fold changes as thresholds. As a 

normalization step, after taking the logarithms of the values, the mean values of nor-

mal skin were subtracted from the rest of the data, and the normal skin columns were 

removed from the table. 

Data integration 

The two tables containing the microarray and image data were merged to one block 

sparse matrix with dimensions 1104 rows x 1734 columns, marking the not available 

values as NA. The rows contain the microarray and image data samples, and the col-

umns microarray and image features plus one binary response variable (0 for nevus 

and 1 for melanoma). 

Missing values imputation 

Although there are several software packages implementing advanced imputation 

methods [25], they could not be utilized in this unified dataset where the multi-modal 

data have only the class variable column as complete. In this study we considered two 

simple imputation methods: mean value imputation per class and random normal 

imputation per class. In the second case, after taking the mean value (m) and standard 

deviation (sd) of each feature (ignoring the NA values) per class, we randomly filled 

the missing values sampling from an assumed normal distribution having as parame-

ters: (m, sd). 

For the efficient execution of the imputations, the plyr R package was used [26]. 

3   Feature Selection 

The setup of the in-silico experiment involved the examination of the reported select-

ed feature subsets when: a) applying a co-linearity removal filter to the microarray 

dataset prior to the execution of the selection algorithm (marked as: Fil-

tered/Unfiltered), and b) setting a 95% tolerance threshold to the best obtained per-



formance criterion (Tolerance/Best). The tolerance in the performance method allows 

the selection of a subset size that is small enough but without sacrificing too much 

performance, and can produce good results where there is a plateau of good perfor-

mance for larger subset sizes. The combination of these two parameters (prior filter-

ing and tolerance threshold) resulted in the examination of four distinct cases. 

For each of the four cases, a 10-fold cross-validation procedure was performed 

with 50 repetitions on four different datasets: only the microarray data (marked as 

om), the unified dataset with mean imputations (m.i), the unified dataset with normal 

random imputations for the NA values (nr.i), and only the image data (oi). In all the 

repetitions, the nr.i dataset was imputed anew, thus providing more sampling varia-

tions. Prior the application of the repetitions, the datasets were centered and scaled as 

a pre-processing step on the predictors. 

The feature selection workflow was setup using the R package caret (classifica-

tion and regression training) [27]. The search algorithm employed in caret uses the 

recursive feature elimination method on predefined sets of predictors, and in this 

study the length of the variable subsets was defined as [1 to 10, 15, 20, 25, 30, 35, 40, 

45, 50], except for the image only data where the subsets were [1 to 10, 15, 20, 25, 30, 

31]. 

For each of the 50 repetitions, the optimum subset number of predictors was rec-

orded, along with the names of the predictors, and the performance attained. As per-

formance metric the area under the ROC curve (auc) was set. The auc of a classifier is 

equivalent to the probability that the classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance. This is equivalent to the 

Wilcoxon test of ranks, and also it is closely related to the Gini coefficient [28]. 

4   Preliminary Results and Discussion 

The results of the trials are depicted at Fig. 1. 

Regarding the median value of optimum performances, in all cases an almost per-

fect score was achieved in the case of the unified datasets. Only-image dataset (oi) 

exhibited the lower performance and the higher subset numbers. 

The application of the co-linearity reduction filter reduced the dispersion of the op-

timum subset number. Furthermore, the execution time in the reduced dataset was 4 

times faster, analogous with the remained feature number after the use of the filter 

(482 from the initial 1701 differentially expressed genes in the microarray dataset). 

The results on the imputed datasets exhibited also a minimization of the dispersion 

of the subset numbers. In addition, the two imputed datasets presented almost the 

same distribution. Nevertheless this similarity ended when we compared the gene sets 

retrieved in each case. As shown at Tables 1 and 2, the normal random imputation 

dataset (nr.i) resulted in a considerably more stable selection of features comparing to 

the mean imputation unified dataset (m.i). The same pattern is observed for the unfil-

tered cases too.  In the unfiltered cases, the nr.i dataset exhibited far better stability in 

the predictors’ selection even to the microarray-only dataset. The features resulted  



 

Fig. 1. Density plots of the optimum features number from 50 repetitions. The four datasets are: 

only microarray (om), mean imputation (m.i), normal random imputation (nr.i) and only image 

(oi). In parentheses are the medians of the obtained performances (auc) for each dataset.  

from the mean imputation unified dataset presented high instability, and though 

proved as the least preferable option to the imputation procedure.  

