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Abstract. In this contribution, we relate the question of discernability
of sound structures to the properties of the underlying analysis tools. In
particular, we argue, that classical tools that are mainly used in sound
processing and lead to features as prominent as the MFCC may be re-
placed by more accurate methods that are based on rather recent math-
ematical signal processing tools. In particular, we focus on adaptive rep-
resentations that lend themselves to efficient computation and, on the
other hand, on sparsity-promoting methods which are able to adapt to
the structures present in a particular signal class.
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1 Introduction

Sound signals play a central role in human life and the manner sound is per-
ceived is highly sophisticated, complex and context-dependent. Since the amount
of sound data that are automatically stored, searched and processed, grows dra-
matically, there is also a growing need for understanding the inherent structures
of sound and their implications for human listeners. In particular, in many ap-
plications, one may be interested in distinguishing between what may be called a
”sound-object” as opposed to more textural sound components that may rather
be understood as an acoustical background.

Human listeners tend to perceive sound in a structured manner, with the
ability to focus and de-focus. Whether a particular event is experienced as a
relevant sound structure as opposed to background structures seems to depend
both on cultural and educational background, in the sense of what Smalley calls
"experiential basis”, cp. [14], that may be shared by a group of listeners. For
example, a dense orchestral sound may be perceived as textural sound but also
as a sequence and mixture of more compact, plastic, structures, that may be
denoted as sound objects. The same observation holds true for environmental
sounds and, even more so, for acousmatic music. From a certain point of view,
the perception of sound components as background (textural) sound or object
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(compactly structured) sound, therefore depends on the "zoom” the listener
wishes to adopt or unconsciously assumes.

Here we propose that a sound component may be called ”sound object” if
it can be given a certain compact, sparse representation in a dictionary that
has a perceptual interpretation, e.g., in a time-frequency dictionary. We will
investigate this idea by means of describing some of the most important technical
signal processing tools that lie at the base of most modern music information
retrieval (MIR) methods. Now, while a lot of high level analysis is pursued and
developed in the MIR community, some of the basic techniques are rarely called
into question. However, the tools that provide the input for higher level analysis
may been seen as a zoom chosen by the spectator and their influence should not
be neglected.

Ideally, an analysis tool should be able to render a representation that al-
lows for visual display reflecting a user’s acoustical impression. In particular,
sound objects should be visible as distinct from a more textural background.
In this contribution we will describe several newly designed analysis tools, that
render more sophisticated representations of sound signals than classical rep-
resentations such as the short-time (or sliding window ) Fourier transform. In
particular, firstly, we show how adaptivity in the transformation parameters can
sharpen the visual display while assuring a perfect connection between signal
and representation in the sense of invertibility. Secondly, we show how various
Bayesian coefficient priors enable us to highlight particular structures by means
of informed analysis.

In the sense of reproducible research, all software involved in the production
of the simulation examples is available, along with many additional examples
and sound files, on the webpages mentioned in Section 2.2 and Section 2.3.

2 Technical tools

We now describe the tools that are at the heart of any sound analysis. While
usually the methods are seen as FFT-based time-variant analysis, we take a
mathematical point of view and describe the involved dictionaries as frames, [3].
It will turn out that this slightly more abstract point of view opens the door to a
myriad of useful generalizations of the classical analysis of sound via windowed
FFT.

2.1 Gabor frames: Analysis and Synthesis

Given a discrete sequence of real or complex numbers, z[n], n € Z, as well as
a, usually compactly supported, window function ¢[n], n € Z, the short-time
Fourier transform (STFT) of z[n] is given, for k € Z and w € [-0.5,0.5] by
Vox(k,w) =307 xz[n]p[n — kle 2™ In practice, a subsampled version of
the STFT is applied. Also, since the window ¢ has finite length I, we deal with
a finite number of frequency bins. Hence, the result of the sampled STFT, also
called Gabor transform, [7], is a matrix of size N x M, where N is the number
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of time shifts by a time-constant, or hop-size, a considered. M is the number of
frequency bins, hence the length of the FFT, given by [/b, b being the frequency-
shift constant.

To gain a more general point of view, it is convenient, to consider the coefficients
V,a(ka, mb) obtained from sub-sampling the STFT, as inner products between
the signal x and time-frequency-shifted windows. For z and y € CL, the inner
product is defined as (z,y) = ZL_é z[n]y[n]. Further, we let Tpx[n] := x[n — k]
be called translation operator (time shift) by k and M;z[n] := ¢* 2" z[n],l € Z
be called modulation operator (frequency shift) by .

The family

n=

Pk,m = MinpTrag (1)

form=0,....M —1and k=0,...,K — 1, where Ka = Mb = L, is a Gabor
analysis system. The theory of frames gives the appropriate framework for anal-
ysis using Gabor systems: A set of Gabor analysis functions ¢, in L*(R) is
called a Gabor frame, if there exist constants A, B > 0, so that, for all f € L%(R)

AlFIP < > Whewm) < BIFIP. 2)

k,mELXZ

This inequality can be understood as an “approximate Plancherel formula”,
characterizing the preservation of energy by the transform and leading to the
invertibility of the frame operator S:

Sf = Z <f7 @k,m)‘pk,m (3)

k,mELXL

The invertibility of S leads to the existence of so-called dual frames, yielding
convenient reconstruction formulas via the canonical dual frame @y, rm,, given by
Ok,m = S_lgok,m. For Gabor frames, the elements of the dual frame S‘lgpkm
are generated from a single function (the dual window ¢), and will hence be
denoted by (Gk,m)-

Hence,

F=S871SF = (f. 0km)Prm (4)

In the finite discrete case of z € CL a collection {¢y .} € CF with N = KM
can only be a frame, if L < N and if the matrix G, defined as the N x L matrix
having @, as its (n+ kM) —th row, has full rank. Then, the condition number
of the frame operator is given by the fraction of the maximum and minimum
eigenvalue, respectively. If A and B differ too much, the inversion of the frame
operator is numerically unstable.

In applications in audio signal processing, redundancy of 2, 4 or even higher is
common. Further, the effective length of the window ¢ equals or is shorter! than
the FFT-length. In this special situation, the frame operator takes a surprisingly
simple form:

! E.g. in the case of zero padding.
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From the definition of the frame operator a straight-forward calculation (see [6]
for details) shows that the single entries of S are given by
g _ {sz:ol Thagli|Tiaglil if | —i| mod M =0 )
i =

0 else

Since M > I, where [ is the window-length, j = i is the only case for which
|7 — 4] mod M = 0 holds and g(j) and g(i) are both have non-zero. Therefore,
the frame operator is diagonal and the dual window ¢ is calculated as

Bln) = gln)/ (M S TralglnlP)
k=0

For a tight frame, the frame operator equals identity up to a constant factor.
This is as close as we may get to an orthonormal basis. For any given Gabor
frame, a corresponding tight frame can be found and, as for dual frames, by a
surprisingly simple formula in many situations of practical relevance.

Since S is positive and symmetric we may write

Z(ﬂ% Ohym)Ph,m = S Sz =S"285 2z

k,m
_1 _1
=) (@, ST okm)S 2 Phm = D (T, Pk ) Pl
k,m k,m

In analogy to the dual window and under the same conditions, we may deduce
that the tight window ¢! corresponding to a given window ¢ and the time
constant a can be calculated as:

Remark 1. One may ask the question, why the consideration of a dual system
that guarantees reconstruction has any relevance for analysis. For example, the
constant-Q transform has been used with success without being an invertible
transform, cf [2]. However, without a reconstruction system at hand, we lack a
precise connection between our analysis and the original signal. We may have
lost important parts of the signal, we may not correctly interpret the coefficients,
if the reconstruction window is very different from the analysis window. In this
sense, the tight system generated by ¢! = S _%cp bears an important advantage
since it is closest to the original window among all functions h generating a tight
frame for lattice constants a and b, cf. [10]. Hence, ¢! combines the advantage
of using the same window for analysis and synthesis with optimal similarity to
a given analysis window. At the same time no “correction” by multiplication
with a gain function is necessary after processing, which makes processing more
efficient and the results less ambiguous in the case of modification of the synthesis
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coefficients. This property becomes even more relevant, if the analysis coefficients
are modified in some sense before resynthesis, e.g. in the case of time-frequency
masking. In this case, the choice of a tight frame for analysis and synthesis
minimizes the error arising from sampling in the coefficient domain. In the case
of sparse coefficients, which we consider in the next section, tight frames also
allow for a reliable interpretation of the obtained coefficients as well as satisfying
reconstruction from these coeflicients.

Due to these remarks, tight Gabor frames will be used in our subsequent
experiments. We now turn to an important generalization of the time-frequency
dictionaries introduced as Gabor frames: we can achieve adaptive frames by
allowing for changing windows in either time or frequency. If some mild side-
conditions are fulfilled, the analysis and reconstruction is similarly straight-
forward and computationally efficient as in the regular case.