 

The deficiency of using only performance indicators for marker discovery has been 

noted in the literature [29] and this is consisting with the findings of this study. The 

measure of stability of feature selection results with respect to sampling variations 

provides higher confidence in discovered biomarkers. But in this case, the imputations 

with the normal random method acted on the unified dataset as an additional variation 

factor. This additional variation resulted in the retrieval of smaller optimum subsets of 

features, consisting of fewer re-occurring genes as possible biomarkers. 

 

Notably, none of the image-derived features were present to the top selected fea-

tures of the unified datasets, as seen at Tables 1 and 2. In order to assess the im-

portance ranking of image-features, 50 repetitions of the random forest algorithm 

were run for the unified dataset imputed by the two methods (m.i and nr.i). Each of 

the resulted 50 lists of features was sorted by decreasing importance. Next, the posi-

tions of the image-features in the lists were collected and the density plots for the 

filtered/unfiltered cases are shown at Fig 2. Random forest avails four importance 



measures [30] and in this case the "MeanDecreaseGini" criterion was chosen. The 

results using the other three criteria were similar. 

 

Table 1.  Top features (genes) selected after 50 repetitions of the 10-fold cross-validation mod-

eling for the Best-Filtered case in each of the three datasets.  

Feature 

 (om) 

Freq. 

(om) 

Feature  

(m.i) 

Freq. 

(m.i) 

Feature 

 (nr.i) 

Freq. 

(nr.i) 

CDC37L1 47 NEIL1 4 CDC37L1 49 

RRAS2 34 IFI16 3 RRAS2 2 

SLC7A8 18 CTDSPL 2   

HPCAL1.1 14 DLK2 2   

IFT81 8 NADK 2   

SSBP2 6      OR2A9P 2   

GIPC2 5 PIK3C2G 2   

CTDSPL 3     

 

Table 2.  Top features selected at the Tolerance-Filtered case.  

Feature 

 (om) 

Freq. 

(om) 

Feature 

 (m.i) 

Freq. 

(m.i) 

Feature 

 (nr.i) 

Freq. 

(nr.i) 

CDC37L1 45 PARD3 5 CDC37L1 40 

RRAS2 25 ACOT9 3 RRAS2 6 

SLC7A8 17 CYP4F3 3 HPCAL1.1 2 

HPCAL1.1 10 FZD10 3 SSBP2 2 

IFT81 6 NEIL1 3   

GIPC2 5 ACADL 2   

CTDSPL 4 MTUS1 2   
NEIL1 4 PER3 2   
SSBP2 3 PPP2R3A 2   
SMAD5OS 2 SMAD5OS 2   

 

The majority of the image-features ranked as less important when compared to the 

microarray features. This implies their lower informative power with respect to the 

total observed variation in the integrated dataset, probably due to the fact that tech-

nical covariance but also size, leave their fingerprint in the integration process, de-

spite the application of normalization techniques, thus inflicting their effect on the 

response vector of the disease. When using the nr.i method however, a better perfor-

mance of the image features is observed, which is captured as their more frequent 

presence in higher positions of the classifier’s vector, in discord with the results of the 

m.i method. Mean imputation process resulted in scoring all image features in the 

lowest positions of the complete feature set, considering  them less informative com-

pared to the microarray features. In this sense, it is obvious that the normal random 

imputation method yields a more impartial effect, as can be surmised from the im-

proved score of the image related features, providing practical value to its application 



in the integration process, as the simulated dataset thus derived, is a more realistic 

representation of the real one. 

 

 
 

Fig. 2. Density plots of importance ranks for image-derived features (ranking in the x-axis is in 

decreasing order of importance). 

This is the first attempt, to the best of our knowledge, to assess feature selection 

algorithms on integrative datasets retrieved from separate sources (modalities) dis-

secting the same pathological mechanism. 

As future work we intend to examine a broader and more versatile in its mathemat-

ical origin, set of imputation methods for heterogeneous data integration from sepa-

rate sources (data perturbation), as well as the application of different data-mining 

algorithms (function perturbation). 
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