2.2 Adaptivity

While in classical Gabor frames, as introduced in the previous section, we obtain
all samples of the STFT by applying the same window ¢, shifted along a regular
set of sampling points and taking FFT of the same length. Exploiting the concept
of frames, we can achieve adaptivity of the resolution in either time or frequency.
To do so, we relax the regularity of the classical Gabor frames, which leads to
nonstationary Gabor frames (NSGT): For (k,m) € Ins x Ips, we set

(1) ©k,m = My, pr for adaptivity in time.
(i) @k,m = Tka,, pm for adaptivity in frequency.

A detailed mathematical analysis of NSGTs is beyond the scope of this contri-
bution, but we wish to emphasize, that both analysis and synthesis can be done
in a similar manner as in the regular case, that is, a diagonal frame operator
can be achieved and perfect reconstruction is guaranteed by using either dual or
tight windows. For all details, see [15,1].

Examples and interpretation of adaptive transforms We now illustrate
the influence of adaptivity on the visual representation of audio signals. First,
an analysis of a short excerpt of G. Ligeti’s piano concert is given. This signal
has percussive onsets in the piano and Glockenspiel voices and some orchestral
background. Figure 1 first shows a regular Gabor (STFT) analysis and secondly,
a representation in which the percussive parts are finely resolved by an adaptive
NSGT.

Our second example is an excerpt from a duet between violin and piano,
by by J.Zorn. We can see three short segments: A vivid sequence of violin and
piano notes followed by a calm violin melody with accompanying piano and
finally an inharmonic part with chirp component. For this signal, we show an
FFT-based Gabor transform (STFT) and an NSGT-based constant-Q transform
in Figure 2. In both cases the display of the frequency axis is logarithmic. It is
obvious, that the NSGT, with adaptivity in the frequency domain, provides more
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accurate resolution of the harmonic components, in particular in low frequency
regions. Note that with MFCC, very popular features used in speech and music
processing, [12], are obtained from an FFT-based STFT, using a logarithmic
spacing of the frequency bins, while the analysis windows are linearly spaced.
Given the new opportunities offered by adaptive NSGT it may well be worth
reconsidering the underlying basic analysis.

Ligeti - dB scaled Gabor transform Ligeti - dB scaled NSGT

frequency (Hz)
frequency (Hz)
w
o
o
o

4 45 5 55 6
time (seconds) time (seconds)

Fig. 1. Ligeti - Regular and nonstationary Gabor representations.

Returning to the quest for salient ”sound objects” that stand out from their
background, these examples show well, that the analysis tool influences, even by
visual inspection, what may be considered as such. In particular, in the Ligeti
example, the zooming-in onto the percussive onsets makes these components
more distinguishable from their background. On the other hand, the harmonic
parts require less coefficients, since they are represented by longer windows. It
should be noted that, for further processing, e.g. the extraction of percussive
components, this kind of representation is beneficial.

Even more impressively, in the low frequency components of the second example,
the single harmonics are not resolved at all in the FFT-based transform, while
the NSGT-transform clearly separated them from a soft noise-floor background.
Again, apart from pure visual evaluation, frequency separation of single compo-
nents is necessary for applications such as transposition, cp. [15].

More visual and audio examples for adaptivity in both time and frequency can
be found on http://www.univie.ac.at/nonstatgab/.
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Kafziel - dB-scaled regular Gabor transform spectrogram Kafziel - dB-scaled CQ-NSGT spectrogram
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Fig. 2. Time-frequency representations on a logarithmically scaled frequency axis: Reg-
ular Gabor spectrogram (left) and constant-Q NSGT spectrogram (right).

2.3 Sparsity

If we are convinced, that the signal components of interest have a sparse, at
least approximative, representation in the dictionaries we use, then we may look
for relevant coefficients only. A sparse approximation has a small number of
nonzero elements, while still giving a satisfying representation and reconstruction
of a signal or a certain signal component. One way to enforce sparsity is to
choose an expansion of x such that as many coefficients as possible are zero.
Mathematically, however, minimization of an ¢'-constraint on the coefficients
yields explicit solutions and fast algorithms as well as similar solutions.? In the
present situation, we are going to minimize the following expression for a tight
Gabor frame with elements go’,fc’m:

A@) = 1) ckm@hom — &3 + pllc]e (6)

k,m

where [[c[[gr = 37, [ckm] is the ¢t-norm of the coefficient sequence and & =
x +n is the observed signal, possibly contaminated by noise n. For orthonormal
basis (instead of frames), the problem formulation in (6) leads to a well-known
soft-thresholding solution. However, in the over-complete situation of frames,
the situation is more intricate and an iterative procedure has to be applied. To

2 Note, that it has been proved that certain situations ¢!-minimization in fact yields
the optimally sparse solution, see [5].
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find the solution of (6), we then consider the sequence of iterates

" =S, (c" !+ Ve (& - Vf;tc”_l)), (7)
where ¢" are the Gabor expansion coefficients, obtained in the n'” step, c° is
arbitrary and the thresholding operator S, is given by

Su(z) = arg(2)(l2] — )" (®)

According to [4], the corresponding iterative algorithm converges to the solution
of (6). The corresponding algorithm is known under the name ” The Lasso”.

Structured Sparsity The ¢'-norm acts independently on each coefficient and
therefore does not take the correlations between time-frequency coefficients which
are typical for most natural audio signals into account. Coefficient correlation
will be particularly pronounced in coefficients contributing to one sound-object.
It was therefore suggested in [11] and successfully studied for the denoising of
music signals in [13], to introduce neighborhood-systems to emphasize the struc-
tural connections in time-frequency representations. This idea is formalized by
replacing the thresholding operator (8) by a component-wise weighted thresh-
olding as

_ K +

R SwwPA T L )

where U, is the environment of each coefficient ¢, that is relevant for the weight-
ing process and v, is the sequence of corresponding weights.

This new, neighborhood-smoothed thresholding operator replaces S, in the
iteration (7), leading to what we call weighted group Lasso (WGL). The neigh-
borhoods’ shapes are parametrized by their size and corresponding weights. For
the experiments presented here, we allowed for rectangular domains with either
uniform (i.e. rectangular) or triangular (i.e. “tent”-like) weightings. Various other
shapes and weights may incorporate prior knowledge about the signal of interest,
for example, neighborhoods consisting of several non-connected sets correspond-
ing to expected harmonic structures. The shapes do not necessarily have to be
symmetric, since the energy of most audio signals is typically not symmetrically
distributed around its peaks either. This observation can be exploited as shown
next.

Examples and interpretation of structured sparsity Consider Figure 2.3,
where the iterated WGL-shrinkage results with four different neighborhood-
shapes, each only extending in time, are compared (based on the analysis Gabor-
frame with redundancy 4).

The different neighborhood shapes lead to different sparse views of the partic-
ular signal component, giving the extracted component perceptually distinguish-
able appearances. Whereas the symmetric neighborhoods captures signal energy
both before and after the attacks, the asymmetric neighborhoods emphasize
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components before (resp. after) the attacks. The orientation of the neighbor-
hood therefore systematically promotes the preservation of different temporal
segments of the signal.

WGL-rectangular

50

100

150

100

200
WGL-Simplet WGL-Telpmis

2501

300

350

20 40 B0 0 40 60 20 40 60 20 40 60

400

L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550

Fig. 3. Iterated WGL shrinkage results for different shapes (i.e. weightings) of the
neighborhood on an excerpt including piano, double-bass and drums and on an snare
drum hit excerpt. For both signals, the result of unsmoothed shrinkage, Rectangular,
Simplet (= simple tent, starting at 1 and then linearly decaying to zero), Telpmis (=
time-reversed simple tent) weighted smoothing is shown.

More examples for representations obtained from structured sparsity con-
straints, together with the corresponding sound files, can be found on http:
//homepage.univie.ac.at/monika.doerfler/StrucAudio.html.

3 Discussion and Future Work

In this contribution we showed how, even by visual inspection, the choice of
various representations that exploit prior knowledge about a signal (class) of
interest, can influence the resulting analysis. It will and should be the topic of
further, and necessarily interdisciplinary, research to scrutinize the influence of
these choices on the performance of higher-level processing steps. Some prelim-
inary steps in this direction have been pursued within the research project Au-
dio Miner, cf. http://www.ofai.at/research/impml/projects/audiominer.
html and [9, 13, 8] and shown promising results. We strongly believe, that using
appropriate, still concise, representations of the original data is important to
avoid biased results in higher-level processing steps.

Acknowledgments. The author gratefully acknowledges the many discussions
with all AudioMiner team members concerning the intricate topic of sound ob-
jects and appreciates the thoughtful remarks of two anonymous reviewers.
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